On edge colouring, fractionally colouring and partitioning graphs
Report ID: TR-984-16Author: Edwards, Katherine
Date: 2016-05-18
Pages: 181
Download Formats: |PDF|
Abstract:
We present an assortment of results in graph theory. First, Tutte conjectured that every two-edgeconnected cubic graph with no Petersen graph minor is three-edge-colourable. This generalizes the four-colour theorem. Robertson et al. had previously shown that to prove Tutte’s conjecture, it was enough to prove it for doublecross graphs. We provide a proof of the doublecross case. Seymour conjectured the following generalization of the four-colour theorem. Every d-regular planar graph can be d-edge-coloured, provided that for every odd-cardinality set X of vertices, there are at least d edges with exactly one end in X. Seymour’s conjecture was previously known to be true for values of d ≤ 7. We provide a proof for the case d = 8. We then discuss upper bounds for the fractional chromatic number of graphs not containing large cliques. It has been conjectured that each graph with maximum degree at most ∆ and no complete subgraph of size ∆ has fractional chromatic number bounded below ∆ by at least a constant f(∆). We provide the currently best known bounds for f(∆), for 4 ≤ ∆ ≤ 103 . We also give a general upper bound for the fractional chromatic number in terms of the sizes of cliques and maximum degrees in local areas of a graph. Next, we give a result that says, roughly, that a graph with sufficiently large treewidth contains many disjoint subgraphs with ‘good’ linkedness properties. A similar result was a key tool in a recent proof of a polynomial bound in the excluded grid theorem. Our theorem is a quantitative improvement with a new proof. Finally, we discuss the p-centre problem, a central NP-hard problem in graph clustering. Here we are given a graph and an integer p, and need to identify a set of p vertices, called centres, so that the maximum distance from a vertex to its closest centre (the p-radius) is minimized. We give a quasilinear time approximation algorithm to solve p-centres when the hyperbolicity of the graph is fixed, with a small additive error on the p-radius.