
On edge colouring, fractionally colouring and

partitioning graphs

Katherine Edwards

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Advisor: Paul D. Seymour

September 2016



c© Copyright by Katherine Edwards, 2016.

All Rights Reserved



Abstract

We present an assortment of results in graph theory. First, Tutte conjectured that every two-edge-

connected cubic graph with no Petersen graph minor is three-edge-colourable. This generalizes the

four-colour theorem. Robertson et al. had previously shown that to prove Tutte’s conjecture, it

was enough to prove it for doublecross graphs. We provide a proof of the doublecross case.

Seymour conjectured the following generalization of the four-colour theorem. Every d-regular

planar graph can be d-edge-coloured, provided that for every odd-cardinality set X of vertices,

there are at least d edges with exactly one end in X. Seymour’s conjecture was previously known

to be true for values of d ≤ 7. We provide a proof for the case d = 8.

We then discuss upper bounds for the fractional chromatic number of graphs not containing

large cliques. It has been conjectured that each graph with maximum degree at most ∆ and no

complete subgraph of size ∆ has fractional chromatic number bounded below ∆ by at least a

constant f(∆). We provide the currently best known bounds for f(∆), for 4 ≤ ∆ ≤ 103. We also

give a general upper bound for the fractional chromatic number in terms of the sizes of cliques and

maximum degrees in local areas of a graph.

Next, we give a result that says, roughly, that a graph with sufficiently large treewidth contains

many disjoint subgraphs with ‘good’ linkedness properties. A similar result was a key tool in a

recent proof of a polynomial bound in the excluded grid theorem. Our theorem is a quantitative

improvement with a new proof.

Finally, we discuss the p-centre problem, a central NP-hard problem in graph clustering. Here

we are given a graph and an integer p, and need to identify a set of p vertices, called centres, so

that the maximum distance from a vertex to its closest centre (the p-radius) is minimized. We give

a quasilinear time approximation algorithm to solve p-centres when the hyperbolicity of the graph

is fixed, with a small additive error on the p-radius.
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Chapter 1

Overview

This thesis is based on a collection of papers. The theme is broadly graph theory, but we explore

different areas, namely edge colouring, fractional vertex colouring and graph structure. In this

chapter, we give a brief overview of what is covered. The results we present are grouped into

chapters according to topic, and each of Chapters 3-7 can be read independently of the others. In

Chapter 2 we give a basic set of definitions that will be used throughout. (The reader can look

ahead to that chapter for any definitions needed to follow this section.)

Chapters 3 and 4 are each about different generalizations of the four-colour theorem (4CT)

which is usually stated as follows.

Theorem 1.0.1 (Four-colour theorem). Every planar graph is 4-colourable.

Proposed by Guthrie in 1852, its statement is remarkably simple. And yet, a correct proof

eluded mathematicians for over a century before it was proved in 1977 by Appel and Haken. The

search for a solution over the years gave rise to many important and sophisticated tools in graph

theory, including the method of reducible configurations and discharging. Building on these tools,

my coauthors and I have worked on two generalizations of the four-colour theorem. To describe

them, it is convenient to work with an equivalent edge-colouring formulation of the four-colour

theorem, given by Tait [81] in 1880: Every two-edge-connected, three-regular planar graph has

chromatic index 3.
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1.0.1 Tutte’s three-edge-colouring conjecture

In 1966, Tutte conjectured that every two-edge-connected cubic graph with no Petersen graph

minor is three-edge-colourable [82]. This class of graphs properly contains the class of planar

graphs, so Tutte was proposing a generalization of the four-colour theorem. Robertson et al. [74]

had previously shown that to prove the conjecture, it was enough to prove it for doublecross graphs.

1 In joint work with Sanders, Seymour and Thomas [37], we solved the doublecross case, thereby

placing the final piece in the puzzle of Tutte’s conjecture. We give this proof in Chapter 3. The

proof method is based on the proof of the four-colour theorem; it is computer-assisted and relies

on the method of reducible configurations and discharging.

1.0.2 Seymour’s planar d-edge-colouring conjecture

Here is another strengthening of the four-colour theorem. The four-colour theorem says that the

edges of any 3-regular planar graph can be partitioned into three perfect matchings, provided

the necessary condition that there is no set X of vertices with just one edge between X and its

complement. Seymour conjectured in 1979 that the natural generalization of this statement to

d-regular graphs holds [79]. That is, every d-regular planar graph can be d-edge-coloured, provided

that for every odd-cardinality set X of vertices, there are at least d edges with exactly one end

in X. Seymour’s conjecture was previously known to be true for values of d ≤ 6. As a masters

student, the author worked with Kawarabayashi to prove the case d = 7. Later, in joint work with

Chudnovsky and Seymour, we found a simpler proof which we were able to extend to prove the

case d = 8[19], [20]. This proof also relies on reducibility and discharging arguments, but is short

enough to describe without the assistance of computers. The conjecture remains open for larger

values of d. We give the d = 8 proof in Chapter 4.

1.0.3 Fractional extensions of Brooks’ theorem

We then shift our focus to vertex colourings, in particular fractional colourings. A classical theorem

of Brooks says that every graph with maximum degree ∆ has chromatic number at most ∆ + 1.

Furthermore, the only graphs that achieve this upper bound are the complete graphs and odd

1Doublecross graphs are those graphs which can be drawn in the plane with two crossings that both lie in the
same region.
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cycles [9]. That is, by excluding a complete subgraph of size ∆ + 1 (also known as K∆+1) one

reduces the upper bound in Brooks’ theorem by 1 (when ∆ ≥ 3). If a graph has a K∆ subgraph,

then its chromatic number is at least ∆. What about if it doesn’t? A lovely conjecture of Borodin

and Kostochka says that if one also excludes K∆, then the graph has chromatic number at most

∆−1 (for sufficiently large ∆) [7]. This question is open and notoriously difficult, but in joint work

with King, we proved versions of Borodin and Kostochka’s question for the fractional chromatic

number [35, 34]. 2

It has been conjectured that with the exception of two graphs, everyK∆-free graph has fractional

chromatic number strictly less than ∆ and tight upper bounds have been conjectured. When ∆ = 3,

the question has been resolved; Dvořák et al. showed that every subcubic triangle-free graph has

chromatic number at most 14
5 [29]. It has also been solved when ∆ is very large, as Reed showed

that the Borodin-Kostochka conjecture holds for values of ∆ ≥ 103 [68]. It remains open to find

tight upper bounds when ∆ takes values in between. In Chapter 5 we prove the currently best

known upper bounds for each 4 ≤ ∆ ≤ 103. The proof relies on structural reductions and the

analysis of a randomized fractional colouring scheme.

In the last part of Chapter 5, we present a different upper bound on the fractional chromatic

number. Reed’s ω,∆, χ conjecture proposes that every graph satisfies χ ≤ d1
2(ω(G)+∆(G)+1)e[69].

This conjecture is known for some classes of graphs, but is open in general. However, the upper

bound is known to hold (without the roundup) for the fractional chromatic number χf . Thus, if a

graph has a big χf , then the average of its clique number and its maximum degree is big. McDiarmid

proved a ‘local strengthening’ of Reed’s bound, namely χf ≤ maxv∈V (G)
1
2(ω(v) + d(v) + 1), where

ω(v) denotes the size of the largest clique containing v and d(v) its degree [65]. This says that

if a graph has a big χf , then it has a witness inside the closed neighbourhood of a vertex, i.e. a

vertex whose degree averaged with the size of the largest clique it belongs to is big. The fractional

chromatic number can be arbitrarily far from the bound supplied by either of these theorems

(consider the star K1,r). A natural extension of the local strengthening is to ask for two adjacent

vertices to witness a big fractional chromatic number. Our theorem is that indeed, one can improve

2A fractional colouring is a relaxation of traditional colouring where we assign rational weights to the stable sets of
a graph (instead of integer weights) so that for any given vertex the total weight on stable sets it is at least one. The
fractional chromatic number is the least total weight needed so that this is possible, and it is at most the chromatic
number.
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the local bound as follows. Every graph satisfies χf ≤ maxuv∈E(G)
1
4(ω(u)+d(u)+1+ω(v)+d(v)+1).

1.0.4 On the excluded grid theorem

In the Graph Minors papers, Robertson and Seymour introduced the notions of treewidth and tree

decomposition of graphs which have become important tools in structural graph theory as well

as in algorithmic applications. One of the many celebrated results from this series is the so-called

Excluded Grid Theorem [75]. This says that for every k, there exists f(k) such that every graph not

containing a k×k-grid as a minor has treewidth at most f(k). In Robertson and Seymour’s original

proof, they showed that one can take f(k) to be a certain extremely large function of k containing

iterated exponential towers and later, with Thomas, improved this to about 202k5 [73]. At the same

time, they suggested that this relationship might be tightened to take f(k) = O(k2 log k). Finding

a polynomial upper bound for f(k) was an open problem for many years, though it did receive

some attention. A series of improvements were proved by various researchers before Chekuri and

Chuzhoy gave the first polynomial upper bound for f(k) in 2013. They showed that one can take

f(k) = O(k99) in [13],[12], and later improved this to f(k) = O(k20) in [21] [22].

A key tool in Chekuri and Chuzhoy’s proof is the existence, in graphs with large treewidth,

of many disjoint subgraphs with ‘good’ linkedness properties. This involves a rather technical

definition which we make precise in Chapter 6. Roughly speaking though, for parameters r, h

and α, where r is the desired number of such subgraphs, h measures the number of disjoint paths

between any two of them and α measures the well-linkedness, inside the subgraph, of its vertices

with neighbours outside, we give sufficient conditions on r, h, α for existence of the subgraphs. Our

contribution in Chapter 6 is a quantitative improvement of Chekuri and Chuzhoy’s result. Our proof

also has the advantage of being self-contained, while the result in [12] is implicitly shown inside

the proof of a complex algorithm. Our result can be applied to achieve a modest improvement on

the first bound given by Chekuri and Chuzhoy. We use some of the same ideas as they do in [12]

to obtain our main theorem, but in several places we use different techniques. In particular, in

Section 6.6.2 we prove the following result about partitioning a graph into parts with relatively

more edges inside than leaving each part, which may be of independent interest. For each r, every

graph G with maximum degree ∆ and at least 225r2∆ edges has a partition of its vertices into r

4



parts X1, . . . , Xr so that for each i, |E(G[Xi])| ≥ 1
4(r−1) |δ(Xi)|.

1.0.5 Clustering in δ-hyperbolic graphs

Finally, in Chapter 7 we show how to exploit the hyperbolicity of a graph to cluster its vertices

efficiently. The hyperbolicity of a graph is an invariant which roughly measures the hyperbolicity

of the metric space induced by its associated distance metric. More concretely, the hyperbolicity

constant of a graph can be expressed as a ‘four-point condition’ as follows. A graph is δ-hyperbolic

if for every choice of four vertices u, v, x, y ∈ V (G) with d(u, v) + d(x, y) ≥ d(u, x) + d(v, y) ≥

d(u, y) + d(v, x) we have d(u, v) + d(x, y) − d(u, x) − d(v, y) ≤ 2δ. In particular, every tree is

0-hyperbolic. It has been shown experimentally that real-world networks (social networks, for

example) tend to have small constant hyperbolicity; this is in contrast with random graphs which

tend to have logarithmic hyperbolicity. Such graphs also tend to be so large that quadratic time

algorithms are highly impractical, so it is interesting to design fast approximation algorithms for

optimization problems on graphs with a fixed hyperbolicity. One line of attack is to exploit the

‘treelikeness’ of such graphs, since many NP-complete problems are solvable in polynomial time

on trees. Taking this approach, with Kennedy and Saniee, we considered the p-centre problem, a

popular approach to graph clustering [33]. In this problem, we are given a graph G and integer p,

and want to identify a set of p vertices (called centres) such that the maximum distance from a

vertex to its closest centre is minimized. This optimal distance is called the p-radius (denoted rp),

and in general it is hard to compute.

We give a quasilinear time approximation algorithm for with an additive error at most 3δ.

Specifically, for a graph G with n vertices, m edges and hyperbolic constant δ, our algorithm

constructs p-centers in timeO(p(δ+1)(n+m) log(n)) with radius not exceeding rp+δ when p ≤ 2 and

rp+3δ when p ≥ 3, where rp are the optimal radii. This improves on a previously known algorithm

for p-centers with accuracy rp+δ but with time complexity O((n3 log n+n2m) log(diam(G))) which

is impractical for large graphs.
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Chapter 2

Definitions

In this thesis we use standard graph-theoretic terminology, but we take the opportunity in this

chapter to remind the reader of a few definitions and concepts we will be using often. A thorough

introduction to graph theory can be found in [84] or [26]. We will give additional definitions as the

need arises and repeat information from below as we see fit.

2.1 Basics

A graph G = (V,E) consists of a set V of vertices and E of vertex pairs called edges. For a given

graph G we write V (G) and E(G) to denote its sets of vertices and edges, respectively. When the

reader encounters quantities n or m, she may safely assume they refer to the number of vertices

or edges of the graph being discussed. Graphs in this thesis are always finite and undirected. A

simple graph is a graph without parallel edges or loops. In most cases, we will deal with simple

graphs, though sometimes we will explicitly allow parallel edges and, rarely, loops.

To refer to edges in E(G) we write e = uv. In this case, the edge e has ends u and v. The

vertices u and v are said to be adjacent, or neighbours, and the edge e is incident with both u

and v. Two edges are incident if they share a common end. The degree of a vertex in G is its

number of incident edges, with loops counted twice, and is denoted dG(v) or simply d(v). We use

∆(G) to denote the maximum degree. A graph is d-regular if every vertex has degree d. A cubic

graph is simply a 3-regular graph, and a subcubic graph is one with maximum degree at most 3.

The neighbourhood of a vertex v is the set of its neighbours, and the closed neighbourhood is the
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neighbourhood, along with v. These are denoted N(v) and Ñ(v), respectively. For S ⊆ V (G), the

vertex v is complete to S if S ⊆ N(v). It is anticomplete to S if S ∩N(v) = ∅.

2.2 Colouring

A proper k-colouring is a map φ : V (G) → {1, . . . , k} with φ(u) 6= φ(v) for each edge uv ∈ E(G).

In other words, φ is a partition of the vertices into stable sets. If such a colouring exists, we say

that G is k-colourable. We generally drop the ‘proper’ designation as these are the only colourings

in consideration. The chromatic number of G is the least integer k for which a proper k-colouring

of G exists.

A set M ⊆ E(G) of edges is called a matching if no two edges in M are incident. The matching

M is perfect if every vertex is incident with some edge in M . A proper k-edge-colouring is a map

φ : E(G)→ {1, . . . , k} so that φ(e) 6= φ(f) for each pair of incident edges. If G has such a colouring,

we say it is k-edge-colourable. The chromatic index of G is the least integer k for which a proper

k-colouring exists.

2.3 Subgraphs and minors

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). The graph H is an induced

subgraph if for each edge uv ∈ E(G) we have uv ∈ E(H) if and only if u, v ∈ V (H). We write

G[S] to denote the induced subgraph of G with vertex set S. We say that G is H-free if it has no

induced subgraph isomorphic to H.

To delete a vertex v is to remove v from V (G) and all edges incident to v from E(G). To delete

an edge e is to remove it from E(G). The resulting subgraphs are respectively denoted G \ v and

G \ e. To contract an edge e is to identify its ends; the resulting graph is denoted G/e. A graph H

is a minor of G if H can be obtained from G by a sequence of vertex deletions, edge deletions and

edge contractions. We say that G is H-minor-free if it has no minor isomorphic to H.

If S ⊆ V (G), we say that S is a stable set if no two vertices in S are adjacent. If every pair

of vertices in S is adjacent, then G[S] is called a clique, or a complete subgraph. We denote the

complete graph on n vertices by Kn. We write α(G) to denote the maximum size of a stable set in
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Figure 2.1: The Petersen graph.

G and ω(G) to denote the size of a maximum clique. These invariants are respectively called the

stability number and the clique number.

A graph P is a path if it is isomorphic to the graph with vertices V = {v1, . . . , vk} and edges

E = {v1v2, v2v3, . . . , vk−1vk}. Then P is a v1−vk-path and the vertices v1 and vk are its ends. Two

paths are vertex-disjoint if they have no vertices in common; they are edge-disjoint if they have no

edges in common. A graph is a cycle if it is isomorphic to the graph with V = {v1, . . . , vk} and

E = {v1v2, v2v3, . . . , vk−1vk, vkv1}.

The Petersen graph is the cubic graph depicted in Figure 2.1. It has 10 vertices, 15 edges and

chromatic index 4.

2.4 Connectivity

A graph G is connected if for every pair of vertices u, v ∈ V , there exists a path in G with ends

u, v. Otherwise, G is disconnected. The connected components of G are its maximal connected

subgraphs. A set S ⊆ V is a vertex cutset if G \ S is disconnected. The graph is k-connected if it

has at least k+ 1 vertices, and there is no set of k− 1 vertices whose removal leaves a disconnected

graph. A separation is a pair (S, T ) of subsets of vertices with S ∪ T = V (G), such that there are

no edges between S \ T and T \ S. The order of (S, T ) is |S ∩ T |.

A cut is a partition (S, V (G) \ S) of V (G). The set of edges that have exactly one end in S is

denoted δG(S) (equivalently, δG(V (G) \ S)). We drop the subscript G if it is clear which graph we

are referring to. A set of edges F ⊆ E(G) and called an edge cut if F = δ(S) for some S ⊆ V (G).

A graph is k-edge-connected if the size of a minimum edge cut is at least k. An edge cut of size one
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is called a cut-edge or a bridge. A 2-edge-connected graph is also called bridgeless.

For distinct nonadjacent vertices s and t, an s − t-cut is, depending on the context, either a

vertex cut or an edge cut S so that s and t belong to different components of G \S. It is a classical

theorem of Menger that the maximum number of vertex-disjoint s− t-paths is equal to the size of

the smallest s − t vertex cut [64]. Similarly, the maximum number of edge-disjoint s − t-paths is

equal to the size of a smallest s− t-edge cut.

2.5 Planarity

A planar graph is a graph that can be drawn in the plane without edge crossings. Formally, we

define a drawing of a graph as they do in [71]: Let Σ be a fixed 2-sphere; a line is a subset of Σ

homeomorphic to the unit interval, an open disc a subset homeomorphic to the real plane R2 and

a closed disc a subset homeomorphic to a unit circle in R2. A drawing D of G = (V,E) consists

of a closed set U ⊆ Σ and V ⊆ U of vertices. (We use V to denote the vertices in both the graph

and the drawing via the natural bijection between the two.) For each edge e = uv ∈ E, there is a

corresponding line, also called an edge, in U \V with ends u, v. A pair of edges in D may intersect

only in their common ends.

Let D be a drawing of a 2-edge-connected planar graph. A region is a connected component of

Σ \ U . A region is finite if it is a closed disc, and infinite otherwise. Any drawing has exactly one

infinite region. Each region is bounded by a cycle of G in the natural sense. The length of a region

is the length of its boundary cycle. A vertex or edge is incident with a region if it belongs to the

region’s boundary cycle. A region with length 3 is a triangle. A triangulation is a non-null drawing

in which every region is a triangle and a near-triangulation is a non-null drawing in which every

finite region is a triangle. Let F (G) denote the set of regions in a drawing of a connected graph G.

Euler’s formula states that |V (G)|+ |F (G)| − |E(G)| = 2.

Let G be a connected graph drawn in the plane. The dual graph of G is the graph with vertex

set F (G) and which has an edge ff ′ for each pair of regions f, f ′ and edge e such that f, f ′ are

both incident with e. The dual is again a planar graph, and its dual is G.
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Chapter 3

Three-edge-colouring cubic

doublecross graphs

3.1 Introduction

Recall Tait’s formulation of the four-colour theorem (4CT) [81], that every two-edge-connected cubic

planar graph is three-edge-colourable. In 1966, Tutte [82] proposed that every two-edge-connected

cubic graph with no Petersen graph minor is three-edge-colourable. Tutte’s conjecture strengthens

the 4CT since the Petersen graph, being non-planar, is not a minor of any planar graph. It is a

proper strengthening since there do exist non-planar two-edge-connected cubic graphs without a

Petersen minor; consider for example the complete bipartite graph K3,3. The result presented in

this chapter is what was the last remaining unproved step in the proof of Tutte’s conjecture, which

is now officially a theorem.

Theorem 3.1.1. Every two-edge-connected cubic graph without the Petersen graph as a minor is

three-edge-colourable.

Tutte’s conjecture precedes the proof of the 4CT, due to Appel and Haken [3, 4] in 1974, and

its later simplification by Robertson, Seymour, Sanders and Thomas in 1997 [71]. Our methods

depend heavily on those developed in the latter proof. The work in this chapter is joint with Paul

Seymour, Daniel Sanders and Robin Thomas, and has been published in [37].

In this discussion, all graphs are finite and simple. A graph G is apex if G \ v is planar for some
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vertex v ; and a graph G is doublecross if it can be drawn in the plane with only two crossings,

both on the infinite region in the natural sense.

It is easy to check that apex and doublecross graphs do not contain the Petersen graph as a

minor; but there is also a converse. Let us say a graph G is theta-connected if G is cubic and has

girth at least five, and |δG(X)| ≥ 6 for all X ⊆ V (G) with |X|, |V (G) \X| ≥ 6. (δG(X) denotes the

set of edges of G with one end in X and one end in V (G) \X.) Robertson, Seymour and Thomas

proved in [72] that every theta-connected graph with no Petersen graph minor is either apex or

doublecross (with one exception, that is three-edge-colourable); and in [74] that every minimal

counterexample to Tutte’s conjecture was either apex or theta-connected. It follows that every

minimal counterexample to Tutte’s conjecture is either apex or doublecross, and so to prove the

conjecture in general, it suffices to prove it for apex graphs and for doublecross graphs. Sanders and

Thomas proved in [77] that every two-edge-connected apex cubic graph is three-edge-colourable, so

all that remains is the doublecross case, which is the objective of this chapter. Our main theorem

is:

Theorem 3.1.2. Every two-edge-connected doublecross cubic graph is three-edge-colourable.

The proof method is by modifying the proof of the 4CT given in [71]. Again we give a list

of reducible configurations (the definition of “reducible” has to be modified to accommodate the

two pairs of crossing edges), and a discharging procedure to prove that one of these configurations

must appear in every minimal counterexample (and indeed in every non-apex theta-connected

doublecross graph). This will prove that there is no minimal counterexample, and so the theorem

holds. Happily, the discharging rules given in [71] still work without any modification.

3.2 Crossings

We are only concerned with graphs that can be drawn in the plane with two crossings, and one

might think that these are not much different from planar graphs, and perhaps one could just use

the 4CT rather than going to all the trouble of repeating and modifying its proof. For graphs with

one crossing this is true: here is a pretty theorem of Jaeger [51]:
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Theorem 3.2.1. Let G be a two-edge-connected cubic graph, drawn in the plane with one crossing.

Then G is three-edge-colourable.

Proof. Let e, f be the two edges that cross one another, and let e = z1z3 and f = z2z4 say. Let

H be obtained from G by deleting e, f , adding four new vertices y1, . . . , y4, and edges gi = yizi

for 1 ≤ i ≤ 4. Thus every vertex of H has degree three, except for y1, . . . , y4 which have degree

one; and H can be drawn in a closed disc with y1, . . . , y4 drawn in the boundary of the disc in

order. By adding four edges y1y2, y2y3, y3y4 and y4y1, we obtain a two-edge-connected cubic planar

graph, which therefore is three-edge-colourable, by the 4CT. Consequently H is also three-edge-

colourable; let φ : E(H) → {1, 2, 3} be a three-edge-colouring of H. Since each colour appears

at every vertex of H different from y1, . . . , y4, and there are an even number of such vertices, it

follows that each of the three colours appears on an even number of g1, . . . , g4. In particular, if

φ(g1) = φ(g3) then φ(g2) = φ(g4), giving a three-edge-colouring of G as required. We may assume

then that φ(g1) 6= φ(g3), and similarly φ(g2) 6= φ(g4). From the symmetry we may therefore assume

that φ(gi) = 1 for i = 1, 2, and φ(gi) = 2 for i = 3, 4. Let J be the subgraph of H with vertex set

V (H) and edge set all edges e of H with φ(e) ∈ {1, 2}. Every vertex of H different from y1, . . . , y4

therefore has degree two in J , and y1, . . . , y4 have degree one; and so two components of J are paths

with ends in {y1, . . . , y4}, and all other components are cycles. Let the two components which are

paths be P1, P2; and we may assume that y1 is an end of P1. The second end of P1 cannot be y3,

since then P2 would have ends y2, y4, which is impossible by planarity. So the second end of P1 is

one of y2, y4; and in either case, if we exchange colours 1 and 2 on the edges of P1, and otherwise

leave φ unchanged, we obtain a new three-edge-colouring φ′ of H, in which φ′(g1) = φ′(g3) and

φ′(g2) = φ′(g4), which therefore gives a three-edge-colouring of G. This proves Theorem 3.2.1.

We have tried (hard!) to do something similar to handle the doublecross case, but failed; it

seems necessary to do it the long way, modifying the proof of the 4CT. Fortunately that is not as

difficult as it was for the apex case in [77].
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3.3 Discharging and a sketch of the proof

Our proof closely follows Robertson et al.’s proof of the four-colour theorem. For the uninitiated

reader, in this section we give a quick overview of the ideas in that proof. It makes use of the

discharging method, a technique which we will also need in Chapter 4. The discharging method is

a powerful technique that has been around for over a century. Its invention has been credited to

Wernicke who used it to prove that every planar graph with minimum degree 5 has two adjacent

vertices, at most one of which has degree 6 [83]. Its application in early attacks on the 4CT goes

back to the work of Heesch.

Details vary depending on the application, but the essential formula is the following. Let’s say

we want to prove that all planar graphs belonging to a subclass X satisfy some property. 1 There

are two phases. In the first, called unavoidability, we show that every graph in X must contain at

least one of a list of forbidden subgraphs. To do this, we initially assign numbers, called charges,

to vertices and/or regions in such a way that the total sum of charges distributed is positive. Then

we move charges around between vertices and regions, in a way that conserves the total amount of

charge in the graph, according to a list of rules called the discharging rules. We then prove that

any vertex or region that has positive charge after the rules have been applied must contain one of

the forbidden subgraphs. The particulars of the charge assignment and the rules vary depending

on the problem at hand.

The second phase is called reducibility. Here, we need to show that no minimum counterexample

to our purported theorem can contain any of the forbidded subgraphs in the list.

Let us see how this is applied in the 4CT [71]. Their proof works with planar triangulations,

rather than their cubic duals. As Tait showed, it is sufficient to find a colouring of the edges with

three colours so that the three edges incident with any face are all different. It was known that

every minimum counterexample to the 4CT must be an internally 6-connected triangulation [6],

meaning it has minimum degree 5, and any vertex-cutset of order 5 is the neighbourhood of a vertex.

The unavoidability phase, while very intricate, is standard. The reducibility phase, however, is less

straightforward.

The forbidden subgraphs in this case are a list of 633 reducible configurations. Each reducible

1Actually, we work with drawings of graphs but we will make that precise later.
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configuration consists of a near-triangulation C bounded by a cycle R, called its ring. Let T be a

triangulation drawn in the plane and assume it’s a counterexample to the 4CT. Suppose C appears

in T , then we can think of the drawing as having two parts, inside and outside the ring. If we replace

the piece of T inside the ring (i.e. C) with a smaller triangulation, then the resulting triangulation

T ′ is colourable by minimality. This means there is a nonempty set C(R) of colourings of R which

can be extended to proper colourings of the part of T on the outside. Moreover if C(R) contains

some colouring of R, then it must also contain any colouring that could be obtained from it by

switching on 2-coloured paths in the dual with ends in R and interior outside R. More precisely,

fix two colours, a and b say, and a colouring of T ′. Starting from an edge in R coloured a and

following a sequence of edges of colours alternating between a and b, so that any two in succession

belong to the same region, we inevitably end up at an edge of R. Such an alternating path is

called a Kempe chain. Moreover by planarity, no two such paths can cross. Thus, while we do not

know what T ′ looks like, we do know that for any colouring φ ∈ C(R) and pair of colours, there is

some partition of E(R) into pairs that are ‘planar’, such that C(R) contains any colouring obtained

from φ by switching colours on any subset of these pairs. This is called being consistent. We also

know that C(R) doesn’t contain any colouring of R that extends to a colouring of C, since T is a

counterexample. Using a computer (or by hand, if time is not a valuable resource) one can compute

all consistent subsets of colourings of R. If each of these contains a colouring which extends to C,

then we have found that C is a reducible configuration. (The set of colourings extendible to C is

easy to compute, since C is small.) We say then that C is D-reducible or C-reducible, depending

on the subgraph used to replace C. These concepts of reducibility go back to the work of Kempe,

Birkhoff, Heesch and others, and are used in both established proofs of the 4CT [6], [55].

To adapt the proof of the 4CT to handle doublecross graphs, we need a little bit of extra

work. For one, doublecross graphs are not planar, and so it doesn’t make sense to take the dual

triangulation. To circumvent this problem, we replace our doublecross graph with the planar graph

obtained by subdividing each of the four crossing edges and identifying their midpoints. The dual

of this graph is a near-triangulation, with one region of length eight. We will fill this region with

a suitable graph to obtain a triangulation to work with. We’ll also want to make sure that we can

find a reducible configuration that is far away from this length-8 cycle and the triangulation we

filled it with, in order to be sure the configuration actually belongs to the original graph.
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We will also need a new, modified definition of consistency for our reductions. This is because

Kempe chains can cross in a doublecross graph, so we need a definition of consistency that allows

for that. For a fixed colouring in C(R) and pair of colours, there are now more possibilities for the

pairing of ring edges, and so it is easier for C(R) to be consistent. Not all of the 633 configurations

from the 4CT are reducible according to our new definition, but we found a list of 756 that are

and for which we did not need to modify the discharging rules from the 4CT at all. In Sections

3.4 to 3.6 we describe the modified triangulation and the discharging argument. In Section 3.7 we

describe the reducibility argument. We complete the proof in Section 3.8.

3.4 XX-good configurations and a discharging argument

Let us start being more precise. To prove the four-colour theorem, one can express the problem in

terms of planar triangulations, or in dual form, in terms of planar cubic graphs. But in practise it

is easier to work with triangulations; for instance, it is much easier to present long lists of reducible

configurations if we present them as subgraphs of triangulations than as subgraphs of cubic graphs.

For the present doublecross problem, it is still most convenient to present the list of reducible

configurations as subgraphs of triangulations, even though most of the argument is done in terms

of cubic graphs.

A drawing is defined as in Chapter 2 and [71], and therefore has no “crossings”. (Sometimes

we speak of a graph as being “drawn with crossings”, but we omit the formal definition of this.)

Recall, a triangulation T means a non-null drawing in a 2-sphere such that every region is bounded

by a cycle of length three, and a near-triangulation is a non-null connected drawing in the plane

such that every finite region is a triangle. If T is a near-triangulation, its infinite region is bounded

by a cycle if and only if T is two-connected; and if so, we denote this cycle by T∞. A configuration

K consists of a near-triangulation GK together with a map γK : V (GK)→ Z (Z denotes the set of

all integers) with the following properties:

• |V (GK)| ≥ 2;

• for every vertex v, GK \ v has at most two components, and if there are two, then γK(v) =

d(v) + 2 (where d(v) is the degree of v in GK);
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Figure 3.1: The shapes of vertices.

• for every vertex v, if v is not incident with the infinite region then γK(v) = d(v); and otherwise

γK(v) > d(v), and in either case γK(v) ≥ 5.

• K has ring-size at least two, where the ring-size of K is defined to be
∑

v(γK(v)− d(v)− 1),

summed over all vertices v incident with the infinite region such that GK \ v is connected.

(In fact, all configurations used in this proof have ring-size at least six.)

We use the same conventions as in [71] to describe configurations, and in particular, we use the

same vertex shapes in drawings to represent the numbers γK(v).

Two configurations K,L are isomorphic if there is a homeomorphism of the plane mapping

GK to GL and mapping γK to γL. In the Appendix to this thesis there are 756 configurations.

Any configuration isomorphic to one of these is called an XX-good configuration. Note that every

XX-good configuration K has the property that γK(v) ≤ 11 for every v ∈ V (GK).

A triangulation T (in a 2-sphere Σ) or a near-triangulation (in a plane Σ) is internally six-

connected if for every cycle C of T with length at most five, either some open disc in Σ, bounded by

C, contains no vertex of T , or C has length five and some such open disc contains a unique vertex

of T .

We say a configuration K appears in a triangulation T if

• GK is an induced subgraph of T ; and

• for each v ∈ V (GK), γK(v) equals the degree of v in T .
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Let T be a two-connected near-triangulation. We say a configuration K appears internally in

T if

• GK is an induced subgraph of T \ V (T∞);

• for each v ∈ V (GK), γK(v) equals the degree of v in T ; and

• every vertex or edge of T that does not belong to GK is drawn within the infinite region of

GK .

The main result of this section is the following.

Theorem 3.4.1. Let J be a two-connected, internally six-connected near-triangulation. Suppose

that J∞ is an induced subgraph of J , and there are at least 4|V (J∞)|−11 edges in J between V (J∞)

and V (J) \ V (J∞). Then some XX-good configuration appears internally in J .

To prove this, we use the discharging procedure from [71], so now we turn to that. A discharging

function in a triangulation T means a map φ from the set of all ordered pairs of adjacent vertices

of T into Z, such that φ(u, v) + φ(v, u) = 0 for all adjacent u, v. In [71], we defined an explicit

discharging function, for every internally six-connected triangulation. Since it is rather complicated,

we refer the reader to [71] for the details of its definition. We need the following two properties;

the first can be verified by hand, but the second needs a computer.

Theorem 3.4.2. Let T be an internally six-connected triangulation, and let φ be the discharging

function defined in [71]. Then

• for every edge uv, if φ(u, v) > 5 then some XX-good configuration appears in T and contains

u

• for every vertex u of G, if 10(6 − dT (u)) >
∑

v φ(u, v) (where the sum is over all vertices v

adjacent to u) then some XX-good configuration K appears in T , and moreover either u or

some neighbour of u is a vertex of GK .

Both of these statements are minor variants of theorems proved in [71] (Theorems 4.7 and 4.4 of

that paper, respectively) and the methods of proof are unchanged. The proof of the first statement

is virtually identical with the proof of Theorem 4.7 of [71], because all the “good configurations”
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used in that proof are also XX-good, except for one, the configuration called conf(2,10,6) in that

paper, which is not XX-good. This is only needed at one step of the proof, and at that step we

can use a different configuration instead, which is XX-good, the second on line 5 of page 3 of the

Appendix. In the proof in [71] of Theorem 4.7 of that paper, it is not included in the statement

of the theorem that the good configuration we find contains u, as we are claiming now; but in fact

the proof shows that.

The proof of the second needs analogues of Theorems 4.5, 4.6, 4.8, 4.9 of the same paper.

Again, in [71] it is not included in the statement of the theorem that the good configuration we

find contains u or one of its neighbours; but this is implied by the fact that the configuration is

always found within a “cartwheel” centred on u. The proofs of the analogues of 4.5, 4.6 and 4.8

are unchanged, because all the good configurations used for those proofs in [71] are also XX-good.

The analogue of 4.9 is proved by computer. The computer program just checks a machine-readable

proof of unavoidability, and is the same as was used in [71]; we just changed its two inputs, the

list of configurations we want to prove unavoidable, and the files containing the machine-readable

proofs. We are making the program and the computer-readable proofs available on the arXiv [36].

Proof of Theorem 3.4.1. Let C = J∞, and take a drawing of J in a 2-sphere such that C bounds

some region r0. Thus one region of J has a boundary of length |V (C)|, and all others have length

three. Let J have r regions; then by Euler’s formula, |V (J)| − |E(J)|+ r = 2, and so

∑
v∈V (J)

6− dJ(v) = 6|V (J)| − 2|E(J)| = 6(|E(J)|+ 2− r)− 2|E(J)| = 4|E(J)| − 6r + 12.

The sum of the lengths of the regions of J is |V (C)|+ 3(r− 1), and so 2|E(J)| = |V (C)|+ 3(r− 1).

We deduce that

∑
v∈V (J)

6− dJ(v) = 4|E(J)| − 6r + 12 = 2(|V (C)|+ 3(r − 1))− 6r + 12 = 2|V (C)|+ 6.

Let there be k edges between V (J) \ V (C) and V (C). It follows that
∑

v∈V (C) dJ(v) = k +
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2|V (C)|. Consequently

∑
v∈V (C)

6− dJ(v) = 6|V (C)| − (k + 2|V (C)|) = 4|V (C)| − k

and so ∑
u∈V (J)\V (C)

6− dJ(u) = (2|V (C)|+ 6)− (4|V (C)| − k) = k + 6− 2|V (C)|.

Now extend the drawing of J to a drawing of an internally six-connected triangulation T , by

adding more vertices and edges drawn within r0, in such a way that every vertex in V (C) has

degree in T at least 12. (It is easy to see that this is possible, since J is internally six-connected.)

(1) If there is an XX-good configuration K that appears in T such that some vertex in V (J) \V (C)

either belongs to GK or has a neighbour in GK , then K appears internally in J .

No vertex in V (C) belongs to V (GK), since γK(v) ≤ 11 for every vertex v of K, and dT (v) ≥ 12 for

every v ∈ V (C). From the hypothesis, it follows that some vertex of GK belongs to V (J) \ V (C),

and hence V (GK) ⊆ V (J) \ V (C) since GK is connected. Moreover, every finite region of GK is

a finite region of J , since J is internally six-connected. But every vertex in V (J) \ V (C) has the

same degrees in T and in J , and so K appears internally in J . This proves (1).

Let φ be the discharging function on T defined in [71]. Suppose first that φ(u, v) > 5 for some

edge uv of T with u ∈ V (J) \ V (C) and v ∈ V (C). By the first statement of Theorem 3.4.2, some

XX-good configuration K appears in T and contains u, and the result follows from (1).

Thus we may assume that there is no such edge uv. Let there be k edges uv in J with

u ∈ V (J) \ V (C) and v ∈ V (C). Consequently the sum of φ(u, v), over all edges uv of T with

u ∈ V (J) \ V (C) and v ∈ V (C), is at most 5k. But this equals the sum over all u ∈ V (J) \ V (C),

of the sum of φ(u, v) over all neighbours v of u, since φ(u, v) = −φ(v, u) for all u, v. Therefore the

sum over all u ∈ V (J) \ V (C) of

10(6− dJ(u))−
∑

uv∈E(J)

φ(u, v)
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is at least 10(k+ 6− 2|V (C)|)− 5k. Since k ≥ 4|V (C)| − 11 by hypothesis, the last is positive, and

so there exists u ∈ V (J) \ V (C) such that

10(6− dJ(u))−
∑

uv∈E(J)

φ(u, v) > 0.

For such a vertex u, its degrees in J and T are the same; and so by the second assertion of

Theorem 3.4.2, there is an XX-good configuration K that appears in T , such that either u or some

neighbour of u is a vertex of GK . But then again, the result follows from (1). This proves Theorem

3.4.1.

3.5 The doublecross edges

By a minimal counterexample, we mean a cubic two-edge-connected doublecross graph G which is

not three-edge-colourable, and such that every cubic two-edge-connected minor of G is three-edge-

colourable except G itself.

Proposition 3.5.1. Let G be a minimal counterexample. Then

• G is theta-connected;

• there are four edges g1, . . . , g4 of G, and the graph G\{g1, g2, g3, g4} can be drawn in the plane

such that its infinite region is bounded by a cycle Z;

• there are eight vertices z1, . . . , z8 of Z, distinct and in order, such that g1 = z1z3, g2 = z2z4,

g3 = z5z7 and g4 = z6z8.

Proof. By the result of [77], G is not apex since it is not three-edge-colourable. Since G is also a

minimal counterexample to Tutte’s conjecture, the result of [74] implies that G is theta-connected.

Now G can be drawn in the plane with only two crossings both on the infinite region. Let the

crossing pairs of edges be (g1, g2) and (g3, g4). Since G is not apex, it follows that {g1, g2} 6= {g3, g4},

and indeed g1, g2 are disjoint from g3, g4. If g1 shares an end with g2, then the drawings of g1, g2 can

be rearranged to eliminate their crossing, and again G is apex, which is again impossible (indeed,

in this case G has crossing number at most one, and so we could use Theorem 3.2.1 instead of the

result of [77]). So g1, g2, g3, g4 are disjoint. The graph obtained by deleting the edges g1, . . . , g4 is
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two-edge-connected since G is theta-connected, and it is drawn in the plane such that g1, g2, g3, g4

are all drawn within its infinite region. Since it is two-edge-connected, its infinite region is bounded

by a cycle. This proves Proposition 3.5.1.

To prove Theorem 3.1.2, we use the same approach as the proof of the four-colour theorem,

proving the existence of an unavoidable set of reducible subgraphs. Some of these reducible sub-

graphs use all four of the edges g1, . . . , g4, and the others use none of them. The length of the cycle

Z of Proposition 3.5.1 is the deciding factor here; if |E(Z)| ≤ 20 we will show the existence of a

reducible subgraph using g1, . . . , g4, while if |E(Z)| ≥ 21 we will show the presence of one of the

other kind. In this section we handle the case when |E(Z)| ≤ 20.

Lemma 3.5.2. If G is a minimal counterexample and Z is the cycle as in Proposition 3.5.1, then

|E(Z)| ≥ 21.

Proof. Let z1, . . . , z8 be as in Proposition 3.5.1, and for 1 ≤ i ≤ 8 let Zi be the path of Z with ends

zi, zi+1 that contains no other member of {z1, . . . , z8} (where z9 means z1). For 1 ≤ i ≤ 8, let Li

denote |E(Zi)|. We observe:

• L1, . . . , L8 ≥ 1, because z1, . . . , z8 are all distinct;

• L1 + L2 ≥ 4 since every cycle of G has length at least five; and for the same reason L2 +

L3, L5 + L6, L6 + L7 ≥ 4 and L1 + L3, L5 + L7 ≥ 3;

• L1 + L2 + L3 ≥ 7 since there are at least six edges with exactly one end in V (Z1 ∪ Z2 ∪ Z3)

(because G is theta-connected); and similarly L5 + L6 + L7 ≥ 7;

• L1 + L8 ≥ 3, because if Z1, Z8 both have length one then G is apex (deleting the end of Z8

not in Z1 makes the graph planar); and similarly L3 + L4, L4 + L5, L7 + L8 ≥ 3.

A choice of the 8-tuple (L1, . . . , L8) is called plausible if it satisfies the conditions just listed.

Suppose that |E(Z)| ≤ 20; then there are only finitely many plausible choices for (L1, . . . , L8), and

we handle them one at a time. Now, therefore, we assume that we are dealing with some such

plausible choice, and so we know the lengths L1, . . . , L8. Let G− be the graph obtained from G by

deleting the four crossing edges g1 = z1z3, g2 = z2z4, g3 = z5z7 and g4 = z6z8. Then Z is a cycle
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of G−, bounding a region in a planar drawing of G−. Every vertex of Z different from z1, . . . , z8

is incident with an edge of G− that does not belong to E(Z). Let the vertices of Z different from

z1, . . . , z8 be v1, . . . , vk say, numbered in circular order (starting from some arbitrary first vertex),

and for 1 ≤ i ≤ k let fi be the edge of G incident with vi and not in E(Z). Note that f1, . . . , fk

might not all be distinct (because for instance some fi might be incident with a vertex of the

interior of Z2 and incident with a vertex of the interior of Z6). Let F = {f1, . . . , fk}, and let D be

the set of all maps from F to {1, 2, 3}.

A subset C ⊆ D is said to be consistent if it has the following property. For all distinct

x, y ∈ {1, 2, 3}, and each φ ∈ C, let Fx,y be the set of all f ∈ F with φ(f) ∈ {x, y}; then there is a

partition Π of Fx,y into sets of size one and two, with the following properties:

• for f ∈ Fx,y, the member of Π containing f has size one if and only if both ends of f belong

to V (Z);

• for 1 ≤ a < b < c < d ≤ k, not both {fa, fc}, {fb, fd} ∈ Π; and

• φ′ ∈ C for every subset F ′ ⊆ Fx,y which is expressible as a union of members of Π, where φ′

is defined by

φ′(f) =


φ(f) if f ∈ F \ F ′

y if f ∈ F ′ and φ(f) = x

x if f ∈ F ′ and φ(f) = y.

For any graph H with F ⊆ E(H), we denote by CH the set of all members of D that can be

extended to a three-edge-colouring of H. Let J = G− \ E(Z), and let K be the subgraph of G

formed by the edges in F ∪E(Z)∪ {g1, g2, g3, g4} and their incident vertices. Since |E(Z)| ≤ 20, it

follows that |F | ≤ 12.

For each plausible choice of (L1, . . . , L8) (except one, that we handle separately), there are three

steps to be carried out on a computer, which we explain now. All three involve computation with

subsets of D, but since |F | ≤ 12 all three steps are easily implemented.

Step 1: Compute CK .

Step 2: Compute the maximal consistent subset C of D \ CK . (The union of any two consistent
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sets is consistent, and so there is a unique maximal consistent subset of any set.)

Step 3: Verify that there is a graph K ′, obtained from K by deleting one or two of the edges

g1, . . . , g4, and suppressing the vertices of degree two that arise, such that C ∩ CK′ = ∅. (This

involves looking at the handful of possibilities for K ′ and computing CK′ for each of them.)

The exception is the 8-tuple (4, 1, 4, 1, 4, 1, 4, 1), which is plausible but for which there is no K ′

as in step 3 above. For this 8-tuple let K ′ be obtained from K by deleting the unique edge in Z2

and suppressing the vertices of degree two that arise. Again we check that C ∩ CK′ = ∅.

In all cases, since G is not three-edge-colourable, and J ∪ K = G, it follows that CJ and CK

are disjoint. The planarity of J implies that CJ is consistent (this is easy to see, and is a standard

argument in proving the four-colour theorem – see [71]). Consequently CJ ⊆ C, and so CJ ∩CK′ = ∅.

It follows that J ∪K ′ is not three-edge-colourable. But J ∪K ′ can be obtained from G by deleting

either one or two disjoint edges, and suppressing the vertices of degree two that arise; and so J ∪K ′

is two-edge-connected (since G is theta-connected), doublecross, and smaller than our supposedly

minimal counterexample, which is impossible. This proves Lemma 3.5.2.

We have omitted the details of the computer checking; this is all straightforward. (The program

is available on the arXiv.) There are 2957 plausible 8-tuples to check, up to symmetry, but the

program only takes about a minute to do them all, so we were content with that. If desired,

running through all possible choices of (L1, . . . , L8) could be made more efficient at the cost of

complicating the proof. For instance, we could quickly dispose of the case when min(L1, L2, L3) =

min(L5, L6, L7) = 1, because in this case G contains a “C-reducible” subgraph (of a different kind),

no matter what the other six lengths are. But we are aiming for simplicity rather than speed here.

3.6 Islands

An island means a graph I drawn in the plane, with the following properties:

• I is two-connected;

• every vertex has degree two or three; and

• every vertex of degree two is incident with the infinite region.
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Let I be an island, and J be a geometric dual, where j ∈ V (J) corresponds to the infinite

region of I. For each v ∈ V (J) \ {j}, let γ(v) be the length of the region of I that corresponds to

v. Then the pair (J \ {j}, γ) might or might not be a configuration; but more important, for every

configuration K, there is an island that gives rise to it in this way, unique up to homeomorphism

of the plane. (We leave checking this to the reader. One way is to go to the “free completion” of

K defined in [71], take a dual, and delete the vertex corresponding to the infinite region.) We call

this the island of K, and denote it by I(K).

We need to work mostly with the islands of the XX-good configurations, but it is more compact

to draw the configurations themselves. Sometimes we need to refer to an edge e of one of the islands,

say of I(K). Now e corresponds to some edge f of J under the duality (where J is as before), and

if f ∈ E(GK) then we can refer to e by defining it as the edge dual to f . But sometimes the edge

f is not an edge of GK . For this reason, in the list of XX-good configurations, some vertices are

drawn with extra “half-edges”. These indicate some of the edges of J that are not edges of GK ,

for convenience in referring to certain edges of I(K).

Lemma 3.6.1. Let G be a minimal counterexample, and let Z, g1, . . . , g4 be as in Proposition 3.5.1.

Then there is a cycle of G \ {g1, . . . , g4}, bounding a closed disc ∆, such that the subgraph of G

formed by the vertices and edges drawn in ∆ is an island of some XX-good configuration.

Proof. Let G− = G \ {g1, . . . , g4}; and let us extend the drawing of G− by adding one new vertex

z∞ (drawn within the infinite region of G−) and eight new edges, joining z∞ to the eight ends of

g1, . . . , g4, forming G+ say. Thus in G+, every vertex has degree three except for z∞, which has

degree eight. (We can think of G+ as obtained from G by subdividing the four edges g1, . . . , g4 and

identifying the four new vertices.)

Now take a geometric dual T of G+, such that z∞ belongs to the infinite region of T . It follows

that:

• T is a near-triangulation;

• the cycle T∞ is an induced subgraph of T ;

• T is internally six-connected (since G is theta-connected); and
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• the number of edges of T between V (T∞) and V (T ) \V (T∞) is at least 21, since |E(Z)| ≥ 21

by Lemma 3.5.2, and for each e ∈ E(Z), the corresponding edge of T has one end in V (T∞)

and the other in V (T ) \ V (T∞).

Since |V (T∞)| = 8 and so 4|V (T∞)| − 11 = 21, Theorem 3.4.1 implies that some XX-good

configuration K appears internally in T . Consequently the union of the closures of the regions of

G− that correspond to vertices in GK is a closed disc that defines an island satisfying the theorem.

This proves Lemma 3.6.1.

3.7 Reducibility

It remains to show that the outcome of Lemma 3.6.1 is impossible, but for that we need to discuss

reducibility further.

If a, b, c, d are integers and 1 ≤ a < b < c < d, we call {{a, c}, {b, d}} a cross. Let Π be a finite

set of finite sets of positive integers, each of cardinality two and pairwise disjoint. We say that Π

is doublecross if the following conditions hold:

• at most two subsets of Π are crosses

• if A,B,C,D ∈ Π are distinct, and {A,B}, {C,D} are crosses, let X = A ∪ B ∪ C ∪ D (so

|X| = 8). Then for all P ∈ Π with P ∩ X = ∅ there do not exist x1, x2 ∈ X such that

{P, {x1, x2}} is a cross.

This is equivalent to the following geometric condition, which may be easier to grasp: choose k ≥ 3

such that A ⊆ {1, . . . , k} for each A ∈ Π. Take a regular k-vertex polygon in the plane, with vertices

v1, . . . , vk in order. For each A ∈ Π draw a line segment LA between vi, vj , where A = {i, j}. Then

we ask that

• no point of the plane belongs to more than two of LA (A ∈ Π);

• at most two points of the plane belong to more than one of these lines;

• if there are two points x, y each belonging to two of the lines LA (A ∈ Π) say, then either

some LA contains them both, or no LA intersects the interior of the line segment between

x, y.
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We leave the equivalence to the reader.

Let k ≥ 1, and let D be the set of all maps φ : {1, . . . , k} → {1, 2, 3}. We say a subset C of D is

XX-consistent if it has the following property. For all distinct x, y ∈ {1, 2, 3}, and each φ ∈ C, let

Rx,y be the set of all i ∈ {1, . . . , k} with φ(i) ∈ {x, y}; then there is a doublecross partition Π of

Rx,y, such that φ′ ∈ C for every subset F ′ ⊆ Rx,y which is expressible as a union of members of Π,

where φ′ is defined by

φ′(f) =


φ(f) if f ∈ {1, . . . , k} \ F ′

y if f ∈ F ′ and φ(f) = x

x if f ∈ F ′ and φ(f) = y.

Let I be the island of a configuration K. We say F ⊆ E(I) is a matching if no two edges

in F have a common end, and V (F ) denotes the set of vertices incident with an edge in F . A

three-edge-colouring modulo F of I means a map φ : E(I) \F → {1, 2, 3}, such that for all distinct

edges e, f ∈ E(I) \ F with a common end v say, φ(e) = φ(f) if and only if v ∈ V (F ).

Let the vertices with degree two in I be v1, . . . , vk in order on the boundary of the infinite

region. With D as before, let CK be the set of all ψ ∈ D such that there is a three-edge-colouring

φ of I with φ(e) 6= ψ(i) for 1 ≤ i ≤ k and for each edge e of I incident with vi. We say that

K is XXD-reducible if there is no non-null XX-consistent subset of D \ CK . We say that K is

XXC-reducible if there is a matching F of I with the following properties:

• 1 ≤ |F | ≤ 4.

• If |F | = 4, then either some finite region of I is incident with at least three members of F , or

there are two finite regions of I, say r, s, such that some edge of I is incident with both r, s,

and every edge of F is incident with one of them.

• Let CF be the set of all ψ ∈ D such that there is a three-edge-colouring modulo F of I, say

φ, such that for 1 ≤ i ≤ k and every edge e ∈ E(I) \ F , φ(e) = ψ(i) if and only if vi ∈ V (F ).

Then every XX-consistent subset of D \ CK is disjoint from CF .

We call such a set F a reducer for K. (We will show that if K appears in a minimal counterexample

G, then deleting from G the edges in F and suppressing the resultant vertices of degree two will

make a smaller counterexample, which is impossible; and so K cannot appear.) We need:
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Theorem 3.7.1. For every XX-good configuration K, either K is XXD-reducible, or K is XXC-

reducible.

Proof. The proof uses a computer. Each XX-good configuration K is drawn in the Appendix

to this thesis, and in that drawing sometimes some edges are drawn thickened. If no edges are

thickened then we claim K is XXD-reducible, and otherwise we claim it is XXC-reducible, and

the corresponding reducer F corresponds to the set of thickened edges and half-edges of GK under

planar duality. To show this, for each XX-good configuration K in turn, we carry out two steps:

Step 1: Compute CK .

Step 2: Compute the maximal XX-consistent subset C of D \ CK . (The union of any two XX-

consistent sets is XX-consistent, and so there is a unique maximal XX-consistent subset of

any set.)

If C is empty we have verified that K is XXD-reducible and we stop here. Otherwise, we carry out:

Step 3: Let F be the set of edges of I(K) that correspond under geometric duality to the thickened

edges and half-edges of GK given in the Appendix, and verify that F is a reducer for K.

This is just the same process as in the proof of the four-colour theorem [71], and is carried out

on a computer the same way; we omit further details. (Again, we are making the program available

on the arXiv [36].)

3.8 Assembling the pieces

Now we combine these various lemmas to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Suppose the result is false; then there is a minimal counterexample G. Let

Z, g1, . . . , g4 be as in Proposition 3.5.1, and let G− = G \ {g1, g2, g3, g4}. By Lemma 3.6.1, there is

a cycle D of G−, bounding a closed disc ∆, such that the subgraph of G formed by the vertices

and edges drawn in ∆ is an island I of some XX-good configuration K say. Let v1, . . . , vk be the

vertices of D that have degree two in I, numbered in order on D, and for 1 ≤ i ≤ k, let ei be the
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edge of G incident with vi and not in E(I). Note that e1, . . . , ek need not all be distinct, because

some ei might have both ends in V (D).

Now let D be the set of all maps from {1, . . . , k} to {1, 2, 3}. We say a map φ : E(G) \E(I)→

{1, 2, 3} is a three-edge-colouring of I if φ(e) 6= φ(f) for every two distinct edges e, f ∈ E(G) \E(I)

with a common end in G. Let C be the set of ψ ∈ D such that there is a three-edge-colouring φ of

I with ψ(i) = φ(ei) for 1 ≤ i ≤ k. We claim:

(1) C is non-null and XX-consistent.

Clearly it is non-null, from the minimality of G. Let ψ ∈ C, and choose a three-edge-colouring

φ of I with ψ(i) = φ(ei) for 1 ≤ i ≤ k. Let x, y ∈ {1, 2, 3} be different, and let H be the subgraph

of G formed by the edges e ∈ E(G) \ E(I) with φ(e) ∈ {x, y} and their ends. It follows that every

component of H is either a cycle, or a path with distinct ends both in V (D). Let Π be the set

of all {i, j} such that 1 ≤ i < j ≤ k and some component of H is a path with end-edges ei, ej .

(Possibly ei = ej , and this path has only one edge.) Then we can switch colours x, y on any subset

of {1, . . . , k} that is expressible as a union of members of Π, by exchanging the colours x, y on the

corresponding components of H. It remains to show that Π is doublecross. To see this, note first

that if {{a, b}, {c, d}} ⊆ Π is a cross, and P,Q are the components of H with end-edges ea, eb and

ec, ed respectively, then either P contains one of g1, g2 and Q contains the other, or P contains one

of g3, g4 and Q contains the other. Since G can be drawn with no crossing pairs of edges except

g1, g2 and g3, g4, and the two crossings they form are on a common region, it follows that Π is

doublecross. This proves (1).

Now let CK be as in Theorem 3.7.1; that is, CK is the set of all ψ ∈ D such that there is a

three-edge-colouring φ of I with φ(e) 6= ψ(i) for 1 ≤ i ≤ k and for each edge e of I incident with vi.

(2) CK ∩ C = ∅.

For suppose that ψ ∈ CK ∩ C. Choose a three-edge-colouring φ1 of I such that ψ(i) = φ1(ei)

for 1 ≤ i ≤ k. Choose a three-edge-colouring φ2 of I such that φ2(e) 6= ψ(i) for 1 ≤ i ≤ k and each
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edge e of I incident with vi. For each edge e of G, let

φ(e) =


φ1(e) if e /∈ E(I)

φ2(e) if e ∈ E(I).

We claim that φ is a three-edge-colouring of G. For let e, f ∈ E(G) be distinct with a common

end v say. If e, f ∈ E(I) then

φ(e) = φ2(e) 6= φ2(f) = φ(f)

since φ2 is a three-edge-colouring of I; and similarly φ(i) 6= φ(j) if i, j /∈ E(I). We may therefore

assume that e ∈ E(I) and f /∈ E(I); and consequently v is one of v1, . . . , vk, say vi. From the

choice of φ1 it follows that ψ(i) = φ1(ei) = φ(f); and from the choice of φ2, φ(e) = φ2(e) 6= ψ(i).

It follows that φ(e) 6= φ(f). This proves (2).

By (1) and (2), it follows that K is not XXD-reducible. Since K is XX-good, it is therefore

XXC-reducible by Theorem 3.7.1. Let F ⊆ E(I) be a reducer. Let CF be the set of all ψ ∈ D

such that there is a three-edge-colouring modulo F of I, say φ, such that for 1 ≤ i ≤ k and every

edge e ∈ E(I) \ F incident with vi, φ(e) = ψ(i) if and only if vi ∈ V (F ). From the definition

of a reducer, it follows that every XX-consistent subset of D \ CK is disjoint from CF , and so in

particular, C ∩ CF = ∅, by (1) and (2).

(3) The graph G \ F has a cutedge.

Suppose it does not. Then from the minimality of G, there is a map φ : E(G) \ F → {1, 2, 3},

such that for all distinct edges e, f ∈ E(G) \ F with a common end v, φ(e) = φ(f) if and only if

v ∈ V (F ). (To see this, suppress the vertices of degree two.) For 1 ≤ i ≤ k, let ψ(i) = φ(ei). Then

ψ ∈ C ∩ CF , which is impossible. This proves (3).

(4) |F | = 4, and there is a cycle W of G of length five, such that F ⊆ δG(V (W )).

Let f0 be a cutedge of G\F . Consequently there exists Y ⊆ V (G), such that f0 ∈ δG(Y ) ⊆ F∪{f0}.
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By replacing Y by its complement if necessary, we may assume that |Y | ≤ |V (G) \ Y |. Suppose

first that |δG(Y )| ≤ 4. Since G is theta-connected, it follows that |Y | ≤ 2. Since F ∩ δG(Y ) is a

matching, and G is three-connected, this is impossible. Thus |δG(Y )| ≥ 5, and so |F | = 4, and

δG(Y ) = F ∪ {f0}.

Since G is theta-connected and |Y | ≤ |V (G) \ Y |, it follows that |Y | ≤ 5. Now |Y | ≥ 4 since F

is a matching; and |Y | is odd since |δG(Y )| is odd; so |Y | = 5. Since |δG(Y )| = 5 and so there are

five edges of G with both ends in Y , it follows that there is a cycle W of G with V (W ) ⊆ Y ; and

since G is theta-connected, W has length five. This proves (4).

We remark that the edges in F all belong to E(I), but some of the other six edges of G with

an end in the cycle W of (4) might not belong to E(I), and indeed might not belong to E(G−).

We recall that from the choice of F , we have:

(5) Either there exists a finite region of I incident with three edges in F , or there are two fi-

nite regions r, r′ of I, such that some edge of I is incident with both r, r′, and every edge in F is

incident with one of r, r′.

Let W be as in (4), with vertices w1, . . . , w5 in order, and for 1 ≤ i ≤ 5 let hi be the edge of G

incident with wi and not in E(W ), where F = {h1, . . . , h4}.

(6) W contains at least one of g1, . . . , g4.

For suppose not; then W is a cycle of G−, and consequently bounds a finite region of G− since G

is theta-connected. For 1 ≤ i ≤ 5, let ri be the second region of G− incident with the edge wiwi+1,

where w6 means w1. Now r4 6= r5, since h5 is not a cut-edge of G−, and so r1, r2, r3 are the only

regions of G− incident with two of h1, . . . , h4. If some finite region of G− is incident with three of

h1, . . . , h4, then two of r1, r2, r3 are equal and finite, contradicting the theta-connectivity of G. By

(5), r1, r3 are finite regions of G−, and there is an edge of G− incident with r1, r3, again contrary

to the theta-connectivity of G. This proves (6).

Let z1, . . . , z8 be as in Proposition 3.5.1, and for 1 ≤ i ≤ 8, let Zi be the path of Z between
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zi, zi+1 containing no other vertex in {z1, . . . , z8} (where z9 means z1).

(7) W contains two of g1, . . . , g4.

For suppose W only contains one. From the symmetry we may assume that g1 ∈ E(W ). Con-

sequently W \ g1 is a four-edge path of G− between z1, z3. Since z1, z3 have degree two in G−,

the first and last edges of this path belong to the cycle Z. If the edge of W \ g1 incident with

z1 belongs to Z8, then there is a three-edge path in G− between Z8 \ z1 and z3, contrary to the

theta-connectivity of G; so the first edge of W \ g1 belong to Z1 and similarly the last edge belongs

to Z2, respectively. Since G is theta-connected, it follows that the middle vertex of the path W \ g1

also belongs to Z1∪Z2; and so W \g1 = Z1∪Z2. In particular, z2 ∈ V (W ), and so g2 ∈ δG(V (W )).

Since every edge in F belongs to E(G−), it follows that g2 = h5, and so z2 = w5. Now since G is

theta-connected, there are five edge-disjoint paths of G between V (W ) and Z5 ∪ Z6 ∪ Z7. One of

them uses g2, but the other four are paths of G−, and start at distinct vertices of W . Their first

edges are the four edges in F . Let these paths be P1, . . . , P4 say, numbered so Pi has first vertex

wi and first edge hi. It follows that no region of G− is incident with three of h1, . . . , h4, because of

the paths P1, . . . , P4; and similarly no two regions with a common edge are together incident with

all of h1, . . . , h4, contrary to (5). This proves (7).

Since g1, . . . , g4 are pairwise vertex-disjoint, and W has length five, it follows that W contains

exactly two of g1, . . . , g4. Let W contain g1 and gi say. The other three edges of W are edges of

G− incident with vertices in {z1, . . . , z8}, and so all three belong to E(Z). Consequently i = 2,

and one of Z1, Z3 has length one, and the other has length two, and from the symmetry we may

assume that Z1 has length one and Z3 length two. From the theta-connectivity of G, there are five

edge-disjoint paths of G− from V (W ) to Z5 ∪ Z6 ∪ Z7, and their first edges are the five edges in

δG(V (W )). Again this contradicts (5), and completes the proof of Theorem 3.1.2.
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Chapter 4

Edge-colouring d-regular planar

graphs

4.1 Introduction

Recall once more the form of the four-colour theorem, due to Tait [81], which asserts that a 3-

regular planar graph can be 3-edge-coloured if and only if it is 2-edge-connected. In Chapter 3 we

considered Tutte’s strengthening of the statement, with ‘planar’ replaced with ‘Petersen minor-free’.

In this chapter, we consider the question: when can d-regular planar graphs be d-edge-coloured?

Let G be a graph. (Graphs in this chapter may have loops or parallel edges.) Recall that if

X ⊆ V (G), δG(X) = δ(X) denotes the set of all edges of G with an end in X and an end in

V (G) \X. We say that G is oddly d-edge-connected if |δ(X)| ≥ d for all odd subsets X of V (G).

Since every perfect matching contains an edge of δ(X) for every odd set X ⊆ V (G), it follows

that every d-regular d-edge-colourable graph is oddly d-edge-connected. (Note that for a 3-regular

graph, being oddly 3-edge-connected is the same as being 2-edge-connected, because if X ⊆ V (G),

then |δ(X)| = 1 if and only if |X| is odd and |δ(X)| < 3.) The converse is false, even for d = 3 (the

Petersen graph is a counterexample); but for planar graphs perhaps the converse is true. That is

the content of the following conjecture [79], proposed by Seymour in about 1975.

Conjecture 4.1.1. If G is a d-regular planar graph, then G is d-edge-colourable if and only if G

is oddly d-edge-connected.
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Some special cases of this conjecture have been proved.

• For d = 3 it is the four-colour theorem, and was proved by Appel and Haken [3, 4, 71];

• for d = 4, 5 it was proved by Guenin [45];

• for d = 6 it was proved by Dvořák, Kawarabayashi and Král’ [28];

• for d = 7 it was proved by Kawarabayashi and the present author, and appears in the Master’s

thesis [32] of the latter. The methods we use in this chapter can also be applied to the d = 7

case, resulting in a proof somewhat simpler than the original, and this simplified proof for

the d = 7 case has been published in a four-author paper [19].

Here we prove the next case, namely:

Theorem 4.1.2. Every 8-regular oddly 8-edge-connected planar graph is 8-edge-colourable.

All these proofs (for d > 3), including ours, proceed by induction on d. Thus we need to assume

the truth of the result for d = 7. The proof of Theorem 4.1.2 that follows is joint work with Maria

Chudnovsky and Paul Seymour and has been published in [20].

4.2 T-joins

Before we get to the proof of Theorem 4.1.2, we discuss a connection between Conjecture 4.1.1 and

packing T -joins. Let G be a graph, and T ⊆ V (G) a set of vertices with even cardinality. We call

the pair (G,T ) a graft.

Definition 4.2.1. A T -join is a minimal set of edges J ⊆ E(G) such that for each vertex v ∈ V (G)

we have |J ∩ δ(v)| odd if and only if v ∈ T .

Denote by ν(G,T ) the maximum number of edge-disjoint T -joins in G.

Definition 4.2.2. A T -cut is an edge cut δ(S) with |T ∩ S| odd.

Denote by τ(G,T ) the number of edges in a smallest T -cut. The following easy observation

appears in [23].
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Lemma 4.2.3. Let (G,T ) be a graft. Let J be a T -join and S ⊆ V (G). Then |J ∩ δ(S)| is odd if

and only if δ(S) is a T -cut.

Lemma 4.2.3 implies that the size smallest T -cut is an upper bound for the size of any collection

of edge-disjoint T -joins.

Corollary 4.2.4. For any graft (G,T ), ν(G,T ) ≤ τ(G,T ).

When does Corollary 4.2.4 hold with equality? The following conjecture appears in [45]. By

the parity of a cut δ(S), we mean the parity of |δ(S)|.

Conjecture 4.2.5. Let (G,T ) be a graft with G planar such that all T -cuts have the same parity.

Then ν(G,T ) = τ(G,T ).

It is not difficult to see that Conjecture 4.2.5 implies Conjecture 4.1.1:

Proof of Conjecture 4.1.1 assuming Conjecture 4.2.5. Let G be a d-regular planar graph. Assume

that G is oddly d-edge-connected, we shall show it is d-edge-colourable. (The reverse implication

is easy and we omit it.) Let T = V (G) and consider the graft (G,T ). We claim that all the T -cuts

have odd parity. To see this, let S ⊆ V (G) have odd cardinality. Denoting by E(S) the set of

edges with both ends in S, we have d|S| = 2|E(S)| + |δ(S)|. The claim follows, and we deduce

that ν(G,T ) = τ(G,T ). Since G is oddly d-edge-connected, we have τ(G,T ) = d and so there

exist d disjoint T -joins T1, . . . , Td, say. Each Ti must contain an odd number of edges incident with

any given vertex, and so the d-regularity of G implies that each Ti is a perfect matching. Taking

T1, . . . , Td as colour classes, we obtain a d-edge-colouring of G.

The converse implication was proved by Guenin [45].

Theorem 4.2.6. Conjecture 4.1.1 is true if and only if Conjecture 4.2.5 is true.

Guenin also made the following strengthening of Conjecture 4.2.5: Let H be a graph with

V (H) = {v1, . . . , vh}. Let us say that a graph H is a T -minor of G if there exist disjoint subsets

V1, . . . , Vh of V (G), with G[Vi] connected and |Vi ∩ T | odd for each i, such that for each edge

vivj ∈ E(H), there exists at least one edge with an end in Vi and an end in Vj .

Conjecture 4.2.7. Let (G,T ) be a graft such that the Petersen graph is not a T -minor of G. If

T -cuts have the same parity, then ν(G,T ) = τ(G,T ).
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Seymour (see [45]) conjectured the following implication of Conjecture 4.2.7.

Conjecture 4.2.8. If G is a d-regular graph with no Petersen minor, then G is d-edge-colourable

if and only if G is oddly d-edge-connected.

Observe that the case d = 3 of the above Conjecture corresponds to Theorem 3.1.1. To our

knowledge, it is not known if Conjecture 4.2.8 implies Conjecture 4.2.7 analogously to Theorem

4.2.6.

4.3 An unavoidable list of reducible configurations

We now turn to the proof of Theorem 4.1.2. The graph we wish to edge-colour has parallel edges,

but it is more convenient to work with the underlying simple graph. If H is d-regular and oddly d-

edge-connected, then H has no loops, because for every vertex v, v has degree d, and yet |δH(v)| ≥ d.

(We write δ(v) for δ({v}).) Thus to recover H from the underlying simple graph G say, we just

need to know the number m(e) of parallel edges of H that correspond to each edge e of G. Let us

say a d-target is a pair (G,m) with the following properties (where for F ⊆ E(G), m(F ) denotes∑
e∈F m(e)):

• G is a simple graph drawn in the plane;

• m(e) ≥ 0 is an integer for each edge e;

• m(δ(v)) = d for every vertex v; and

• m(δ(X)) ≥ d for every odd subset X ⊆ V (G).

In this language, Conjecture 4.1.1 says that for every d-target (G,m), there is a list of d perfect

matchings of G such that every edge e of G is in exactly m(e) of them. (The elements of a list

need not be distinct.) If there is such a list we call it a d-edge-colouring, and say that (G,m) is

d-edge-colourable. For an edge e ∈ E(G), we call m(e) the multiplicity of e. If X ⊆ V (G), G|X

denotes the subgraph of G induced on X. We need:

Proposition 4.3.1. Let (G,m) be a d-target, that is not d-edge-colourable, but such that every

d-target with fewer vertices is d-edge-colourable. Then
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• |V (G)| ≥ 6;

• for every X ⊆ V (G) with |X| odd, if |X|, |V (G) \X| 6= 1 then m(δ(X)) ≥ d+ 2; and

• G is three-connected, and m(e) ≤ d− 2 for every edge e.

Proof. If m(e) = 0 for some edge e, we may delete e without affecting the problem; so we may

assume that m(e) > 0 for every edge e. It is easy to check that G is connected and |V (G)| ≥ 6 and

we omit it. For the second assertion let X ⊆ V (G) with |X| odd and with |X|, |V (G) \ X| 6= 1.

Thus m(δ(X)) ≥ d since (G,m) is a d-target; suppose that m(δ(X)) = d. There is a component

of G|X with an odd number of vertices, with vertex set X ′ say; and so m(δ(X ′)) ≥ d since (G,m)

is a d-target. But δ(X ′) ⊆ δ(X), and m(e) > 0 for every edge e; and so δ(X ′) = δ(X). Since G

is connected it follows that X ′ = X, and so G|X is connected. Similarly G|Y is connected, where

Y = V (G) \X. Replace each edge e of G by m(e) parallel edges, forming H; and contract all edges

of H|Y , forming a d-regular oddly d-edge-connected planar graph H1 with fewer vertices than H

(because |Y | > 1). By hypothesis it follows that H1 is d-edge-colourable. Similarly so is the graph

obtained from H by contracting all edges of H|X. But these colourings can be combined to give

a d-edge-colouring of H, a contradiction. This proves that m(δ(X)) > d. Since m(δ(v)) = d for

every vertex v, it follows that m(δ(X)) has the same parity as d|X|, and so m(δ(X)) ≥ d+ 2. This

proves the second assertion.

For the third assertion, suppose that G is not three-connected. Since |V (G)| > 3, there is a

partition (X,Y, Z) of V (G) where X,Y 6= ∅ and |Z| = 2, such that there are no edges between X

and Y . Let Z = {z1, z2} say. Either both |X|, |Y | are odd, or they are both even. If they are both

odd, then since δ(X), δ(Y ) are disjoint subsets of δ(z1) ∪ δ(z2), and

m(δ(X)),m(δ(Y )) ≥ d = m(δ(z1)),m(δ(z2)),

we have equality throughout, and in particular m(δ(X)),m(δ(Y )) = d. But then |X| = |Y | = 1

from the second assertion, contradicting that |V (G)| ≥ 6. Now assume |X|, |Y | are both even.

Since δ(X ∪ {z1}), δ(Y ∪ {z2}) have the same union and intersection as δ(z1), δ(z2), it follows that

m(δ(X ∪ {z1})) = d, contrary to the second assertion. Thus G is three-connected. Since m(e) ≥ 1

for every edge e, and m(δ(v)) = d for every vertex v, it follows that m(e) ≤ d− 2 for every edge e.
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This proves the third assertion, and hence proves Proposition 4.3.1.

A triangle is a region of G incident with exactly three edges. If a triangle is incident with

vertices u, v, w, for convenience we refer to it as uvw, and in the same way an edge with ends u, v

is called uv. Two edges are disjoint if they are distinct and no vertex is an end of both of them,

and otherwise they meet. Let r be a region of G, and let e ∈ E(G) be incident with r; let r′ be the

other region incident with e. We say that e is i-heavy (for r), where i ≥ 2, if either m(e) ≥ i or r′

is a triangle uvw where e = uv and

m(uv) + min(m(uw),m(vw)) ≥ i.

We say e is a door for r if m(e) = 1 and there is an edge f incident with r′ and disjoint from e with

m(f) = 1. We say that r is big if there are at least four doors for r, and small otherwise. A square

is a region with length four.

Since G is drawn in the plane and is two-connected, every region r is bounded by some cycle

which we denote by Cr. In what follows we will be studying cases in which certain configurations

of regions are present in G. We will give a list of regions the closure of the union of which is a

disc. For convenience, for an edge e in the boundary of this disc, we call the region outside the disc

incident with e the “second region” for e; and we write m+(e) = m(e) if the second region is big,

and m+(e) = m(e) + 1 if the second region is small. This notation thus depends not just on (G,m)

but on what regions we have specified, so it is imprecise, and when there is a danger of ambiguity

we will specify it more clearly.

Let us say an 8-target (G,m) is prime if

• m(e) > 0 for every edge e;

• |V (G)| ≥ 6;

• m(δ(X)) ≥ 10 for every X ⊆ V (G) with |X| odd and |X|, |V (G) \X| 6= 1;

• G is three-connected, and m(e) ≤ 6 for every edge e;

and in addition (G,m) contains none of of the following:

Conf(1): A triangle uvw where u, v both have degree three.
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Conf(2): A triangle uvw, where u has degree three and its third neighbour x satisfies

m(ux) < m(uw) +m(vw).

Conf(3): Two triangles uvw, uwx with m(uv) +m(uw) +m(vw) +m(ux) ≥ 8.

Conf(4): A square uvwx where m(uv) +m(vw) +m(ux) ≥ 8 and

(m(uv),m(vw),m(wx),m(ux)) 6= (4, 2, 1, 2).

Conf(5): Two triangles uvw, uwx where m+(uv) +m(uw) +m+(wx) ≥ 7.

Conf(6): A square uvwx where m+(uv) +m+(wx) ≥ 7.

Conf(7): A triangle uvw with m+(uv) +m+(uw) ≥ 7.

Conf(8): A triangle uvw, where m(uv) = 3, m(uw) = 2, m(vw) = 2, and the second region for

one of uv, uw, vw has no door disjoint from uw.

Conf(9): A triangle uvw with m(uv),m(uw),m(vw) = 2, such that u has degree at least four,

and the second regions for uv, uw both have at most one door, and no door that is disjoint

from uvw.

Conf(10): A square uvwx and a triangle wxy, where m(uv) = m(wx) = m(xy) = 2, and m(vw) =

4.

Conf(11): A square uvwx and a triangle wxy, where m(uv) ≥ 3, m(wy) ≥ 3, m(wx) = 1, m(ux) ≤

3, and m+(xy) ≥ 3.

Conf(12): A square uvwx and a triangle wxy, where m+(uv) ≥ 2, m(vw) ≥ 2, m(wx) = m(wy) =

2, m(ux) ≤ 3, and m+(xy) ≥ 3.

Conf(13): A region with length five, with edges e1, . . . , e5 in order, where

m(e1) ≥ max(m(e2),m(e5)), m(e1) +m(e2) +m(e3) ≥ 8 and m+(e1) +m+(e4) ≥ 7.

Conf(14): A region r and an edge e of Cr, such that m+(e) ≥ 6 and at most six edges of Cr disjoint

from e are doors for r.
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Conf(15): A region r with length at least four, and an edge e of Cr, such that m+(e) ≥ 4 and every

edge of Cr disjoint from e is 3-heavy.

Conf(16): A region r and an edge uv of Cr, and a triangle uvw, such that m(uv) +m+(uw) ≥ 4,

and every edge of Cr not incident with u is 3-heavy; moreover, if tu denotes the second

edge of Cr incident with u, then either max(m(vw),m(tu)) ≤ m(uw), or r is a triangle and

m(vw) = m(uw) + 1 and m(tu) ≤ m(tv).

Conf(17): A region r with length at least five, and an edge e of Cr, such that m+(e) ≥ 5, every

edge f of Cr disjoint from e satisfies m+(f) ≥ 2, and at most one of them is not 3-heavy.

Conf(18): A region r with length at least four and an edge uv of Cr, and a triangle uvw, such that

m+(uw) + m(uv) ≥ 5, and m(vw) ≤ m(uw), and the second edge of Cr incident with u has

multiplicity at most m(uw), and either

– m(uv) = 3 and uv is 5-heavy, and every edge f of Cr disjoint from uv satisfies m+(f) ≥ 2,

and at most one of them is not 3-heavy, or

– m+(f) ≥ 2 for every edge f of Cr not incident with u, and at most one such edge is not

3-heavy.

Conf(19): A region r with length at least five and an edge e of Cr, such that m+(e) ≥ 5, every

edge of Cr disjoint from e is 2-heavy, and at most two of them are not 3-heavy.

We will prove these restrictions are too much, that in fact no 8-target is prime (Theorem 4.4.1).

To deduce Theorem 4.1.2, we will show that if there is a counterexample, then some counterexample

is prime; but for this purpose, just choosing a counterexample with the minimum number of vertices

is not enough, and we need a more delicate minimization. If (G,m) is a d-target, its score sequence

is the (d+ 1)-tuple (n0, n1, . . . , nd) where ni is the number of edges e of G with m(e) = i. If (G,m)

and (G′,m′) are d-targets, with score sequences (n0, . . . , nd) and (n′0, . . . , n
′
d) respectively, we say

that (G′,m′) is smaller than (G,m) if either

• |V (G′)| < |V (G)|, or

• |V (G′)| = |V (G)| and there exists i with 1 ≤ i ≤ d such that n′i > ni, and n′j = nj for all j

with i < j ≤ d, or
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• |V (G′)| = |V (G)|, and n′j = nj for all j with 0 < j ≤ d, and n′0 < n0.

(The anomalous treatment of n0 is just a device to allow d-targets to have edges with m(e) = 0,

while minimum d-counterexamples have none.) If some d-target is not d-edge-colourable, then we

can choose a d-target (G,m) with the following properties:

• (G,m) is not d-edge-colourable

• every smaller d-target is d-edge-colourable.

Let us call such a pair (G,m) a minimum d-counterexample. To prove Theorem 4.1.2, we prove

two things:

• No 8-target is prime (Theorem 4.4.1), and

• Every minimum 8-counterexample is prime (Theorem 4.5.1).

It will follow that there is no minimum 8-counterexample, and so the theorem is true.

4.4 Discharging and unavoidability

In this section we prove the following, with a discharging argument.

Theorem 4.4.1. No 8-target is prime.

The proof is broken into several steps, through this section. Let (G,m) be a 8-target, where G

is three-connected. For every region r, we define

α(r) = 8− 4|E(Cr)|+
∑

e∈E(Cr)

m(e).

We observe first:

Lemma 4.4.2. The sum of α(r) over all regions r is positive.

Proof. Since (G,m) is a 8-target, m(δ(v)) = 8 for each vertex v, and, summing over all v, we

deduce that 2m(E(G)) = 8|V (G)|. By Euler’s formula, the number R of regions of G satisfies

|V (G)| − |E(G)|+R = 2, and so 2m(E(G))− 8|E(G)|+ 8R = 16. But 2m(E(G)) is the sum over

all regions r, of
∑

e∈E(Cr)
m(e), and 8R− 8|E(G)| is the sum over all regions r of 8− 4|E(Cr)|. It

follows that the sum of α(r) over all regions r equals 16. This proves Lemma 4.4.2.
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Think of α(r) as an initial assignment of charge to each region r. Now we move some small

amount of charge between neighbouring regions. Normally we pass one unit of charge from every

small region to every big region with which it shares an edge; except that in some exceptional

circumstances, sending one unit is too much, and we only send 1/2 or 0. More precisely, for every

edge e of G, define βe(s) for each region s as follows. Let r, r′ be the two regions incident with e.

• If s 6= r, r′ then βe(s) = 0.

• If r, r′ are both big or both small then βe(r), βe(r
′) = 0.

Henceforth we assume that r is big and r′ is small; let f, f ′ be the edges of Cr \ e that share an

end with e.

1: If e is a door for r (and hence m(e) = 1) then βe(r) = βe(r
′) = 0.

2: If m(e) = 2 and m+(f) = m+(f ′) = 6 then βe(r) = βe(r
′) = 0.

3: If m(e) = 2 and m+(f) = 6 and m+(f ′) = 5 or vice versa then βe(r) = −βe(r′) = 1/2.

4: If m(e) = 3 and m+(f) = m+(f ′) = 5 then βe(r) = βe(r
′) = 0.

5: If m(e) = 3 and exactly one of m+(f),m+(f ′) = 5, then βe(r) = −βe(r′) = 1/2.

6: Otherwise βe(r) = −βe(r′) = 1.

(Think of βe as passing some amount of charge between the two regions incident with e.) For each

region r, define β(r) to be the sum of βe(r) over all edges e. We see that the sum of β(r) over all

regions r is zero.

The effect of β is passing charge from small regions to big regions with which they share an

edge. We need another “discharging” function, that passes charge from triangles to small regions

with which they share an edge. If r is a triangle, incident with edges e, f, g, we define its multiplicity

m(r) = m(e) + m(f) + m(g). A region r is tough if r is a triangle, its multiplicity is at least five,

and if r = uvw where m(uv) = 1 and m(uw) = m(vw) = 2, then m+(uw)+m+(vw) ≥ 5. For every

edge e of G, define γe(s) for each region s as follows. Let r, r′ be the two regions incident with e.

• If s 6= r, r′ then γe(s) = 0.
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• If one of r, r′ is big, or neither is tough, or they both are tough, then γe(r) = γe(r
′) = 0.

Henceforth we assume that r′ is tough, and r is small and not tough. Let e, e1, e2 be the edges

incident with r′, and let r1, r2 be the regions different from r′ incident with e1, e2 respectively.

1: If m(e) = 1 and m(e1),m(e2) ≥ 2, and m+(e1) +m+(e2) ≥ 6 then γe(r) = −γe(r′) = 1.

2: If m(e) = 1 and m+(e1) ≥ 4 and m(e2) = 1 and r2 is small, then γe(r) = −γe(r′) = 1/2.

3: If m(e) = 1 and m(e1) = 3 and m(e2) = 1 and r2 is small, and the edge f of Cr \ e that

shares an end with e, e1 satisfies m(f) = 4, then γe(r) = −γe(r′) = 1/2.

4: If m(e) = 2 and m(e1),m(e2) ≥ 2 and m+(e1) +m+(e2) ≥ 5, and either

– r has more than one door, or

– some door for r is disjoint from e, or

– some edge f of Cr consecutive with e has multiplicity four, and r1, r2 are both small,

then γe(r) = −γe(r′) = 1.

5: If m(e) = 2 and m(e1),m(e2) = 2 and some end of e has degree three, incident with e1 say,

and r1 is small and r2 is big, then γe(r) = −γe(r′) = 1/2.

6: If m(e) = 3 and m(e1),m(e2) = 2 then γe(r) = −γe(r′) = 1.

7: Otherwise γe(r) = γe(r
′) = 0.

We observe that, immediately from the rules, we have

Lemma 4.4.3. Let e be incident with regions r, r′. Then βe(r) is non-zero only if exactly one of

r, r′ is big; and γe(r) is non-zero only if exactly one of r, r′ is tough and neither is big. Thus in all

cases, at most one of βe(r), γe(r) is non-zero. Moreover |βe(r) + γe(r)| ≤ 1.

For each region r, define γ(r) to be the sum of γe(r) over all edges e. Again, the sum of γ(r)

over all regions r is zero. It follows that the sum over all regions r of α(r) + β(r) + γ(r) is positive,

by Lemma 4.4.2, and so there is a region r for which α(r) + β(r) + γ(r) > 0. By examining the

possibilities for such a region r we will deduce that (G,m) is not prime. There now begins a long

case analysis, and to save writing we just say “by Conf(7)” instead of “since (G,m) does not contain

Conf(7)”, and so on.
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Lemma 4.4.4. If r is a big region and α(r) + β(r) + γ(r) > 0, then (G,m) is not prime.

Proof. Suppose that (G,m) is prime. Let C = Cr. Since r is big it follows that γ(r) = 0, and so

α(r) + β(r) > 0; that is, ∑
e∈E(C)

(4−m(e)− βe(r)) < 8.

For e ∈ E(C), define φ(e) = m(e) + βe(r), and let us say e is major if φ(e) > 4. If e is major, then

since βe(r) ≤ 1, it follows that m(e) ≥ 4; and so βe(r) is an integer, from the β-rules, and therefore

φ(e) ≥ 5. Moreover, no two major edges are consecutive, since G has minimum degree at least

three.

Let D be the set of doors for C. Let

• ξ = 1 if there are consecutive edges e, f in C such that φ(e) > 5 and f is a door for r

• ξ = 2 if there is no such pair e, f .

(1) Let e, f, g be the edges of a path of C, in order, where e, g are major. Then

(4− φ(e)) + 2(4− φ(f)) + (4− φ(g)) ≥ 2ξ|{f} ∩D|.

Let r1, r2, r3 be the regions different from r incident with e, f, g respectively. Now m(e) ≤ 6

since (G,m) is prime, and if m(e) = 6 then r1 is big, by Conf(14), and so βe(r) = 0; and so

in any case, φ(e) ≤ 6. Similarly φ(g) ≤ 6. Also, φ(e), φ(g) ≥ 5 since e, g are major. Thus

φ(e) + φ(g) ∈ {10, 11, 12}.

Suppose that φ(e) + φ(g) = 12. We must show that φ(f) ≤ 2− ξ|{f} ∩D|. Now m(e) ≥ 5, and

so m(f) ≤ 2, since G is three-connected. If m(f) = 2 then f /∈ D, and βf (r) = 0 from the β-rules;

and so φ(f) ≤ 2 − ξ|{f} ∩ D|. If m(f) = 1, then βf (r) ≤ 1, so we may assume that f ∈ D; but

then ξ = 1 and φ(f) = 1 ≤ 2− ξ|{f} ∩D|.

Next suppose that φ(e) + φ(g) = 11. We must show that φ(f) ≤ 5/2− ξ|{f} ∩D|. Again one

of φ(e), φ(g) ≥ 6, say φ(e) = 6; and so m+(e) ≥ 6. In particular m(e) ≥ 5, and so m(f) ≤ 2. Since

φ(g) ≥ 5 we have m+(g) ≥ 5, and so if m(f) = 2, then βf (r) ≤ 1/2 from the β-rules; and since

f /∈ D we have φ(f) ≤ 5/2− ξ|{f} ∩D|. If m(f) = 1, then φ(f) ≤ 2, and so we may assume that

f ∈ D; but then ξ = 1 and φ(f) = 1, and again φ(f) ≤ 5/2− ξ|{f} ∩D|.
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Finally, suppose that φ(e) + φ(g) = 10. We must show that φ(f) ≤ 3 − ξ|{f} ∩ D|. Suppose

that m(f) ≥ 3. Since m+(e),m+(g) ≥ 5 (because e, g are major), it follows that m(f) = 3, and

m(e) = m(g) = 4 because G is three-connected; but then βf (r) = 0 from the β-rules, and since

f /∈ D we have φ(f) ≤ 3−ξ|{f}∩D|. Next suppose that m(f) = 2. Then φ(f) ≤ 3 = 3−ξ|{f}∩D|

as required. Lastly if m(f) = 1, then φ(f) ≤ 2, so we may assume that f ∈ D; but then ξ ≤ 2 and

φ(f) = 1 ≤ 3− ξ|{f} ∩D|. This proves (1).

(2) Let e, f be consecutive edges of C, where e is major. Then

(4− φ(e)) + 2(4− φ(f)) ≥ 2ξ|{f} ∩D|.

We have φ(e) ∈ {5, 6}. Suppose that φ(e) = 6. We must show that φ(f) ≤ 3 − ξ|{f} ∩ D|; but

m(f) ≤ 2 since m(e) ≥ 5, and so φ(f) ≤ 3. We may therefore assume that f ∈ D; but then

ξ = 1 and φ(f) = 1 ≤ 3 − ξ|{f} ∩ D|. Next, suppose that φ(e) = 5; then we must show that

φ(f) ≤ 7/2 − ξ|{f} ∩D|. Since m(e) ≥ 4, it follows that m(f) ≤ 3. If m(f) = 3 then m+(e) = 5

and so βf (r) ≤ 1/2, from the β-rules; but then φ(f) ≤ 7/2−ξ|{f}∩D|. If m(f) ≤ 2, then φ(f) ≤ 3,

so we may assume that f ∈ D; but ξ ≤ 2, and so φ(f) = 1 ≤ 7/2− ξ|{f} ∩D|. This proves (2).

For i = 0, 1, 2, let Ei be the set of edges f ∈ E(C) such that f is not major, and f meets exactly

i major edges in C. Let D be the set of doors for C. By (1), for each f ∈ E2 we have

1

2
(4− φ(e)) + (4− φ(f)) +

1

2
(4− φ(g)) ≥ ξ|{f} ∩D|

where e, g are the major edges meeting f . By (2), for each f ∈ E1 we have

1

2
(4− φ(e)) + (4− φ(f)) ≥ ξ|{f} ∩D|

where e is the major edge consecutive with f . Finally, for each f ∈ E0 we have

4− φ(f) ≥ ξ|{f} ∩D|

since φ(f) ≤ 4, and φ(f) = 1 if f ∈ D. Summing these inequalities over all f ∈ E0 ∪ E1 ∪ E2, we
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deduce that
∑

e∈E(C)(4− φ(e)) ≥ ξ|D|. Consequently

8 >
∑

e∈E(C)

(4−m(e)− βe(r)) ≥ ξ|D|.

But |D| ≥ 4 since r is big, and so ξ = 1 and |D| ≤ 7, a contradiction by Conf(14). This proves

Lemma 4.4.4.

Lemma 4.4.5. If r is a triangle that is not tough, and α(r) + β(r) + γ(r) > 0, then (G,m) is not

prime.

Proof. Suppose (G,m) is prime, and let r = uvw. Suppose first that r has multiplicity five; and

hence, since it is not tough, we may assume that m(uv) = 1 and m(uw) = m(vw) = 2, and the

second regions for uw, vw are both big. Thus from the β-rules, βuw(r), βvw(r) = −1, and since

γuw(r), γvw(r) = 0 from the γ-rules and βuv(r) + γuv(r) ≤ 1 from Lemma 4.4.3, we deduce by

adding that β(r) + γ(r) ≤ −1. But

α(r) = −4 +m(uv) +m(vw) +m(uw) = 1,

contradicting that α(r) + β(r) + γ(r) > 0. Thus r has multiplicity at most four.

Since α(r) = −4 +m(uv) +m(vw) +m(uw) ≤ 0, and β(r) ≤ 0, it follows that γ(r) > 0.

(1) m(e) = 1 for every edge e incident with r such that γe(r) > 0.

For suppose that m(e) > 1 and γe(r) > 0, where e = uv. Since r has multiplicity at most

four it follows that m(e) = 2. Since γe(r) > 0, there is a vertex x 6= w such that uvx is a triangle,

and m(ux),m(vx) ≥ 2, and one of m+(ux),m+(vx) is at least three, say m+(ux) ≥ 3; and r has

two doors. By Conf(5), m+(vw) = 1, and so βvw(r) = −1 and βuw(r) ≤ 0, and hence β(r) ≤ −1;

yet γ(r) ≤ 1, contradicting that α(r) + β(r) + γ(r) > 0. This proves (1).

(2) There is no edge e incident with r and with a big region such that m(e) = 1.

Let r be incident with edges e, f, g, and suppose that m(e) = 1 and e is incident with a big
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region. Thus β(r) ≤ −1, and so γ(r) > 1; and consequently γf (r), γg(r) > 0, and there-

fore m(f) = m(g) = 1 from (1). But then α(r) = −1, and yet γ(r) ≤ 2, contradicting that

α(r) + β(r) + γ(r) > 0. This proves (2).

Choose e with γe(r) > 0, say e = uv. Thus m(uv) = 1, and there is a tough triangle r′ = uvx

say. By Conf(3), r′ has multiplicity at most six.

(3) We may assume that m+(ux) ≤ 3 and m+(vx) ≤ 3.

For suppose that m+(ux) ≥ 4. By (2), m+(vw) ≥ 2, contrary to Conf(5). This proves (3).

Now γuv(r) > 0, and from (1), (3), it follows that γuv(r) is determined by the first γ-rule. In

particular, m+(ux) = 3, and m+(vx) = 3. Suppose that vw is 3-heavy. By Conf(16) it follows that

m(vx) > m(ux), and so m(vx) = 3 and m(ux) = 2; but then by Conf(3), m(uw) = m(vw) = 1,

contrary to Conf(16). Thus vw and similarly uw are not 3-heavy, and so by the same argument

γuw(r) = 0 and γvw(r) = 0; and so γ(r) = 1. Consequently α(r) > −1, and so we may assume

that m(uw) = 2. Let r1 be the second region for uw. Now m(ux) + m(uv) + m(uw) ≤ 6, and

so there is an edge f incident with r1 and u different from uw, ux. Moreover, m(f) ≤ 3, since

m(ux) + m(uv) + m(uw) ≥ 5; and so if r1 is big then βuw(r) = −1, a contradiction. Thus r1 is

small, contrary to Conf(5). This proves Lemma 4.4.5.

Lemma 4.4.6. If r is a tough triangle with α(r) + β(r) + γ(r) > 0, then (G,m) is not prime.

Proof. Suppose (G,m) is prime, and let r = uvw. Now α(r) = m(uv) +m(vw) +m(uw)− 4, so

m(uv) +m(vw) +m(uw) + β(r) + γ(r) > 4.

Let r1, r2, r3 be the regions different from r incident with uv, vw, uw respectively. It follows that

βe(r), γe(r) ≤ 0 for every edge e of r.

(1) If r1 is big then βuv(r) = −1.
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For let us examine the β-rules. Certainly uv is not a door for r1, since r is a triangle; so the

first rule does not apply. Let f, f ′ be the edges incident with r1 different from uv that are incident

with u, v respectively. If the second β-rule applies then m(uv) = 2 and m(f),m(f ′) ≥ 5, which

implies that m(uw),m(vw) = 1, contradicting that uvw has multiplicity at least five. If the third

rule applies, then m(uv) = 2 and m+(f) = 6 and m+(f ′) = 5 say; but then m(uw) = 1 and

m(vw) = 2, contrary to Conf(1). The fourth rule does not apply, by Conf(1). Thus we assume that

the fifth rule applies. Let m(uv) = 3, m+(f) = 5, and m+(f ′) < 5. Hence m(f) = 4, and so u has

degree three, and m(vw) = 1 by Conf(2), and r3 is small, and βuv(r) = −1/2. Since

m(uv) +m(vw) +m(uw) + β(r) + γ(r) > 4

it follows that

βuw(r) + βvw(r) + γuw(r) + γvw(r) ≥ 0,

and since all the terms on the left are non-positive it follows that they are all zero. Now r2 is

not big since βvw(r) = 0, and r3 is not a triangle by Conf(2), so the third γ-rule applies to uw, a

contradiction since γuw(r) = 0. This proves (1).

Let X = {u, v, w}. Since (G,m) is prime, it follows that |V (G) \X| ≥ 3, and m(δ(X)) ≥ 10.

But

m(δ(X)) = m(δ(u)) +m(δ(v)) +m(δ(w))− 2m(uv)− 2m(uw)− 2m(vw),

and so 10 ≤ 8+8+8−2m(uv)−2m(uw)−2m(vw), that is, r has multiplicity at most seven. Suppose

first that r has multiplicity seven. By Conf(3), none of r1, r2, r3 is a triangle. Now β(r)+γ(r) > −3.

Consequently we may assume that βuv(r) + γuv(r) > −1, and hence r1 is small by (1). By Conf(7),

m(uv)+m(uw) < 6 and hence m(vw) ≥ 2; and similarly m(uw) ≥ 2. Now γuv(r) > −1, and so the

first, fourth and sixth γ-rules do not apply to uv. Since the first γ-rule does not apply, m(uv) > 1.

Since the sixth γ-rule does not apply, one of m(uw),m(vw) > 2, say m(uw) ≥ 3, and so m(uv) = 2,

m(uw) = 3 and m(vw) = 2. Since the fourth γ-rule does not apply, r1 has no door disjoint from

uv, contrary to Conf(8).

Next, suppose that r has multiplicity six. Thus β(r) + γ(r) > −2, and so by (1), at most

one of r1, r2, r3 is big. Suppose that m(uv) = 4; then m(vw),m(uw) = 1. Since at most one
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of r1, r2, r3 is big, it follows from Conf(7) that r1 is big, and hence r2, r3 are small. By Conf(3),

r2, r3 are not tough. By the second γ-rule, γvw(r) = γuw(r) = −1/2, and since βuv(r) = −1

by (1), this contradicts β(r) + γ(r) > −2. Thus m(uv) ≤ 3. Suppose next that m(uv) = 3;

then from the symmetry we may assume that m(uw) = 2 and m(vw) = 1. Since one of r1, r3

is small, and r2 is not tough by Conf(3), the first γ-rule implies that βvw(r) + γvw(r) ≤ −1.

Since β(r) + γ(r) > −2, it follows from (1) that neither of r1, r3 is big, contrary to Conf(7).

Thus m(uv) ≤ 2, and similarly m(uw),m(vw) ≤ 2, and so m(uv),m(uw),m(vw) = 2. Since

β(r) + γ(r) > −2, it follows that βe(r) + γe(r) ≤ −1 for at most one edge e incident with r; and

so we may assume that βuv(r) + γuv(r) > −1 and βuw(r) + γuw(r) > −1. By (1), r1, r3 are both

small. By Conf(3), r1, r3 are not tough, and since the fourth γ-rule does not apply, it follows that

r1 has at most one door, and no door disjoint from uv, and r3 has at most one door, and no door

disjoint from uw, and u has degree at least four, contrary to Conf(9).

Finally, suppose that r has multiplicity five. Now β(r)+γ(r) > −1, and hence βe(r)+γe(r) > −1

for every edge e incident with r; and so by (1) r1, r2, r3 are all small. Suppose that m(uv) = 3,

and hence m(uw),m(vw) = 1. If neither of r2, r3 is tough, then by the second γ-rule, γuw(r) =

γvw(r) = −1/2, a contradiction. Thus we may assume that r3 is a tough triangle uwx. By

Conf(5), m(wx) = 1, and so m(ux) ≥ 3 since r3 is tough, contrary to Conf(3). Thus we may

assume that m(uv) ≤ 2; and so from the symmetry we may assume that m(uv) = m(uw) = 2 and

m(vw) = 1. The first γ-rule does not apply to vw, and so r2 is a tough triangle vwx. By Conf(3),

m(vx),m(wx) ≤ 2, and so m(vx),m(wx) = 2. Since r2 is tough, one of vx,wx is incident with a

small region different from uvx, contrary to Conf(5). This proves Lemma 4.4.6.

Lemma 4.4.7. If r is a small region with length at least four and with α(r) + β(r) + γ(r) > 0,

then (G,m) is not prime.

Proof. Suppose that (G,m) is prime. Let C = Cr. Note that for each e ∈ E(C), −1 ≤ βe(r) ≤ 0

and 0 ≤ γe(r) ≤ 1 Since α(r) = 8− 4|E(C)|+
∑

e∈E(C)m(e), it follows that

8− 4|E(C)|+
∑

e∈E(C)

m(e) +
∑

e∈E(C)

(βe(r) + γe(r)) > 0,
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that is, ∑
e∈E(C)

(m(e) + βe(r) + γe(r)− 4) > −8.

For each e ∈ E(C), let

φ(e) = m(e) + βe(r) + γe(r).

It follows that |φ(e) −m(e)| ≤ 1 for each e by Lemma 4.4.3. For each integer i, let Ei be the set

of edges of C such that φ(e) ∈ {i, i− 1
2}.

(1) For every e ∈ E(C), φ(e) is one of 0, 1
2 , 1,

3
2 , 2,

5
2 , 3, 4, and hence E(C) is the union of E0, E1, E2, E3, E4.

For let e ∈ E(C). Since m(e) ≥ 1 and βe(r) ≥ −1 it follows that φ(e) ≥ 0. Next we show

that φ(e) ≤ 4. Now m(e) < 6 by Conf(14). Suppose that m(e) = 5. Then the second region

incident with e is big, by Conf(14); and hence βe(r) = −1 from the β-rules, and γe(r) = 0 and so

φ(e) ≤ 4. Now suppose that m(e) = 4. Then by the γ-rules, γe(r) = 0, and so φ(e) ≤ 4. Finally,

if m(e) ≤ 3 then φ(e) ≤ 4 since γe(r) ≤ 1. Thus φ(e) ≤ 4 in all cases. Finally, suppose that

φ(e) = 7/2, and hence m(e) = 3 or 4. If m(e) = 3 then γe(r) = 1/2, contrary to the γ-rules; while

if m(e) = 4 then βe(r) = −1/2, contrary to the β-rules. This proves (1).

(2) Let e ∈ E(C); then e ∈ E4 if and only if either m+(e) ≥ 5, or m(e) = 3 and e is 5-heavy.

Moreover, no two edges in E4 are consecutive in C.

The first assertion is immediate from the β- and γ-rules. For the second, suppose that e, f ∈ E4

share an end v. Since v has degree at least three, it follows that m(e) +m(f) ≤ 7 and so we may

assume that m(e) = 3. Let e have ends u, v; then from the first assertion there is a triangle uvw

where m(uw),m(vw) = 2. Hence m(f) = 3, and so there is similarly a triangle containing f , with

third vertex x. Consequently w = x; but this contradicts Conf(3) and hence proves (2).

(3) If e ∈ E4, and f ∈ E(C) is disjoint from e, and every edge in E(C) \ {f} disjoint from e

is 3-heavy, and there is no edge of C with multiplicity one disjoint from f , then f ∈ E0.
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For by Conf(6) if |E(C)| = 4 and m+(e) ≥ 5, or by Conf(17) or Conf(18) otherwise, it follows

that m+(f) = 1. Since there is no edge of C with multiplicity one disjoint from f , it follows that

βf (r) = −1 from the β-rules, and so f ∈ E0. This proves (3).

For 0 ≤ i ≤ 4, let ni = |Ei|.

(4) If e ∈ E(C) satisfies m(e) = 2, and n4 = 0, and r has at most one door, and no door

disjoint from e, then φ(e) ≤ 2.

For if not, then γe(r) > 0, and so from the γ-rules, there is a triangle uvw with e = uv, and

some edge f of C consecutive with e satisfies m+(f) = 5; but then f ∈ E4, contradicting that

n4 = 0. This proves (4).

(5) If u, v, w are consecutive vertices in C, and uv ∈ E4 and m(uv) = 3, then φ(vw) ≤ 2.

For since uv ∈ E4, by (2) there is a triangle uvx with m(ux) = m(vx) = 2. From Conf(2) it

follows that m(vw) ≤ 2; and since w is not adjacent to x by Conf(3), and hence vw is not 4-heavy,

the γ-rules imply that φ(vw) ≤ 2. This proves (5).

Let C have vertices v1, . . . , vk in order, and let vk+1 mean v1. For 1 ≤ i ≤ k let ei be the edge

vivi+1, and let ri be the region incident with ei different from r.

Since ∑
e∈E(C)

(φ(e)− 4) > −8,

we have 4n0 + 3n1 + 2n2 + n3 ≤ 7, that is,

3n0 + 2n1 + n2 + k − n4 ≤ 7,

since n0 + n1 + n2 + n3 + n4 = k. But by (2), n4 ≤ k/2 and so

3n0 + 2n1 + n2 + k/2 ≤ 7.
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Since k ≥ 4 it follows that 3n0 + 2n1 + n2 ≤ 5, and hence n0 + n1 ≤ 2.

Case 1: n0 + n1 = 2.

Since 3n0 + 2n1 + n2 + k − n4 ≤ 7, we have n4 ≥ n0 + n2 + k − 3. Thus n4 > 0. If k = 4, let

e ∈ E4; then by (3) the edge f of C disjoint from e belongs to E0, and so by (2), n4 = 1; but this

contradicts n0 + n2 + k − 3 ≤ n4.

Thus k ≥ 5. Since

3n0 + 2n1 + n2 + k/2 ≤ 7,

and 2n0 + 2n1 = 4 and k/2 ≥ 5/2, it follows that n0 = n2 = 0 and n1 = 2 and k ≤ 6.

Suppose that k = 6; then n4 = 3 since n4 ≥ n0+n2+k−3, so we may assume that e1, e3, e5 ∈ E4.

By Conf(17) and Conf(18), it follows that m+(e4) = 1, and hence e4 ∈ E0 ∪ E1, and similarly

e6, e2 ∈ E0 ∪ E1, a contradiction since n0 + n1 = 2. Thus k = 5, and so n4 ≥ 2, and by (2)

n4 = 2 and we may assume that e1, e3 ∈ E4. By Conf(17) and Conf(18), m+(e4) = 1, and similarly

m+(e5) = 1. Since n1 = 2, and n0, n2 = 0, it follows that m(e2) > 1. But then e4 ∈ E0 by (3),

contradicting that n0 = 0.

Case 2: k = 4 and n0 + n1 = 1 and n4 > 0.

Let e4 ∈ E4; by (3), e2 ∈ E0 and so m(e2) = 1. By (2) and Conf(2) and Conf(4), it follows

that m(e1),m(e3) ≤ 2. Now e2 is the only edge of C that is not 2-heavy, since n0 + n1 = 1, and

in particular r has at most one door. Since 4n0 + 3n1 + 2n2 + n3 ≤ 7 and n0 = 1, it follows that

n2 ≤ 1, so we may assume that e1 /∈ E2. Thus φ(e1) > 2, and hence m(e1) = 2. By (2) and

(5), m+(e4) ≥ 5, so by Conf(4), m(e4) = 4. Since φ(e1) > 2, it follows from the γ-rules that r1

is a triangle v1v2w say, where m(v1w),m(v2w) ≥ 2. Consequently m(v1w) = 2. Since e3 /∈ E1,

it follows that m+(e3) ≥ 2; so m(v2w) = m+(v2w) = 2 by Conf(18) (taking v2, v1, w to be the

vertices called u, v, w in Conf(18) respectively). From Conf(10) it follows that m(e3) = 1. From

the γ-rules it follows that φ(e1) = 5/2. Since
∑

e∈E(C) φ(e) > 8 and φ(e2) + φ(e4) ≤ 4, it follows

that φ(e3) ≥ 2. Since m(e3) = 1, the γ-rules imply that e3 is 3-heavy, contrary to Conf(16) (taking

v2, v1, w to be the vertices called u, v, w in Conf(16) respectively).

Case 3: k = 4 and n0 + n1 = 1 and n4 = 0.
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Let e4 ∈ E0∪E1, and so m(e4) ≤ 2. Since every edge of C that is not 2-heavy belongs to E0∪E1,

it follows that e1, e2, e3 are 2-heavy. Since n4 = 0, it follows that m+(ei) ≤ 4 for i = 1, 2, 3, 4.

Suppose that φ(e1) ≥ 3, and hence φ(e1) = 3 by (1) since n4 = 0. By (4) it follows that

m(e1) ≥ 3. If m+(e1) = 3, then from the β-rules, the edge xv2 of r1 incident with v2 and different

from e1 has multiplicity four and hence m(e2) = 1; and since x, v3 are non-adjacent by Conf(2),

this contradicts that e2 is 2-heavy. Thus m+(e1) ≥ 4. By Conf(6), m+(e3) ≤ 2, and so φ(e3) ≤ 2

by (4). Since φ(e2) ≤ 3, and φ(e4) ≤ 1, and
∑

e∈E(C) φ(e) > 8, it follows that φ(e2) ≥ 5/2 (and so

e2 is 3-heavy), and φ(e3) ≥ 3/2, and φ(e4) ≥ 1/2 (and so m+(e4) ≥ 2). By Conf(2), it is not the

case that m(e3) = 2 and the edge of r3 consecutive with e3 and incident with v3 has multiplicity

four; and so, since φ(e3) ≥ 3/2, the β-rules imply that m(e3) = 1 and r3 is a triangle v3v4y

say. Now by Conf(15), not both m(v3y),m(v4y) ≥ 2; and m(e2) ≤ 3 by Conf(4), so by Conf(18),

m+(v3y),m+(v4y) ≤ 3. But then the γ-rules imply that φ(e3) ≤ 1, a contradiction. This proves

that φ(e1) ≤ 5/2; and similarly φ(e3) ≤ 5/2.

Since
∑

e∈E(C) φ(e) > 8, and φ(e2) ≤ 3 (because n4 = 0) it follows that φ(e1) + φ(e3) ≥ 9/2,

and φ(e4) ≥ 1/2; and from the symmetry we may assume that φ(e1) = 5/2 and φ(e3) ≥ 2. The β-

and γ-rules imply that m(e1) = 3 (since m+(e2) ≤ 4). Since φ(e2) + φ(e3) ≥ 5, and φ(e3) ≤ 5/2, it

follows that φ(e2) ≥ 5/2 (and hence m(e2) ≥ 2).

Suppose that m(e3) = 1. Since φ(e3) ≥ 2, the first γ-rule applies, and so r3 is a triangle v3v4y,

and m(v3y),m(v4y) ≥ 2, and m+(v3y) + m+(v4y) ≥ 6. By Conf(4), m(e2) ≤ 3, so by Conf(18),

m+(v3y),m+(v4y) ≤ 3, and hence equality holds for both. By Conf(11), m(v3y),m(v4y) = 2; but

this is contrary to Conf(16).

So m(e3) ≥ 2, and by Conf(4), m(e2) = m(e3) = 2. If m+(e3) = 2, then from the β-rules

it follows that both edges of r3 consecutive with e3 have multiplicity five; but this is impossible

since m(e2) = 2. So m+(e3) = 3. Since φ(e2) ≥ 5/2 it follows that r2 is a triangle v2v3x,

m(v2x),m(v3x) ≥ 2, and one of m+(v2x),m+(v3x) ≥ 3, and e4 is a door for r. Since φ(e4) > 0, we

deduce that m+(e4) ≥ 2. By Conf(2), m(v2x) = 2. By Conf(12), m+(v3x) = 2 and m+(v2x) = 2,

a contradiction.

Case 4: k = 4 and n0 + n1 = 0.

Since n0, n1 = 0, it follows that φ(ei) ≥ 3/2 and hence ei is 2-heavy, for 1 ≤ i ≤ 4. Consequently
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n4 = 0, from (3). Since
∑

e∈E(C) φ(e) > 8, we may assume because of the symmetries of the square

that φ(e1) + φ(e3) ≥ 9/2, and φ(e1) ≥ φ(e3), and therefore φ(e1) ≥ 5/2. Thus m(e1) ≥ 3 from

(4). If some edge f of the boundary of r1 consecutive with e1 satisfies m(f) = 4, say f = v1x,

then m(e4) = 1 and v1 has degree three; but since e4 is 2-heavy, it follows that x, v4 are adjacent,

contrary to Conf(2). Thus there is no such f , and so by the β-rules, m+(e1) ≥ 4.

Suppose that m(e3) ≥ 2. By Conf(6) it follows that m+(e3) = 2, and in particular r3 is big.

Since φ(e3) ≥ 3/2, the β-rules imply that some edge f of the boundary of r3 consecutive with

e3 satisfies m(f) = 5, say f = v4x; and since x, v1 are nonadjacent by Conf(2) it follows that

e4 ∈ E0 ∪ E1, a contradiction. Thus m(e3) = 1. Since e3 is 2-heavy it follows that r3 is a triangle

v3v4x say.

By Conf(4), m(e2),m(e4) ≤ 3. By Conf(15), we may assume that m(v3x) = 1; and by Conf(18),

m+(v4x) ≤ 3. Since m(e4) ≤ 3, the γ-rules imply that φ(e3) ≤ 1, a contradiction.

Case 5: k ≥ 5 and n0 + n1 = 1.

Since 3n0 + 2n1 + n2 + k − n4 ≤ 7, we have n4 ≥ n0 + n2 + k − 5. Let E0 ∪ E1 = {ek}.

Suppose that n4 = 0. Then since n4 ≥ n0 + n2 + k − 5 it follows that k = 5. Since

∑
e∈E(C)

φ(e) > 4k − 8 = 12,

and φ(e5) ≤ 1, and φ(ei) ≤ 3 for i = 1, 2, 3, 4 (by (1), since n4 = 0) it follows that φ(ei) ≥ 5/2 for

i = 1, 2, 3, 4, and hence e1, . . . , e4 are 3-heavy. If m(e1) ≤ 2, then since φ(e1) ≥ 5/2 it follows from

the γ-rules that m(e2) = 4 and r2 is small; but then e2 ∈ E4, a contradiction. Thus m(e1) ≥ 3; so

m(e1) = m+(e1) = 3 by Conf(15). Since m(e2) ≥ 2, it follows that not both edges of r1 consecutive

with e1 have multiplicity four, and so from the β-rules, φ(e1) ≤ 5/2. Similarly φ(e4) ≤ 5/2,

contradicting that
∑

e∈E(C) φ(e) > 12. This proves that n4 > 0.

Suppose that n2 = 0. Thus e1, . . . , e4 are 3-heavy. Since n4 > 0, (3) implies that n0 = 1. Since

φ(e1) > 2, the β- and γ-rules imply that either:

• m(e1) = 2 and r1 is a triangle v1v2w say; and m(v1w),m(v2w) ≥ 2, and m(e2) = 4. Conse-

quently m(v2w) = 2, contrary to Conf(16).
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• m(e1) = 3 and r1 is big, and, if u1-v1-v2-u2 is the three-edge path of Cr1 with middle edge e1,

then one of m(u1v1),m(u2v2) = 4 and is incident with a small region. But if m(u1v1) = 4 then

the second region incident with it is rk, and this is not small since n0 = 1; and if m(u2v2) = 4

then v2 has degree three and m(e2) = 1, and since e2 is 3-heavy it follows that u2, v3 are

adjacent, and m(u2v3) ≥ 2, contrary to Conf(2).

• m+(e1) ≥ 4; but this is contrary to Conf(15).

This proves that n2 ≥ 1.

Since 3n0 + 2n1 + n2 + k/2 ≤ 7, we have n0 + n2 + k/2 ≤ 5, and in particular n2 ≤ 2. If

e ∈ E(C) is not 3-heavy, then φ(e) ≤ 2 from the γ-rules, and so at most two edges of E(C) not in

E0 ∪ E1 are not 3-heavy. By Conf(8) and Conf(19) it follows that e1, ek−1 /∈ E4, so every edge in

E4 is disjoint from ek. Since there are three consecutive edges of C not in E4, and no two edges in

E4 are consecutive by (2), it follows that n4 ≤ k/2− 1; and since 3n0 + 2n1 + n2 + k − n4 ≤ 7, it

follows that n0 +n2 + k/2 ≤ 4, and so n2 = 1, and n0 = 0, and k ≤ 6. In particular, from (5) every

edge e ∈ E4 has m(e) ≥ 4.

Suppose that k = 6. Since n4 ≥ n0 +n2 +k− 5 and n4 ≤ k/2− 1, it follows that n4 = 2; and so

E4 = {e2, e4}, since the members of E4 are disjoint from e6 and from each other. Since e2 ∈ E4, (3)

implies that e5 is not 3-heavy, and so e5 ∈ E2; and similarly e1 ∈ E2, a contradiction since n2 = 1.

Thus k = 5. Since n4 ≤ k/2− 1 it follows that n4 = 1, so we may assume that E4 = {e2}. By

(3), e4 is not 3-heavy, and so φ(e4) ≤ 2. Consequently E2 = {e4}, and φ(e1) + φ(e3) ≥ 11/2. Since

φ(e4), φ(e5) > 0, it follows that m+(e4),m+(e5) ≥ 2, and since m+(e2) ≥ 5, two applications of

Conf(13) imply that m(e3) +m(e4) ≤ 3 and m(e1) +m(e5) ≤ 3. Since m(e1),m(e3) ≥ 2 (because

φ(e1), φ(e3) > 2) it follows that m(e1),m(e3) = 2 and e1, e3 are 4-heavy; and m(e4),m(e5) = 1.

Since φ(e4) > 1, r4 is a triangle v4v5x say. Since e4 is not 3-heavy, one of m(v4x),m(v5x) = 1. If

m(v4x) = 1 then by Conf(16), m(xv5) ≤ 2; but then φ(e4) = 1 from the γ-rules, a contradiction. So

m(v5x) = 1. Since φ(e4) > 1, the γ-rules imply that m+(v4x) ≥ 4. But this contradicts Conf(18).

Case 6: k ≥ 5 and n0 + n1 = 0.

Since n0, n1 = 0, it follows that φ(ei) ≥ 3/2 and hence ei is 2-heavy, for 1 ≤ i ≤ k. Since

3n0 + 2n1 + n2 + k − n4 ≤ 7, we have n4 ≥ n2 + k − 7.
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Suppose first that n4 > 0. By (2) and Conf(8) and Conf(19), every edge in E4 is disjoint from

at least three edges that are not 3-heavy and that therefore belong to E2. In particular n2 ≥ 3.

Let e ∈ E4; then e is disjoint from all the other edges in E4, and from at least three edges in E2,

so k − 3 ≥ n4 − 1 + 3, that is, k ≥ n4 + 5. But n4 ≥ n2 + k − 7 ≥ k − 4, a contradiction.

This proves that n4 = 0, and so E(C) = E2∪E3. Since n4 ≥ n2+k−7, it follows that n2+k ≤ 7.

In particular, k ∈ {5, 6, 7}. From (4), every edge e ∈ E(C) with m(e) = 2 belongs to E2, since

n4 = 0 and there are no doors for r. Consequently every e ∈ E3 satisfies m(e) ≥ 3. Suppose that

m+(e) = 3 for some e ∈ E3, say e = e1. Thus r1 is big, and βe(r) > −1 since φ(e) > 2. Hence from

the β-rules, some edge of Cr1 consecutive with e1 has multiplicity four, say v1x. Hence m(ek) = 1,

and since n0, n1 = 0, it follows that rk is a triangle, and therefore x, vk are adjacent, contrary to

Conf(2). This proves that m+(e) ≥ 4 for every e ∈ E3.

By Conf(15), every edge in E3 is disjoint from some edge in E2, and in particular n2 ≥ 2. Since

n2 + k ≤ 7, we have k = 5 and n2 = 2. Every edge in E3 is disjoint from one of the edges in E2, so

we may assume that e1, e2 ∈ E2, and e3, e4, e5 ∈ E3. Since m+(e3),m+(e4),m+(e5) ≥ 4, Conf(13)

implies that m+(e1) ≤ 2; and by Conf(15), e1 is not 3-heavy. From the γ-rules, φ(e1) ≤ 3/2, and

similarly φ(e2) ≤ 3/2. But for i = 3, 4, 5, φ(ei) ≤ 3 since n4 = 0; and so
∑

e∈E(C) φ(e) ≤ 12,

contradicting our initial assumption that

∑
e∈E(C)

(φ(e)− 4) > −8.

This completes the proof of Lemma 4.4.7.

Proof of Theorem 4.4.1. Suppose that (G,m) is a prime 8-target, and let α, β, γ be as before. Since

the sum over all regions r of α(r)+β(r)+γ(r) is positive, there is a region r with α(r)+β(r)+γ(r) >

0. But this is contrary to one of Lemmas 4.4.4, 4.4.5, 4.4.6, or 4.4.7. This proves Theorem 4.4.1.

4.5 Reducibility

Now we begin the second half of the paper, devoted to proving the following.

Theorem 4.5.1. Every minimum 8-counterexample is prime.
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Again, the proof is broken into several steps. Clearly no minimum 8-counterexample (G,m)

has an edge e with m(e) = 0, because deleting e would give a smaller 8-counterexample; and by

Proposition 4.3.1, every minimum 8-counterexample satisfies the conclusions of Proposition 4.3.1.

Thus, it remains to check that (G,m) contains none of Conf(1)–Conf(19). Sometimes it is just as

easy to prove a result for general d instead of d = 8, and so we do so.

Lemma 4.5.2. If (G,m) is a minimum d-counterexample, then every triangle has multiplicity less

than d.

Proof. Let uvw be a triangle of G, and let X = {u, v, w}. Since |V (G)| ≥ 6, Proposition 4.3.1

implies that m(δ(X)) ≥ d+ 2. But

m(δ(X)) = m(δ(u)) +m(δ(v)) +m(δ(w))− 2m(uv)− 2m(uw)− 2m(vw),

and so d+ 2 ≤ d+ d+ d− 2m(uv)− 2m(uw)− 2m(vw), that is, m(uv) +m(uw) +m(vw) ≤ d− 1.

This proves 4.5.2.

If C is a cycle of length four in G, say with vertices u, v, w, x in order, let m′ be defined as

follows: m′(uv) = m(uv) − 1, m′(vw) = m(vw) + 1, m′(wx) = m(wx) − 1, m′(ux) = m(ux) + 1,

and m′(e) = m(e) for all other edges e. If (G,m) is a minimum d-counterexample, then because of

the second statement of Proposition 4.3.1, it follows that (G,m′) is a d-target. (Note that possibly

m′(uv),m′(wx) are zero; this is the reason to permit m(e) = 0 in a d-target.) We say that (G,m′)

is obtained from (G,m) by switching on the sequence u-v-w-x-u. If (G,m′) is smaller than (G,m),

we say that the sequence u-v-w-x-u is switchable.

Lemma 4.5.3. No minimum d-counterexample contains Conf(1).

Proof. Suppose that (G,m) is a minimum d-counterexample, with a triangle uvw, where u, v have

degree three. Let the neighbours of u, v not in {u, v, w} be x, y respectively. Let H be a simple

graph obtained from G by adding new edges if necessary to make w, x, y pairwise adjacent, and

extend m to E(H) by setting m(e) = 0 for every new edge. Thus (H,m) is not d-edge-colourable,

and although it may not be a minimum d-counterexample, no d-counterexample has fewer vertices.

Define f(w) = m(uw) +m(vw), f(x) = m(ux), and f(y) = m(vy). Since m(δ({u, v})) is even,
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it follows that f(w) + f(x) + f(y) is even. Define

n(wx) =
1

2
(f(x) + f(w)− f(y))

n(wy) =
1

2
(f(y) + f(w)− f(x))

n(xy) =
1

2
(f(x) + f(y)− f(w)).

It follows that n(wx), n(wy), n(xy) are integers. Since m(δ({u, v, w})) ≥ d and m(δ(w)) = d, it fol-

lows that m(ux)+m(vy) ≥ m(uw)+m(vw) and hence n(xy) ≥ 0. Similarly, since m(δ({u, v, x})) ≥

d and m(δ(x)) = d, it follows that n(wy) ≥ 0, and similarly n(wx) ≥ 0.

Let G′ = H \ {u, v}. For each edge e of G′, define m′(e) as follows. If e is incident with

a vertex different from x, y, w let m′(e) = m(e). For e = xy,wx,wy let m′(e) = m(e) + n(e).

We claim that (G′,m′) is a d-target. To show this, let X ⊆ V (G′) with |X| odd; we must show

that m′(δG′(X)) ≥ d. By replacing X by its complement if necessary (which also is odd, since

|V (G)| is even), we may assume that X contains at most one of w, x, y. But then from the choice

of f(w), f(x), f(y), it follows that m′(δG′(X)) = m(δG(X)) ≥ d as required. Thus (G′,m′) is a

d-target. Since |V (G′)| < |V (G)|, there are d perfect matchings F ′1, . . . , F
′
d of G′ such that every

edge e ∈ E(G′) is in exactly m′(e) of them. Now each of F ′1, . . . , F
′
d contains at most one of the

edges wx,wy, xy. Let I1, I2, I3, I0 be the sets of i ∈ {1, . . . , d} such that F ′i contains wx,wy, xy or

none of the three, respectively. Thus |I1| = m′(wx) = m(wx) + n(wx). For n(wx) values of i ∈ I1

let Fi = (F ′i \ {wx}) ∪ {ux, vw}, and for the remaining m(wx) values let Fi = F ′i ∪ {uv}. Thus Fi

is a perfect matching of G for each i ∈ I1. Define Fi (i ∈ I2) similarly. For n(xy) values of i ∈ I3

let Fi = (F ′i \ {xy})∪{ux, vy}, and for the others let Fi = Fi ∪{uv}. For i ∈ I0 let Fi = F ′i ∪{uv}.

Then F1, . . . , Fd are perfect matchings of G, and we claim that every edge e is in exactly m(e) of

them. This is clear if e has an end different from u, v, w, x, y; and true from the construction if

both ends of e are in {w, x, y}. From the symmetry we may therefore assume that e is incident

with u. If e = ux, then e belongs to n(wx) + n(xy) of F1, . . . , Fd; but

n(wx) + n(xy) =
1

2
(f(x) + f(w)− f(y)) +

1

2
(f(x) + f(y)− f(w)) = f(x) = m(ux)

as required. The other two cases are similar. This is a contradiction, since (G,m) is a minimum
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d-counterexample, and so there is no such triangle uvw. This proves Lemma 4.5.3.

Incidentally, a similar proof would show that G is four-connected except for cutsets of size three

that cut off just one vertex, but we do not need this.

If (G,m) is a d-target, and x, y are distinct vertices both incident with some common region r,

we define (G,m) + xy to be the d-target (G′,m′) obtained as follows:

• If x, y are adjacent in G, let (G′,m′) = (G,m).

• If x, y are non-adjacent in G, let G′ be obtained from G by adding a new edge xy, extending

the drawing of G to one of G′ and setting m′(e) = m(e) for every e ∈ E(G) and m′(xy) = 0.

Lemma 4.5.4. No minimum d-counterexample contains Conf(2).

Proof. Let (G,m) be a minimum d-counterexample, with a triangle uvw, and suppose that u has

only one other neighbour x, and m(ux) < m(uw) + m(vw). Let (G′,m′′) = ((G,m) + vx) + wx.

For each e ∈ E(G′), define m′(e) as follows. If e 6= ux, uw, vw, vx let m′(e) = m(e). Let

m′(vx) = m′′(vx) +m(vw)

m′(vw) = 0

m′(ux) = m(ux)−m(vw)

m′(uw) = m(uw) +m(vw).

Since m(uv) +m(uw) +m(ux) = d and m(uv) +m(uw) +m(vw) ≤ d since m(δ({u, v, w})) ≥ d, it

follows that m(ux) ≥ m(vw), and so m′(e) ≥ 0 for every edge e. Moreover, m′(δ(z)) = d for every

vertex z, from the construction. We claim that (G′,m′) is a d-target. For let X ⊆ V (G′) with |X|

odd; and we may assume that u /∈ X. We must show that m′(δ(X)) ≥ d. If X contains at most one

of v, w, x then m′(δ(X)) = m(δ(X)) ≥ d as required, so we may assume that X contains at least two

of v, w, x. If v, w, x ∈ X then m′(δ(X)) ≥ m′(δ(u)) = d as required. If X ∩ {v, w, x} = {v, w} then

m′(δ(X)) = m(δ(X)) + 2m(vw) ≥ d, and if X ∩ {v, w, x} = {w, x} then m′(δ(X)) = m(δ(X)) ≥ d,

so we may assume that X ∩ {v, w, x} = {v, x}, and hence m′(δ(X)) = m(δ(X)) − 2m(vw). We
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must therefore show that in this case, m(δ(X)) ≥ 2m(vw) + d. To see this, note that

m(δ(X ∪ {u,w})) ≤ m(δ(X))−m(ux)−m(uv)−m(vw)−m′′(xw)

+(d−m(uw)−m(vw)−m′′(xw)) ≤ m(δ(X))− 2m(vw)

since m′′(xw) ≥ 0 and m(ux) + m(uv) + m(uw) = d. Since m(δ(X ∪ {u,w})) ≥ d, it follows

that m(δ(X)) ≥ 2m(vw) + d as required. This proves that (G′,m′) is a d-target. Since m′(uw) >

m(ux),m(vw) (the first from the hypothesis), it follows that (G′,m′) is smaller than (G,m), and so

is d-edge-colourable; let F ′1, . . . , F
′
d be a d-edge-colouring. Now every perfect matching containing

vx also contains uw, since vx is not disjoint from any other edge incident with u. Hence there are at

least m(vw) of F ′1, . . . , F
′
d that contain both vx and uw. Choose m(vw) of them, say F ′1, . . . , F

′
m(vw);

and for 1 ≤ i ≤ m(vw) define Fi = (F ′i \{vx, uw})∪{vw, ux}. Define Fi = F ′i for m(vw)+1 ≤ i ≤ d.

Then every edge e of G is in m(e) of F1, . . . , Fd, a contradiction. Thus there is no such triangle

uvw. This proves Lemma 4.5.4.

Lemma 4.5.5. No minimum 8-counterexample contains Conf(3) or Conf(4).

Proof. To handle both cases at once, let us assume that (G,m) is an 8-target, and uvw, uwx are

triangles with m(uv)+m(uw)+m(vw)+m(ux) ≥ 8, (where possibly m(uw) = 0); and either (G,m)

is a minimum 8-counterexample, or m(uw) = 0 and deleting uw gives a minimum 8-counterexample

(G0,m0) say. We must show that m(uw) = 0 and (m(uv),m(vw),m(wx),m(ux)) = (4, 2, 1, 2). Let

(G,m′) be obtained by switching (G,m) on u-v-w-x-u.

(1) (G,m′) is not smaller than (G,m).

Because suppose it is. Then it admits an 8-edge-colouring; because if (G,m) is a minimum 8-

counterexample this is clear, and otherwise m(uw) = 0, and (G′,m′) is smaller than (G0,m0). Let

F ′1, . . . , F
′
8 be an 8-edge-colouring of (G′,m′). Since

m′(uv) +m′(uw) +m′(vw) +m′(ux) ≥ 9,
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one of F ′1, . . . , F
′
8, say F ′1, contains two of uv, uw, vw, ux and hence contains vw, ux. Then

(F ′1 \ {vw, ux}) ∪ {uv,wx}

is a perfect matching, and it together with F ′2, . . . , F
′
8 provide an 8-edge-colouring of (G,m), a

contradiction. This proves (1).

From (1) we deduce that max(m(ux),m(vw)) < max(m(uv),m(wx)). It follows that

m(uv) +m(uw) +m(vw) +m(wx) ≤ 7,

by (1) applied with u,w exchanged; and

m(uv) +m(ux) +m(wx) +m(uw) ≤ 7,

by (1) applied with v, x exchanged. Consequently m(ux) > m(wx), and hence m(ux) ≥ 2; and

m(vw) > m(wx), and so m(vw) ≥ 2. Suppose that m(uv) ≤ 3. Since

max(m(ux),m(vw)) < max(m(uv),m(wx)),

it follows that m(uv) = 3 and m(vw) = m(ux) = 2; and therefore m(wx) = 1, since m(ux) >

m(wx). But this is contrary to (1).

We deduce that m(uv) ≥ 4. Since m(vw) ≥ 2 and m(uv) + m(uw) + m(vw) + m(wx) ≤ 7, it

follows that m(uw) +m(wx) ≤ 1; so m(uw) = 0 and m(wx) = 1. But then

(m(uv),m(vw),m(wx),m(ux)) = (4, 2, 1, 2).

This proves Lemma 4.5.5.

4.6 Guenin’s cuts

We still have many configurations to handle to finish the proof of Theorem 4.5.1, but all the others

are handled by a method of Guenin [45], which we introduce in this section. In particular, nothing
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so far has assumed the truth of Conjecture 4.1.1 for d = 7, but now we will need to use that.

Let (G,m) be a d-target, and let x-u-v-y be a three-edge path of G, where x, y are incident with

a common region. Let (G′,m′) be obtained from (G,m) + xy by switching on the cycle x-u-v-y-x.

We say that (G′,m′) is obtained from (G,m) by switching on x-u-v-y. If (G′,m′) is smaller than

(G,m), we say that the path x-u-v-y is switchable.

Let G be a three-connected graph drawn in the plane, and let G∗ be its dual graph; let us

identify E(G∗) with E(G) in the natural way. A cocycle means the edge-set of a cycle of the dual

graph; thus, Q ⊆ E(G) is a cocycle of G if and only if Q can be numbered {e1, . . . , ek} for some

k ≥ 3 and there are distinct regions r1, . . . , rk of G such that for 1 ≤ i ≤ k, ei is incident with ri

and with ri+1 (where rk+1 means r1).

Guenin’s method is the use of the following:

Lemma 4.6.1. Let d ≥ 1 be an integer such that every (d−1)-regular oddly (d−1)-edge-connected

planar graph is (d−1)-edge-colourable. Let (G,m) be a minimum d-counterexample, and let x-u-v-y

be a path of G with x, y on a common region. Let (G′,m′) be obtained by switching on x-u-v-y,

and let F1, . . . , Fd be a d-edge-colouring of (G′,m′), where xy ∈ Fk. Let I = {1, . . . , d} \ {k} if

xy /∈ E(G), and I = {1, . . . , d} if xy ∈ E(G). Then for each i ∈ I, there is a cocycle Qi of G′ with

the following properties:

• for 1 ≤ j ≤ d with j 6= i, |Fj ∩Qi| = 1;

• |Fi ∩Qi| ≥ 5;

• there is a set X ⊆ V (G) with |X| odd such that δG′(X) = Qi; and

• uv, xy ∈ Qi and ux, vy /∈ Qi.

Proof. Let i ∈ I. If i 6= k and xy ∈ Fi, it follows that m′(xy) ≥ 2 since xy ∈ Fk; and so xy ∈ E(G).

Thus in either case Fi is a perfect matching of G. For each edge e of G′, let p(e) = 1 if e ∈ Fi, and

p(e) = 0 otherwise; and for each edge e of G, let n(e) = m(e)− p(e). Thus (G,n) has the property

that for each vertex z, n(δG(z)) = d− 1. If there is a list of d− 1 perfect matchings of G such that

every edge e is in n(e) of them, then adding Fi to this list gives a d-edge-colouring of (G,m), a

contradiction. Thus by hypothesis, there exists Y ⊆ V (G) with |Y | odd and with n(δG(Y )) < d−1.

Since |Y | and n(δG(Y )) have the same parity, it follows that n(δG(Y )) ≤ d − 3. Since δG(Y ) is
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an edge-cut of the connected graph G, it can be partitioned into “bonds” (edge-cuts δG(X) such

that G|X, G \X are both connected), and hence one of these bonds δG(X) has n(δG(X)) odd, and

consequently |X| also odd. Since δG(X) is a bond of G and hence δG′(X) is a bond of G′, there is

a cocycle Qi of G′ with Qi = δG′(X). We claim that Qi satisfies the theorem. For we have seen

the third assertion; we must check the other three.

From the choice of X we have n(δG(X)) ≤ d−3. Since |X|, |V (G)\X| ≥ 3 (because n(δG(z)) =

d−1 for each vertex z), it follows from Proposition 4.3.1 that m(δG(X)) ≥ d+2, and so p(δG(X)) ≥

5, that is, |Fi ∩ Qi| ≥ 5. This proves the second assertion. We recall that F1, . . . , Fd is a d-edge-

colouring of (G′,m′); and so for 1 ≤ j ≤ d with j 6= i, some edge of δG′(X) belongs to Fj , and

so ∑
1≤j≤d,j 6=i

|Fj ∩Qi| ≥ d− 1.

On the other hand, every edge e of G′ belongs to m′(e) of F1, . . . , Fd, and hence to m′(e)− p(e) of

the d− 1 perfect matchings in this list without Fi. Consequently

∑
1≤j≤d,j 6=i

|Fj ∩Qi| =
∑
e∈Qi

m′(e)− p(e).

It follows that
∑

e∈Qim
′(e) − p(e) ≥ d − 1; but m′(e) − p(e) = n(e) for all edges of G′ except

xu, uv, vy, xy, and so

|{uv, xy} ∩Qi| − |{ux, vy} ∩Qi|+
∑
e∈Qi

n(e) ≥ d− 1.

Since
∑

e∈Qi n(e) ≤ d − 3, it follows that uv, xy ∈ Qi and ux, vy /∈ Qi. This proves the fourth

assertion. Moreover, since ∑
1≤j≤d,j 6=i

|Fj ∩Qi| = d− 1,

it follows that |Fj ∩Qi| = 1 for all j ∈ {1, . . . , d} with j 6= i. This proves the first assertion, and so

proves Lemma 4.6.1.

By the result of [19], every 7-regular oddly 7-edge-connected planar graph is 7-edge-colourable,

so we can apply Lemma 4.6.1 when d = 8.
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Lemma 4.6.2. No minimum 8-counterexample contains Conf(5) or Conf(6).

Proof. To handle both at once, let us assume that (G,m) is an 8-target, and uvw, uwx are two

triangles with m+(uv) +m(uw) +m+(wx) ≥ 7; and either (G,m) is a minimum 8-counterexample,

or m(uw) = 0 and deleting uw gives a minimum 8-counterexample. We claim that

m(uv) +m(uw) +m(vw) +m(wx) ≤ 7.

If m(uw) > 0 this follows from Lemma 4.5.5 since we do not have Conf(3); and if m(uw) = 0 then

one of m(uv),m(wx) ≥ 3, and since Lemma 4.5.5 implies that we do not have Conf(4), again the

claim holds. This proves that m(uv) + m(uw) + m(vw) + m(wx) ≤ 7. Since m+(uv) + m(uw) +

m+(wx) ≥ 7 and hence m(uv) + m(uw) + m(wx) ≥ 5, it follows that m(vw) ≤ 2 and similarly

m(ux) ≤ 2.

We claim that u-x-w-v-u is switchable. For suppose not; then we may assume that m(vw) >

max(m(uv),m(wx)) and m(vw) ≥ m(ux). Yet m(vw) ≤ 2, and so m(uv),m(wx) = 1, and m(ux) ≤

2. Since u-x-w-v-u is not switchable, it follows that m(ux) = 2; and since m+(uv) + m(uw) +

m+(wx) ≥ 7, it follows that m(uw) ≥ 3, giving Conf(3), contrary to Lemma 4.5.5. This proves

that u-x-w-v-u is switchable.

Let r1, r2 be the second regions incident with uv,wx respectively, and for i = 1, 2 let Di be the

set of doors for ri. Let k = m(uv)+m(uw)+m(wx)+2. Let (G,m′) be obtained by switching, and

let F1, . . . , F8 be an 8-edge-colouring of (G,m′), where Fi contains one of uv, uw,wx for 1 ≤ i ≤ k.

For 1 ≤ i ≤ 8, let Qi be as in Lemma 4.6.1.

(1) For 1 ≤ i ≤ 8, either Fi ∩ Qi ∩ D1 6= ∅, or Fi ∩ Qi ∩ D2 6= ∅; and both are nonempty if

either k = 8 or i = 8.

For let the edges of Qi in order be e1, . . . , en, e1, where e1 = wx, e2 = uw, and e3 = uv. Since Fj

contains one of e1, e2, e3 for 1 ≤ j ≤ k, it follows that none of e4, . . . , en belongs to any Fj with

j ≤ k and j 6= i, and, if k = 7 and i 6= 8, that only one of them is in F8. But since at most one

of e1, e2, e3 is in Fi and |Fi ∩ Qi| ≥ 5, it follows that n ≥ 7; so either e4, e5 belong only to Fi, or

en, en−1 belong only to Fi, and both if k = 8 or i = 8. But if e4, e5 are only contained in Fi, then
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they both have multiplicity one, and are disjoint, so e4 is a door for r1 and hence e4 ∈ Fi∩Qi∩D1.

Similarly if en, en−1 are only contained in Fi then en ∈ Fi ∩Qi ∩D2. This proves (1).

Now k ≤ 8, so one of r1, r2 is small since m+(uv) + m(uw) + m+(wx) ≥ 7; and if k = 8

then by (1) |D1|, |D2| ≥ 8, a contradiction. Thus k = 7, so both r1, r2 are small, but from (1)

|D1|+ |D2| ≥ 9, again a contradiction. This proves Lemma 4.6.2.

Lemma 4.6.3. No minimum 8-counterexample contains Conf(7).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that uvw is a triangle with

m+(uv) + m+(uw) ≥ 7. Let r1, r2 be the second regions for uv, uw respectively, and for i = 1, 2

let Di be the set of doors for ri. By Lemma 4.6.2, we do not have Conf(5), so neither of r1, r2 is a

triangle. Since m(uv) +m(uw) ≥ 5, one of m(uv),m(uw) ≥ 3, so we may assume that m(uv) ≥ 3.

Let tu be the edge incident with r2 different from uw. Since m(uv) + m(uw) ≥ 5, it follows that

m(tu) ≤ 3, and by 4.5.2, m(vw) ≤ 2. Thus the path t-u-v-w is switchable. Note that t, w are

non-adjacent in G, since r2 is not a triangle. Let (G′,m′) be obtained by switching on this path,

and let F1, . . . , F8 be an 8-edge-colouring of it. Let k = m(uv) + m(uw) + 2; thus k ≥ 7, since

m(uv) + m(uw) ≥ 5, and we may assume that for 1 ≤ j < k, Fj contains one of uv, uw, and

tw ∈ Fk.

Let I = {1, . . . , 8} \ {k}, and for each i ∈ I, let Qi be as in Lemma 4.6.1. Now let i ∈ I, and let

the edges of Qi in order be e1, . . . , en, e1, where e1 = uv, e2 = uw, and e3 = tw. Since Fj contains

one of e1, e2, e3 for 1 ≤ j ≤ k it follows that none of e4, . . . , en belongs to any Fj with j ≤ k and

j 6= i; and if k = 7 and i 6= 8, only one of them belongs to F8. Since Fi contains at most one of

e1, e2, e3 and |Fi ∩ Qi| ≥ 5, it follows that n ≥ 7, and so either e4, e5 are only contained in Fi, or

en, en−1 are only contained in Fi; and both if either k = 8 or i = 8. Thus either e4 ∈ Fi ∩Qi ∩D2

or en ∈ Fi ∩ Qi ∩ D1, and both if k = 8 or i = 8. Since k ≤ 8, one of r1, r2 is small since

m+(uv) +m+(uw) ≥ 7; and yet if k = 8 then |D1|, |D2| ≥ |I| = 7, a contradiction. Thus k = 7, so

r1, r2 are both small, and yet |D1|+ |D2| ≥ 8, a contradiction. This proves Lemma 4.6.3.

Lemma 4.6.4. No minimum 8-counterexample contains Conf(8).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that uvw is a triangle, and its

edges have multiplicities 3, 2, 2 (in some order). We will show that the second region r for uw has
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a door disjoint from uw. By Lemma 4.5.5, we do not have Conf(3), so r is not a triangle. By

exchanging u,w if necessary we may assume that m(vw) = 2. Let tu be the edge incident with r

different from uw. We claim that the path t-u-v-w is switchable. For certainly m(uv) ≥ m(vw),

so it suffices to check that m(uv) ≥ m(tu). If not, then since m(uv) ≥ 2 and m(uv) +m(uw) ≥ 5,

it follows that m(uv) = 2, m(tu) = 3 and m(uw) = 3, and we have Conf(2), contrary to 4.5.4.

Thus t-u-v-w is switchable. Let (G′,m′) be obtained by switching, and let F1, . . . , F8 be an 8-edge-

colouring of (G′,m′). Since m′(uv) +m′(uw) = 6, we may assume that F1, . . . , F6 each contain one

of uv, uw; and tw ∈ F7, and therefore vw ∈ F8. Let I = {1, . . . , 6, 8}; and for i ∈ I, let Qi be as in

Lemma 4.6.1. Since Q8 contains uv, uw, tw and F1, . . . , F7 each contain one of uv, uw, tw, it follows

that no other edge of Q8 belongs to any of F1, . . . , F7, and so Q8 ∩ F8 contains a door for r, say

e. Moreover e 6= tu since tu /∈ Q8; and e is not incident with w since vw ∈ F8. Consequently e is

disjoint from uw. This proves Lemma 4.6.4.

Lemma 4.6.5. No minimum 8-counterexample contains Conf(9).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that uv1v2 is a triangle, with

m(uv1),m(uv2),m(v1v2) = 2, such that the second regions r1, r2 for uv1, uv2 respectively both

have at most one door, and no door that is disjoint from uv1v2. For i = 1, 2, let Di be the set of

doors for ri. For i = 1, 2, let uxi and viyi be edges incident with ri different from uvi.

Now x1 6= x2 since u has degree at least four; and so m(ux1) + m(ux2) ≤ 4 and we may

assume that m(ux1) ≤ 2. Consequently the path x1-u-v2-v1 is switchable. Note that v1, x1 may be

adjacent, but if so then m(v1x1) = 1 from Lemma 4.5.5. Let (G′,m′) be obtained by switching, and

let F1, . . . , F8 be an 8-edge-colouring, where uv2 ∈ F1, F2, F3, and uv1 ∈ F4, F5 and v1x1 ∈ F6, and

v1x1 ∈ F7 if v1x1 ∈ E(G). Since v1v2 belongs to some Fi, and v1v2 meets all of uv2, uv1, v1x1, we

may assume that v1v2 ∈ F8. Let I = {1, . . . , 5, 7, 8} if x1v1 /∈ E(G), and I = {1, . . . , 8} otherwise.

For i ∈ I, let Qi be as in Lemma 4.6.1.

We claim that Fi ∩ Qi ∩ (D1 ∪ D2) 6= ∅ for i = 7, 8. First suppose that v1x1 /∈ E(G). Then

for 1 ≤ j ≤ 6 and for i = 7, 8, Fj ∩ Qi ∩ {uv2, uv1, v1x1} 6= ∅, and so no other edges of Qi belong

to any Fj with j ∈ {1, . . . , 6}. Since only one edge of Qi \ {uv2, uv1, v1x1} belongs to the Fj with

j ∈ {7, 8}\{i}, it follows that Fi∩Qi∩ (D1∪D2) 6= ∅ as required. Now suppose that v1x1 ∈ E(G).

Then for 1 ≤ j ≤ 7 and for i = 7, 8, Fj∩Qi∩{uv2, uv1, v1x1} 6= ∅, and so no other edges of Qi belong
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to any Fj with j ∈ {1, . . . , 7} and j 6= i. For i = 7, as before it follows that Fi∩Qi∩ (D1∪D2) 6= ∅;

for i = 8 we find that Fi∩Qi∩D1, Fi∩Qi∩D2 6= ∅. Thus in any case, we have Fi∩Qi∩(D1∪D2) 6= ∅

for j = 7, 8.

Now by hypothesis, D1 ∪ D2 ⊆ {ux1, ux2, v1y1, v2y2}; and ux1 /∈ Q7, Q8 from the choice of

switchable path, and v1y1, v2y2 /∈ F8 since v1v2 ∈ F8. Thus ux2 ∈ F8 ∩ D2. Since |D2| ≤ 1

by hypothesis, it follows that v2y2 /∈ D2, and ux2 /∈ F7 since ux2 ∈ F8 and m(ux2) = 1. Thus

v1y1 ∈ D1. Now m(ux2) = 1, and so the path x2-u-v1-v2 is switchable; so by the same argument

with v1, v2 exchanged, it follows that ux1 ∈ D1 and v2y2 ∈ D2, contrary to the hypothesis. This

proves Lemma 4.6.5.

Lemma 4.6.6. No minimum 8-counterexample contains Conf(10).

Proof. For suppose that (G,m) is a minimum counterexample, with a square uvwx and a triangle

wxy, where m(uv) = m(wx) = m(xy) = 2, and m(vw) = 4. By Lemma 4.5.5, we do not have

Conf(4), and it follows that m(ux) = 1. Since m(δ(w)) = 8 it follows that m(wy) ≤ 2, and so

u-x-y-w is switchable. Let (G′,m′) be obtained by switching on this path, and let F1, . . . , F8 be

an 8-edge-colouring of it. We may assume that xy ∈ F1, F2, F3, and xw ∈ F4, F5, and uw ∈ F6.

Let I = {1, . . . , 8} \ {6}, and let Qi (i ∈ I) be as in Lemma 4.6.1. Now vw /∈ F4, F5, F6, so there

are four values of i ∈ {1, 2, 3, 7, 8} such that vw ∈ Fi, and from the symmetry we may assume that

F1, F2, F7 contain vw (and so does one of F3, F8). It follows that vw /∈ Qi for i ∈ I, and so uv ∈ Qi

for each i ∈ I. Since uv belongs to two of F1, . . . , F8, there exists j 6= 8 with uv ∈ Fj . Moreover,

Fj does not contain vw, and so j 6= 1, 2, 7; so j ∈ {3, 4, 5, 6}. But |Q1 ∩ Fj | ≥ 2, since one of

xy, xw, vw ∈ Q1 ∩ Fj , a contradiction. This proves Lemma 4.6.6.

Lemma 4.6.7. No minimum 8-counterexample contains Conf(11), Conf(12) or Conf(13).

Proof. To handle all these cases simultaneously, let us assume that (G,m) is a 8-target, and

v1-v2-v3-v4-v5-v1 are the vertices in order of some cycle of G, and this cycle bounds a disc which

is the union of three triangles of G, namely v1v2v3, v1v3v5 and v3v4v5. Moreover, there is a subset

Z ⊆ {v1v3, v3v5} such that m(e) = 0 for all e ∈ Z and deleting the edges in Z gives a minimum

8-counterexample. Finally, we assume that

m(v1v2) +m(v1v3) +m(v2v3) +m(v3v4) +m(v3v5) ≥ 8,
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and

m+(v1v2) +m(v1v3) +m(v3v5) +m+(v4v5) ≥ 7.

To obtain the subcases Conf(11), Conf(12) and Conf(13), we set, respectively,

• Z = {v1v3}, m(v1v2) ≥ 3, m(v3v4) ≥ 3, m(v3v5) = 1, m+(v4v5) ≥ 3, and m(v1v5) ≤ 3

• Z = {v3v5}, m+(v1v2) ≥ 3, m(v2v3) = 2, m(v3v4) ≥ 2, m(v1v3) = 2, m(v1v5) ≤ 3 and

m+(v4v5) ≥ 2

• Z = {v1v3, v3v5}, m(v1v2) ≥ max(m(v2v3),m(v1v5)).

(Edges not mentioned are unrestricted.) Let (G,m′) be obtained by switching on the sequence

v2-v3-v5-v1-v2. (We postpone for the moment the question of whether this sequence is switchable.)

Let us suppose (for a contradiction) that (G,m′) admits an 8-edge-colouring F1, . . . , F8. Let k =

m(v1v2) + m(v1v3) + m(v3v5) + 2; then we may assume that F1, . . . , Fk each contain exactly one

of v1v2, v1v3, v3v5, and v3v5 ∈ Fk. Hence k ≤ 8. Let I = {1, . . . , 8} if m(v3v5) ≥ 1, and I =

{1, . . . , 8} \ {k} otherwise. Since v2v3 meets all the edges v1v2, v1v3, v3v5, it follows that none

of F1, . . . , Fk contain v2v3, and so k + m(v2v3) − 1 ≤ 8 and we may assume that v2v3 ∈ Fj for

k + 1 ≤ j ≤ k +m(v2v3)− 1. Thus there are exactly 9− k −m(v2v3) values of j ∈ {1, . . . , 8} such

that Fj contains none of v1v2, v1v3, v3v5, v2v3. Since by hypothesis

m(v1v2) +m(v1v3) +m(v2v3) +m(v3v4) +m(v3v5) ≥ 8,

and so m(v3v4) > 9− k−m(v2v3), there exists h ≤ k+m(v2v3)− 1 such that v3v4 ∈ Fh; since v3v4

meets each of v1v3, v2v3 and v3v5, it follows that v1v2 ∈ Fh, and so h < k; and from the symmetry

we may assume that h = 1.

For each i ∈ I let Qi as in Lemma 4.6.1. Now |Fj ∩Qi| = 1 for 1 ≤ j ≤ 8 with j 6= i; and since

F1 contains v1v2, v3v4 it follows that for i 6= 1 v3v4 /∈ Qi. Consequently v4v5 ∈ Qi for all i ∈ I \{1}.

Let r1, r2 be the second regions for v1v2, v4v5 respectively, and let their sets of doors be D1, D2.

Hence for each j ∈ {1, . . . , 8}, since there exists i ∈ I \ {1} with i 6= j, it follows that Fj contains

at most one of v1v2, v1v3, v3v5, v4v5, and so we may assume that v4v5 ∈ Fj for k+ 1 ≤ j ≤ k′ where

k′ = k +m(v4v5), and in particular k′ ≤ 8. From the hypothesis, k′ ≥ 7.
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(1) For i ∈ I \ {1}, one of Fi ∩D1, Fi ∩D2 is non-empty, and both if k′ = 8 or i = 8.

Let e1, . . . , en, e1 be the edges of Qi in order, where e1 = v1v2, e2 = v1v3, e3 = v3v5 and e4 = v4v5.

Thus for 1 ≤ j ≤ k′, Fj contains one of e1, e2, e3, e4, and hence contains none of e5, . . . , en if j 6= i.

Now since Fi contains at most one of e1, e2, e3, e4 and |Fi ∩ Qi| ≥ 5, it follows that n ≥ 8. Hence

e5, . . . , en belong only to Fi, except that one belongs to F8 if i, k′ < 8. This proves (1) as usual.

Since k′ ≤ 8, one of r1, r2 is small since m+(v1v2) + m(v1v3) + m(v3v5) + m+(v4v5) ≥ 7.

Consequently, (1) implies that k′ = 7; and so r1, r2 are both small, again a contradiction to (1).

This proves that (G,m′) is not 8-edge-colourable, and in particular the sequence v2-v3-v5-v1-v2

is not switchable. Let us look at the subcases for Conf(11), Conf(12), Conf(13) listed above. In the

Conf(11) subcase, m(v1v2) ≥ 3 ≥ m(v1v5), so we only need to check that m(v1v2) ≥ m(v2v3). If

not, then m(v2v3) = 4, contrary to Conf(2). In the Conf(13) subcase, the condition that m(v1v2) ≥

max(m(v2v3),m(v1v5)) is explicitly given. In the Conf(12) subcase, m(v1v2) ≥ 2 ≥ m(v2v3), so we

only need to check that m(v1v2) ≥ m(v1v5). Suppose not; then m(v1v5) = 3 and m(v1v2) = 2. In

this case the sequence v2-v3-v5-v1-v2 is not switchable, so we need a different approach.

Since (G,m′) given above is not 8-colourable, it follows from Proposition 4.3.1 that m′(δ(X)) ≥

10 for every subset X ⊆ V (G) with |X| odd and |X|, |V (G) \ X| ≥ 3. Let (G,m′′) be ob-

tained from (G,m′) by switching again on the same sequence. Now (G,m′′) is a 8-target, since

m(v2v3),m(v1v5) ≥ 2; and it is smaller than (G,m), and therefore admits an 8-edge-colouring,

say F1, . . . , F8. Since m′′(v1v2) + m′′(v1v3) + m′′(v3v5) + m′′(v1v5) > 8, some Fi contains two of

v1v2, v1v3, v3v5, v1v5, and therefore contains v1v2 and v3v5. By replacing Fi by (Fi \ {v1v2, v3v5})∪

{v2v3, v1v5} we therefore obtain an 8-edge-colouring of (G,m′), a contradiction. This proves Lemma

4.6.7.

Lemma 4.6.8. No minimum 8-counterexample contains Conf(14).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that some edge uv is incident

with regions r1, r2 where r1 has at most six doors disjoint from uv, and m(uv) ≥ 5, and either

m(uv) ≥ 6 or r2 is small. By exchanging r1, r2 if necessary, we may assume that if r1, r2 are both

small, then the length of r1 is at least the length of r2. By Lemma 4.5.5, we do not have Conf(3),
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so not both r1, r2 are triangles, and by 4.5.2, if m(uv) ≥ 6 then neither of r1, r2 is a triangle; so

r1 is not a triangle. Let x-u-v-y be a path of Cr1 . Since m(e) ≥ 5, this path is switchable; let

(G′,m′) be obtained from (G,m) by switching on it, and let F1, . . . , F8 be an 8-edge-colouring of

(G′,m′). Let k = m′(uv) + m′(xy) ≥ 7. Let I = {1, . . . , 8} \ {k} if x, y are non-adjacent in G,

and I = {1, . . . , 8} if xy ∈ E(G). For i ∈ I, let Qi be as in Lemma 4.6.1. Since Qi contains

both uv, xy for each i ∈ I, it follows that for 1 ≤ j ≤ 8, Fj contains at most one of uv, xy.

Thus we may assume that uv ∈ Fi for 1 ≤ i ≤ m′(uv), and xy ∈ Fi for m′(uv) < i ≤ k. Thus

k ≤ 8. Let D1 be the set of doors for r1 that are disjoint from e, and let D2 be the set of doors for r2.

(1) For each i ∈ I, one of Fi ∩ Qi ∩ D1, Fi ∩ Qi ∩ D2 is nonempty, and if k = 8 or i > k

then both are nonempty.

Let i ∈ I, and let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv and e2 = xy. Since

|Fi∩Qi| ≥ 5 and Fi contains at most one of e1, e2, it follows that n ≥ 6. Suppose that k = 8. Then

for 1 ≤ j ≤ 8, Fj contains one of e1, e2; and hence for all j ∈ {1, . . . , 8} with j 6= i, e3, . . . , en /∈ Fj .

It follows that en, en−1 belong only to Fi and hence en ∈ Fi∩Qi∩D2. Since this holds for all i ∈ I,

it follows that |D2| ≥ |I| ≥ 7. Hence r2 is big, and so by hypothesis, m(uv) ≥ 6. Since k = 8 it

follows that xy /∈ E(G). Consequently e3 is an edge of Cr1 , and since e3, e4 belong only to Fi, it

follows that e3 is a door for r1. But e3 6= ux, vy from the choice of the switchable path, and so

e3 ∈ Fi ∩Qi ∩D1. Hence in this case (1) holds.

Thus we may assume that k = 7; and so m(e) = 5, and r2 is small, and xy /∈ E(G), and

uv ∈ F1, . . . , F6, and xy ∈ F7. Thus I = {1, . . . , 6, 8}. If i = 8, then since uv, xy ∈ Qi and

Fj contains one of e1, e2 for all j ∈ {1, . . . , 7}, it follows as before that e3 ∈ Fi ∩ Qi ∩ D1 and

en ∈ Fi ∩Qi ∩D2. Thus we may assume that i ≤ 6. For 1 ≤ j ≤ 8 with j 6= i, |Fj ∩Qi| = 1, and

for 1 ≤ j ≤ 7, Fj contains one of e1, e2. Hence e3, . . . , en belong only to Fi and to F8, and only one

of them belongs to F8. If neither of en, en−1 belong to F8 then en ∈ Fi ∩ Qi ∩D2 as required; so

we assume that F8 contains one of en, en−1; and so e3, . . . , en−2 belong only to Fi. Since n ≥ 6, it

follows that e3 ∈ Fi ∩Qi ∩D1 as required. This proves (1).

If k = 8, then (1) implies that |D1| ≥ 7 as required. So we may assume that k = 7 and hence
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m(e) = 5 and xy /∈ E(G); and r2 is small. Suppose that there are three values of i ∈ {1, . . . , 6}

such that |Fi ∩ D1| = 1 and Fi ∩ D2 = ∅, say i = 1, 2, 3. Let fi ∈ Fi ∩ D1 for i = 1, 2, 3, and we

may assume that f3 is between f1 and f2 in the path Cr1 \ {uv}. Choose X ⊆ V (G′) such that

δG′(X) = Q3. Since only one edge of Cr1 \ {e} belongs to Q3, one of f1, f2 has both ends in X and

the other has both ends in V (G′) \X; say f1 has both ends in X. Let Z be the set of edges of G′

with both ends in X. Thus (F1∩Z)∪ (F2 \Z) is a perfect matching, since e ∈ F1∩F2, and no other

edge of δG′(X) belongs to F1∪F2; and similarly (F2∩Z)∪(F1 \Z) is a perfect matching. Call them

F ′1, F
′
2 respectively. Then F ′1, F

′
2, F3, F4, . . . , F8 form an 8-edge-colouring of (G′,m′), yet f1, f2 are

the only edges of D1 ∪D2 included in F ′1 ∪ F ′2, and neither of them is in F ′2, contrary to (1). Thus

there are no three such values of i; and similarly there are at most two such that |Fi ∩ D2| = 1

and Fi ∩D1 = ∅. Thus there are at least three values of i ∈ I such that |Fi ∩D1|+ |Fi ∩D2| ≥ 2

(counting i = 8), and so |D1| + |D2| ≥ 10. But |D1| ≤ 6 by hypothesis and |D2| ≤ 3 since r2 is

small, a contradiction. This proves Lemma 4.6.8.

Lemma 4.6.9. No minimum 8-counterexample contains Conf(15) or Conf(16).

Proof. To handle both at once, we assume that (G,m) is an 8-target with a region r, and uv ∈

E(Cr), and uvw is another region, satisfying:

• either (G,m) is a minimum 8-counterexample, or m(uv) = 0 and deleting uv gives a minimum

8-counterexample

• m(uv) +m+(uw) ≥ 4

• every edge of Cr not incident with u is 3-heavy

• let tu be the second edge of Cr incident with u; then the path t-u-w-v is switchable.

Note that while Conf(16) fits these conditions, some instances of Conf(15) may not, and we will

handle them later. Let (G′,m′) be obtained by switching on the path t-u-w-v, and let F1, . . . , F8 be

an 8-edge-colouring of it. Let k = m(uw) +m(uv) + 2 ≥ 5; then we may assume that F1, . . . , Fk−1

contain one of uw, uv, and tv ∈ Fk. Let I = {1, . . . , 8} if tv ∈ E(G), and I = {1, . . . , 8} \ {k}

otherwise. For each i ∈ I let Qi be as in Lemma 4.6.1. Thus each Qi contains all of uw, uv, tv, and

so no edge of Qi \ {uw, uv, tv} belongs to Fj for any j 6= i with j ≤ k.
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(1) k = 5.

For suppose that k ≥ 6. Choose i ∈ I ∩ {7, 8}. Since Qi contains uv, uw, tv, it follows that

F1, . . . , F6 all contain an edge in {uv, uw, tv} ∩Qi; and hence no edge of Qi \ {uv, uw, tv} belongs

to any of F1, . . . , F6. Choose an edge f of Cr \ {u, v} with f ∈ Qi. Now f 6= tu by the choice of

switchable path, and so f is 3-heavy (with respect to (G,m)), and if f = tv then m′(f) > m(f).

Consequently there are three values of j ∈ {1, . . . , 8} \ {k} such that Fj ∩ Qi contains an edge

different from uv, uw, and hence some such j belongs to {1, . . . , 5}, a contradiction. This proves

(1).

Let r1 be the second region for uw, and let D1 be the set of doors for r1. From (1) it follows

that r1 is small, and so |D1| ≤ 3.

(2) For i = 6, 7, 8, |Fi ∩ D1| = 1; and the edges of F6 and F8 in Q7 have a common end (they

may be the same).

For let i ∈ {6, 7, 8}; then i ∈ I. Let the edges of Qi be e1, . . . , en, e1 in order, where e1 = uw,

e2 = uv and e3 = tv. Then n ≥ 7, since |Fi∩Qi| ≥ 5. Let h = 3 if tv ∈ E(G), and h = 4 otherwise.

Then eh is an edge of Cr not incident with u, and so it is 3-heavy; and hence either m(eh) ≥ 3, or

the second region for eh is a triangle and eh+1 is an edge of it, and m(eh)+m(eh+1) ≥ 3. Moreover,

if eh = tv then m′(eh) > m(eh). Thus in all cases it follows that there are three values of j 6= 5

with 1 ≤ j ≤ 8 such that Fj ∩Qi contains one of eh, eh+1. We deduce that these three values of j

are 6, 7, 8, since Fj ∩Qi ⊆ {uv, uw} for 1 ≤ j ≤ 4. Consequently for 1 ≤ j ≤ 8, Fj ∩Qi includes one

of e1, e2, e3, e4, e5. It follows that only Fi contains en, en−1, and consequently en ∈ Fi ∩D1. Since

|D1| ≤ 3, this proves the first assertion of (2). The second follows since, taking i = 7 and defining

eh as before, F6 and F8 each contain one of eh, eh+1, and these edges have a common end. This

proves (2).

Let Fi ∩D1 = {fi} for i = 6, 7, 8. Thus f6, f7, f8 are distinct, and we may assume that f6, f7, f8

are in order in the path Cr1 \ {uw}. Choose X ⊆ V (G) with δG′(X) = Q7. Let H be the subgraph
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of G′ with vertex set V (G) and edge set (F6 \ F8)∪ (F8 \ F6). Thus each component of H is either

a single vertex or a cycle of even length. Now there are either no edges, or two edges, of H that

belong to δG′(X); and if there are two then they have a common end by (2). It follows that the

component of H, say C, that contains f6 does not contain f8. Let F ′6 = (F8∩E(C))∪(F6\E(C)) and

F ′8 = (F6∩E(C))∪(F8\E(C)); then F ′6, F
′
8 are perfect matchings of G′, and F1, . . . , F5, F

′
6, F7, F

′
8 is

an 8-edge-colouring of (G,m′). On the other hand both f6, f8 belong to F ′8, so this 8-edge-colouring

does not satisfy (2), a contradiction.

This completes the argument for Conf(16), and also for Conf(15) when (with notation as in the

definition of Conf(15)) the two edges of Cr consecutive with e both have multiplicity at most m(e)

(to see this, let u-w-v be a subpath of Cr where e = uw, and add a new edge uv with multiplicty

zero). Now we handle the remaining case of Conf(15); we assume that

• (G,m) is a minimum 8-counterexample

• r is a region of length at least four, and e is an edge of Cr

• m+(e) ≥ 4, and every edge of Cr disjoint from e is 3-heavy

• one of the edges of Cr incident with e has multiplicity more than m(e).

Let Cr have vertices v1, . . . , vp in order, where p ≥ 4, e = v1v2, and m(v2v3) > m(e). It follows

that m(v1v2) = 3 and m(v2v3) = 4. From Lemma 4.5.5, we do not have Conf(4) so p ≥ 5. The path

v1-v2-v3-v4 is switchable; let (G,m′) be obtained by switching on it. We may assume that v2v3 ∈ Fi

for 1 ≤ i ≤ 5 and v1v4 ∈ F6. Since m′(v1v2) = 2 and v1v2 meets both v2v3 and v1v4, it follows

that v1v2 ∈ F7, F8. Consequently vpv1 ∈ Fh for some h with 1 ≤ h ≤ 5. Let I = {1, . . . , 8} \ {6}.

For each i ∈ I let Qi be as in Lemma 4.6.1. Now Q7 contains v2v3, v1v4, and so for 1 ≤ j ≤ 6,

Fj ∩Q7 ⊆ {v2v3, v1v4}. In particular vpv1 /∈ Q7. But Q7 contains an edge f of Cr, different from

v1v2, and this edge is 3-heavy, since it is different from vpv1 and hence disjoint from e; and so

Fj ∩ Qi \ {v2v3, v1v4} 6= ∅ for three values of j ∈ {1, . . . , 8}, a contradiction. This proves Lemma

4.6.9.

Lemma 4.6.10. No minimum 8-counterexample contains Conf(17) or Conf(18).
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Proof. To handle both at once, we assume that (G,m) is an 8-target with a region r with length

at least four, and uv ∈ E(Cr), and uvw is another region, satisfying:

• either (G,m) is a minimum 8-counterexample, or m(uv) = 0 and deleting uv gives a minimum

8-counterexample

• m(uv) +m+(uw) ≥ 5

• let t, x be the second neighbours of u, v in Cr respectively; if m(uv) = 3 and uv is 5-heavy let

P = Cr \ {u, v}, and otherwise let P = Cr \ {u}; then every edge f of P satisfies m+(f) ≥ 2,

and at most one edge of P is not 3-heavy

• m(tu),m(vw) ≤ m(uw).

The path t-u-w-v is switchable; let (G′,m′) be obtained by switching on it, and let F1, . . . , F8

be an 8-edge-colouring of (G′,m′). Since r has length at least four, tv /∈ E(G). Let k =

m(uw) + (uv) + 2 ≥ 6; we may assume that Fi contains one of uv, uw for 1 ≤ i < k, and Fk

contains tv. Let I = {1, . . . , 8} \ {k}; and for each i ∈ I let Qi be as in Lemma 4.6.1.

(1) There is at most one value of i ∈ I such that Qi∩E(P ) = ∅, and if i is such a value then k = 7

and m(uv) = 3 and m(uw),m(vw) = 2 and uw ∈ Fi.

For suppose that i ∈ I and Qi ∩ E(P ) = ∅. It follows that P = Cr \ {u, v}, and so m(uv) = 3

and uv is 5-heavy. Hence m(uw),m(vw) ≥ 2, and so m(uw),m(vw) = 2 by 4.5.2, and k = 7. Now

for 1 ≤ i ≤ 7, Fi contains one of uw, uv, tv, and since vw meets all of these edges it follows that

vw ∈ F8. But vx belongs to some Fj such that Fj contains none of tv, uv, vw, and so uw ∈ Fj .

Then |Fj ∩Qi| ≥ 2, so j = i and hence uw ∈ Fi. This proves (1).

Let I ′ be the set of i ∈ I such that Qi ∩E(P ) 6= ∅. By (1), |I ′| ≥ 6. Let r1 be the second region

for uw, and let its set of doors be D1. Thus |D1| ≤ 3 if k = 6, since m(uv) +m+(uw) ≥ 5. Let I ′′

be the set of i ∈ I ′ such that the edge in Qi ∩ E(P ) is not 3-heavy.

(2) There is a unique edge f ∈ E(P ) that is not 3-heavy, and it belongs to none of F1, . . . , Fk.
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Moreover, if i ∈ I ′ \ I ′′ then k = 6 and i ≤ 5 and Fi ∩Qi ∩D1 6= ∅.

Suppose that i ∈ I ′ \ I ′′. There are therefore three values of j ∈ {1, . . . , 8} such that Fj ∩ Qi 6⊆

{uw, uv, tv}, and so at least two that are also different from i. Consequently, for those two values

of j, it follows that uw, uv, yv /∈ Fj and hence k = 6 and j ∈ {7, 8}. Thus i ≤ 5. Let the edges of

Qi in order be e1, . . . , en, e1, where e1 = uw, e2 = uv and e3 = tv; then n ≥ 7, since |Fi ∩Qi| ≥ 5.

But F1, . . . , F8 each contain one of e1, . . . , e5, so

en ∈ Fi∩Qi∩D1. This proves the second assertion of (2). For the first assertion, since |D1| ≤ 3,

it follows that |I ′ \ I ′′| ≤ 3. Since |I ′| ≥ 6, it follows that |I ′′| ≥ 3. But by hypothesis, there is at

most one edge in P that is not 3-heavy, and so this edge exists, say f . It follows that f ∈ Qi, for

all i ∈ I ′′. Now let j ∈ {1, . . . , k}. Choose i ∈ I ′′ with i 6= j; then Fj ∩ Qi ⊆ {uw, uv, tv}, and so

Fj does not contain f . This proves (2).

By (2) we may assume that f ∈ Fk+1. Let r2 be the second region at f , and let D2 be its set

of doors. By hypothesis, if m(f) = 1 then |D2| ≤ 3.

Suppose that k ≥ 7. By (2), I ′′ = I ′ and m(f) = 1. Let i ∈ I ′, and let the edges of Qi in order

be e1, . . . , en, where e1 = uw, e2 = uv, e3 = tv, and e4 = f . Since only one of e1, . . . , e4 belongs

to Fi, and |Fi ∩ Qi| ≥ 5, it follows that n ≥ 8. But F1, . . . , F8 each contain one of e1, . . . , e4, and

so e5, . . . , en only belong to Fi; and hence e5 ∈ Fi ∩ Qi ∩ D2. Consequently |D2| ≥ |I ′| ≥ 6, a

contradiction.

This proves that k = 6, and hence |D1| ≤ 3, and I ′ = I by (1), and 7, 8 ∈ I ′′ by (2). Now let

i ∈ I ′′. Let the edges of Qi in order be e1, . . . , en, e1, where e1 = uw, e2 = uv, e3 = tv, and e4 = f .

Again n ≥ 8.

Suppose that m(f) ≥ 2; then m(f) = 2 by (2), and f ∈ F7, F8, and so F1, . . . , F8 each contain

one of e1, . . . , e4, and therefore e5, . . . , en belong to no Fj with j 6= i. Since n ≥ 8, it follows that

en ∈ D1, and so Fi ∩ Qi ∩D1 6= ∅. By (2), it follows that Fi ∩ Qi ∩D1 6= ∅ for all i ∈ I ′, and so

|D1| ≥ |I ′| = 7, a contradiction. Thus m(f) = 1, and so |D2| ≤ 3.

Again, let i ∈ I ′′, and let e1, . . . , en, e1 be as before. Now F1, . . . , F7 each contain one of

e1, . . . , e4, and so e5, . . . , en belong to no Fj with 1 ≤ j ≤ 7 and j 6= i, and only one of them belongs

to F8 if i 6= 8. We assume first that i 6= 8. Since n ≥ 8, either e5, e6 /∈ F8, or en, en−1 /∈ F8, and so
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either e5 ∈ D2 or en ∈ D1. Now we assume i = 8. Then e5, . . . , en belong to no Fj with 1 ≤ j ≤ 7,

and so e5 ∈ D2 and en ∈ D1.

In summary, we have shown that for each i ∈ I ′′, either Fi ∩ D1 6= ∅, or Fi ∩ D2 6= ∅ (both

if i = 8); and 8 ∈ I ′′. By (2), if i ∈ I ′ \ I ′′ then either Fi ∩ D1 6= ∅, or Fi ∩ D2 6= ∅; and so

|D1|+ |D2| ≥ |I ′|+ 1 ≥ 7, a contradiction. This proves Lemma 4.6.10.

Lemma 4.6.11. No minimum 8-counterexample contains Conf(19).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that r is a region with length at

least five, and e is an edge of Cr, such that m+(e) ≥ 5, and every edge of Cr disjoint from e is

2-heavy, and at most two of them are not 3-heavy. By Lemma 4.6.10, we do not have Conf(17), so

there are at least two edges in Cr disjoint from e that are not 3-heavy, and so by hypothesis, there

are exactly two, say g1, g2. Thus m(g1),m(g2) ≤ 2. By hypothesis, g1, g2 are 2-heavy.

Let e = uv, and let the second neighbours of u, v in Cr be t, w respectively. Since m(e) ≥ 4, it

follows that m(tu),m(vw) ≤ m(uv) and so the path t-u-v-w is switchable. Let (G′,m′) be obtained

by switching on this path, and let F1, . . . , F8 be an 8-edge-colouring of it. Let k = m(e) + 2. We

may assume that tw ∈ Fk. Let I = {1, . . . , 8}\{k}, and for each i ∈ I let Qi be as in Lemma 4.6.1.

Let I1, I2, I3 be the sets of i ∈ I such that g1 ∈ Qi, g2 ∈ Qi, and g1, g2 /∈ Qi respectively.

(1) k = 6.

For suppose that k > 6. Let i ∈ I, and let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv

and e2 = tw. Thus e3 is an edge of Cr disjoint from e. Since |Fi ∩Qi| ≥ 5 and |Fi ∩{e1, e2}| ≤ 1, it

follows that n ≥ 6. Now there are k ≥ 7 values of j ∈ {1, . . . , 8} such that Fj contains one of e1, e2;

and so there is at most value of j 6= i such that Fj contains one of e3, e4. It follows that e3 is not

3-heavy and so i ∈ I1 ∪ I2. Since this holds for all i ∈ I, we may assume that |I1| ≥ 4. Let i ∈ I1;

as before, there is at most one value of j 6= i such that Fj contains one of e3, e4. Now m(g1) ≤ 2. If

m(g1) = 2, then g1 ∈ Fi, and since this holds for all i ∈ I1 it follows that g1 is contained in Fi for

four different values of i, a contradiction. Thus m(g1) = 1. Since g1 is 2-heavy, the second region

for g1 is a triangle with edge set {g1, p, q} say, where e4 = p. Hence one of g1, pq has multiplicity

one and is contained in Fi. Since this holds for all i ∈ I1 and |I1| ≥ 4, this is impossible. This
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proves (1).

We may therefore assume that uv ∈ Fi for 1 ≤ i ≤ 5 and tw ∈ F6. Since k = 6, it follows that

m(e) = 4 and since m+(e) ≥ 5, the second region r1 for uv is small. Let D1 be its set of doors.

(2) If i ∈ I3 then i ≤ 5 and Fi ∩Qi ∩D1 6= ∅.

For let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv and e2 = tw. Then F1, . . . , F6 each

contain an edge in {e1, e2}, and so for 1 ≤ j ≤ 6 with j 6= i, none of e3, . . . , en belongs to Fj . Now

e3 is 3-heavy, and so there are three values of j such that Fj contains one of e3, e4; and so these

three values are i, 7, 8, and i 6= 7, 8. (Thus i ≤ 5 since 6 /∈ I.) Hence for 1 ≤ j ≤ 8, Fj contains one

of e1, . . . , e4; and so en, en−1 belong only to Fi. Hence en ∈ D1. This proves (2).

For h = 1, 2, let I ′h be the set of all i ∈ Ih such that Fi ∩Qi ∩D1 = ∅.

(3) For h = 1, 2, |I ′h| ≤ 2, and 7, 8 /∈ I ′h, and if |I ′h| = 2 then 7, 8 /∈ Ih.

For let h = 1 say. Suppose first that m(g1) = 2, and let g1 ∈ Fa, Fb where 1 ≤ a < b ≤ 8.

Let i ∈ I ′1, and let e1, . . . , en be as before; then e3 = g1. Again, for 1 ≤ j ≤ 6 with j 6= i, none

of e3, . . . , en belongs to Fj , and consequently a, b ∈ {i, 7, 8}. In particular, b ≥ 7, and a ∈ {i, 7}.

Thus if a ≤ 6 then i = a and so |I ′1| = 1 and the claim holds. We assume then that (a, b) = (7, 8).

But then F1, . . . , F8 each contain one of e1, e2, e3, and so en ∈ D1, contradicting that i ∈ I ′1. So the

claim holds if m(g1) = 2.

Next we assume that m(g1) = 1. Since g1 is 2-heavy, the second region at g1 is a triangle with

edge set {g1, p, q} say. Let g1 ∈ Fa. Let i ∈ I ′1, and let e1, . . . , en be as before; then e3 = g1. Again,

for 1 ≤ j ≤ 6 with j 6= i, none of e3, . . . , en belong to Fj , and consequently a ∈ {i, 7, 8}. Thus if

a 6= 7, 8 then i = a and |I ′1| = 1 and the claim holds. We assume then that a = 7. Thus each of

F1, . . . , F7 contains one of e1, e2, e3, and for 1 ≤ j ≤ 7 with j 6= i, Fj contains none of e4, . . . , en.

Since Fi ∩Qi ∩D1 = ∅, there exists j ∈ {1, . . . , 8} with j 6= i such that Fj contains one of en, en−1;

and hence j = 8, and so i 6= 8. (Also, i 6= 7 since g1 ∈ F7 and g1 meets e4. Consequently,

7, 8 /∈ I ′1.) Thus F1, . . . , F8 each contain one of e1, e2, e3, en−1, en, and so e4 is only contained in
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Fi. Consequently, i has the property that one of p, q has multiplicity one, and Fi contains it. Thus

there are at most two such values of i, and so |I ′1| ≤ 2. Moreover, if there are two such values, say

c, d, then c, d ≤ 5 and Fc contains one of p, q and Fd contains the other. Consequently if 7 ∈ I1,

then one of Fc, Fd contains two edges of Q7, a contradiction. So if |I ′1| = 2 then 7, 8 /∈ I1. This

proves (3).

From (2), we may assume that 7 ∈ I1, and so |I ′1|+ |I ′2| ≤ 3 by (3). Consequently there are at

least four values of i ∈ I such that Fi ∩Qi ∩D1 6= ∅, and so |D1| ≥ 4, a contradiction. This proves

Lemma 4.6.11.

This completes the proof of Theorem 4.5.1 and hence of Theorem 4.1.2. Perhaps despite ap-

pearances, there was some system to our choice of the β- and γ-rules. We started with the idea

that we would normally pass a charge of one from each small region to each big region sharing an

edge with it, and made the minimum modifications we could to the β-rules so that the proof of

Lemma 4.4.4 worked. Then we experimented with the γ-rules to make Lemmas 4.4.5, 4.4.6, and

4.4.7 work out.

It is to be hoped that solving these special cases of the main conjecture 4.1.1 will lead us to a

proof of the general case, but that seems far away at the moment. The same approach does indeed

work (more simply) for seven-regular planar graphs, and this gives an alternative proof of the result

of [32], to appear in [19]. We tried the same again for nine-regular graphs, but there appeared to

be some serious difficulties. Maybe more perseverance will bring it through, but it seems much

harder than the eight-regular case.
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Chapter 5

Fractionally colouring graphs without

large cliques

5.1 Introduction

In this chapter, we give some upper bounds for the fractional chromatic number of graphs which

don’t contain large cliques. We consider only simple, undirected graphs and work completely within

the rational numbers. This work is joint with Andrew King and has been published in [35] and

[34].

The idea of bounding the chromatic number χ based on the clique number ω and maximum

degree ∆ goes all the way back to Brooks’ Theorem.

Theorem 5.1.1 (Brooks’ Theorem [9]). Let G be a graph with maximum degree ∆ ≥ 3. If ω(G) ≤

∆ then χ(G) ≤ ∆.

In other words, when ∆ ≥ 3, as long as G 6= K∆+1 its chromatic number is at most ∆. More

recently, Borodin and Kostochka conjectured that if ∆ ≥ 9, then a similar statement holds for

K∆-free graphs.

Conjecture 5.1.2 (Borodin, Kostochka [7]). Let G be a graph with ∆ ≥ 9. If ω(G) ≤ ∆− 1 then

χ(G) ≤ ∆− 1.

The example of C5 � K3 (see Figure 5.2) tells us that the condition that ∆ ≥ 9 cannot be

improved. Conjecture 5.1.2 remains open, but has seen some progress. Kostochka showed that
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Figure 5.1: C2
8 (left) and C5 �K2 (right).

every K∆−28-free graph satisfies χ < ∆ [60] and subsequently Mozhan showed that every K∆−3-

free graph with ∆ ≥ 31 satisfies χ < ∆ [66]. Later Reed [68] proved a weakening of Conjecture

5.1.2 that had been conjectured independently by Beutelspacher and Hering [5]:

Theorem 5.1.3 (Reed [68]). For graphs with ∆ ≥ 1014, if ω ≤ ∆− 1 then χ ≤ ∆− 1.

In the paper, Reed claims that a more careful analysis could replace 1014 with 103.

This is the state of the art on the chromatic number of K∆-free graphs, but what about the

fractional chromatic number χf (we will define it soon) of K∆-free graphs? Albertson, Bollobás,

and Tucker noted in the 1970s that even when ∆ ≥ 3, there are at least two K∆-free graphs with

χf = ∆, namely C2
8 and C5 � K2 [2] (see Figure 5.1). It turns out that these are the only such

graphs. For ∆ ≥ 3 we define f(∆) as:

f(∆) = min
G

{
∆− χf (G) | ∆(G) ≤ ∆; ω(G) < ∆; G /∈ {C2

8 , C5 �K2}
}
.

From Brooks’ Theorem we know that f(∆) is always nonnegative. Considering Theorem 5.1.3,

one may be inclined to believe that f(∆) increases with ∆. As proven by King, Lu, and Peng,

this is indeed the case for ∆ ≥ 4 [59]. 1 In Table 5.1 we show the known and conjectured bounds

for various values of ∆. Figure 5.2 shows graphs demonstrating the best known (and conjectured)

upper bounds on f(∆) for 3 ≤ ∆ ≤ 8.

When ∆ = 3 a best-possible bound is known. Evidently from the definition of the fractional

chromatic number, a graph on n vertices with χf = k must contain a stable set of size at least n
k .

Heckman and Thomas proved in 2001 that every triangle-free graph with ∆ ≤ 3 contains a stable

set of size at least 5n
14 [48]. In the same paper, they conjectured that every such graph has fractional

chromatic number at most 14
5 . In other words, they asked whether f(3) = 1

5 . The graph P (7, 2)

1For ∆ ≥ 6, this is a consequence of the fact that when ω > 2
3
(∆ + 1), there is a stable set hitting every maximum

clique [58]. For ∆ ∈ {4, 5} more work is required.
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f(∆) f(∆) conjectured
∆ lower bounds upper bound value

3 3/64 0.0468 [47]
3 3/43 0.0697 [63]
3 1/11 0.0909 [42]
3 2/15 0.1333 [62]
3 1/5 0.2 [29] 1/5 P (7, 2) [41] 1/5 [48]

4 2/67 0.0298 [59] 1/3 C2
11 1/3 [59]

5 2/67 0.0298 [59] 1/3 C7 �K2 1/3 [59]
6 1/22.5 0.0445 1/2 (C5 �K3)− 4v 1/2
7 1/11.2 0.0899 1/2 (C5 �K3)− 2v 1/2
8 1/8.9 0.1135 1/2 C5 �K3 [10] 1/2
9 1/7.7 0.1307 1 K8 1 [7]
10 1/7.1 0.1423 1 K9 1 [7]

1000 1 1 [68] 1 K999 1 [5]

Table 5.1: The state of the art. New results and conjectures are in boldface. For ∆ ≤ 5, the
fractional bound is the proven bound. For ∆ ≥ 6, the decimal bound approximates the proven
bound, and the fractional expression approximates the decimal bound for ease of comparison.

(see Figure 5.2) shows that their result and conjecture are tight. The conjecture received a fair bit

of attention; a succession of bounds were given by various authors before it was proved by Dvořák,

Sereni and Volec in 2013 (see Table 5.1).

Figure 5.2: From left to right, the graphs P (7, 2), C2
11, C7 �K2, (C5 �K3)− 4v, (C5 �K3)− 2v,

and C5 �K3.

In this chapter we give improved bounds on f(∆) for ∆ ≥ 6 up until whenever Theorem 5.1.3

takes effect, which we assume to be ∆ = 1000. We also conjecture that the upper bound of

f(∆) ≤ 1
2 is tight for ∆ ∈ {6, 7, 8}:

Conjecture 5.1.4. For ∆ ∈ {6, 7, 8}, let G be a graph with maximum degree ∆ and clique number

at most ∆− 1. Then the fractional chromatic number of G is at most ∆− 1
2 .

One of the major questions in this area, as is evident from Table 5.1, is the following:

Conjecture 5.1.5. For ∆ ≥ 3, f(∆) ≤ f(∆ + 1).
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Conjecture 5.1.4 and the conjecture of King, Lu and Peng [59] imply the following bounds on

the stability number which may be easier to prove.

Conjecture 5.1.6. For ∆ ∈ {4, 5}, let G be a graph on n vertices with maximum degree ∆ and

ω(G) ≤ ∆−1. If G is not isomorphic to C2
8 or C5�K2, then G has a stable set of size at least n

∆−1
3

.

Conjecture 5.1.7. For ∆ ∈ {6, 7, 8}, let G be a graph on n vertices with maximum degree ∆ and

ω(G) ≤ ∆− 1. Then G has a stable set of size at least n

∆−1
2

.

To our knowledge, the analogous consequence of Conjecture 5.1.2 is not known either.

The rest of the chapter is organized as follows. In Sections 5.2 and 5.2.1 we give the necessary

definitions and some results about fractional colourings. In Section 5.3 we give an overview of

our approach which consists of characterizing a minimum counterexample, and constructing a

fractional colouring of the supposed minimum counterexample. Sections 5.4 to 5.6 are dedicated

to the colouring argument, and the structural reductions are found in Section 5.7. Finally, in

Section 5.8, we provide a different upper bound on the fractional chromatic number: a ‘superlocal’

strengthening of the fractional relaxation of Reed’s conjecture (more details about this in Section

5.2.1).

5.2 Fractionally colouring weighted and unweighted graphs

We must consider fractional colourings of both vertex-weighted and unweighted graphs, because

we will begin to fractionally colour an unweighted graph G in one way that does very well on

particularly tricky vertices, then finish the colouring in another way that does fairly well on all

vertices. The second step requires a weighted generalization of a known result; the weight on a

vertex reflects how much colour we have yet to assign to the vertex.

Let G = (V,E) be a graph, let S = S(G) be the set of stable sets of G, and let k be a nonnegative

rational. Now let κ : S → P([0, k)) be a function assigning each stable set S of G a subset of [0, k)

such that for every S ∈ S, κ(S) is the union of disjoint half-open intervals2 with rational endpoints

between 0 and k, and for any distinct S, S′ in S, κ(S) ∩ κ(S′) = ∅. For a set S ′ ⊆ S of stable sets,

define κ(S ′) as ∪S∈S′κ(S). For each v ∈ V , define κ[v] as ∪S3vκ(S). For a set X ⊆ V , define κ[X]

as ∪S∩X 6=∅κ(S) = ∪v∈Xκ[v].

2(containing their lower endpoint but not their upper)
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Now consider a nonnegative vertex weight function w : V → [0,∞); in this case we say that G

is a w-weighted graph. (Recall that w, like all numbers considered in this chapter, is rational.) If for

every vertex v ∈ V we have |κ[v]| ≥ w(v), then κ is a fractional ow-colouring of G with weight k; in

other words it is a fractional k ow-colouring of G. The minimum weight of a fractional ow-colouring

G is denoted χwf (G), or simply χwf when the context is clear. If w = 1 (i.e. the weight function

uniformly equal to 1), then we may omit it from the notation, i.e. we define fractional colourings

and the fractional chromatic number of unweighted graphs. If some vertex v has |κ[v]| < w(v), we

say that we have a partial fractional k o w-colouring of G.

In both settings, κ[v] is the colour set assigned to v. We denote the colours available to v (i.e.

not appearing on the neighbourhood of v) by α(v), that is, α(v) = [0, k) \ κ[N(v)].

This is just one of several ways to think about fractional colourings; we hold the following

proposition to be self-evident3:

Proposition 5.2.1. Let G be a w-weighted graph. The following are equivalent:

(1) G has a fractional k o w-colouring.

(2) There is an integer c and a multiset of ck stable sets of G such that every vertex v is contained

in at least c · w(v) of them.

(3) There is a probability distribution on S such that for each v ∈ V , given a stable set S drawn

from the distribution, Pr(v ∈ S) ≥ w(v)/k.

For more background on fractional colourings we refer the reader to [78]. At this point it is

convenient to prove a useful consequence of Hall’s Theorem that we will use repeatedly in Section

5.7:

Lemma 5.2.2. Let κ be a partial fractional k o w-colouring of G, and let X be the set of vertices

v with |κ[v]| < w(v). Suppose for every X ′ ⊆ X we have

∣∣∣∣∣ ⋃
v∈X′

α(v)

∣∣∣∣∣ ≥ ∑
v∈X′

w(v). (5.1)

Then there is a fractional k o w-colouring of G.

3The unweighted version is described as folklore in [42] and was used earlier in [53], and probably elsewhere.
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Proof. We may assume (by uncolouring X) that for every v ∈ X, κ[v] = ∅. Thus we have a

fractional k ow-colouring of G−X. By Proposition 5.2.1 there is an integer c and a multiset of ck

stable sets S1, . . . , Sck of G−X such that every vertex v /∈ X is in at least c · w(v) of them.

We now set up Hall’s Theorem by constructing a bipartite graph H with vertex set A∪B. Let

A consist of, for every v ∈ X, c · w(v) copies of v. Let B consist of vertices b1, . . . bck. For every

vertex a of A, let a be adjacent to bi if and only if the vertex v in X corresponding to a has no

neighbour in Si. Equation (5.1) guarantees that for every A′ ⊆ A, |N(A′)| ≥ |A′|, so by Hall’s

Theorem we have a matching in H saturating A. This matching corresponds to a partial mapping

m : [ck]→ X such that

• for every i ∈ [ck] in the domain of m, Si ∪m(i) is a stable set, and

• for every v ∈ X, at least c · w(v) elements of [ck] map to v.

Thus we can extend the stable sets Si appropriately; by Proposition 5.2.1, this gives the desired

fractional k o w-colouring of G.

We remark that this lemma is most sensibly applied when X is a clique.

5.2.1 Reed’s Conjecture and fractional colourings

Our approach to fractionally colouring K∆-free graphs is inspired by the following result of Reed

([65], §21.3):

Theorem 5.2.3. Every graph G satisfies χf (G) ≤ 1
2(∆(G) + 1 + ω(G)).

This is the fractional relaxation of Reed’s ω, ∆, χ conjecture [69], which proposes that every

graph satisfies χ ≤ d1
2(∆+1+ω)e. However, we do not consider the conjecture, or even the fractional

relaxation, but rather a weighted version of a local strengthening observed by McDiarmid ([65],

p.246). For a vertex v let ω(v) be the size of the largest clique containing v. Then:

Theorem 5.2.4. Every graph G satisfies χf (G) ≤ maxv
1
2(d(v) + 1 + ω(v)).

The proof of this theorem was never published, but appears in Section 2.2 of [57] and is almost

identical to the proof of Theorem 5.2.3. What we need is a new weighted version of this theorem,

which we prove here. First we need some notation. For a vertex v let Ñ(v) denote the closed

neighbourhood of v. Given a w-weighted graph G and a vertex v ∈ V (G), we define:
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• The degree weight wd(v) of v, defined as
∑

u∈Ñ(v)w(u).

• The clique weight wc(v) of v, defined as the maximum over all cliques C containing v of∑
u∈C w(u).

• The Reed weight ρw(v) of v, defined as 1
2(wd(v) +wc(v)) (we sometimes denote ρ1 by ρ). For

a graph G, we define ρw(G) as maxv∈V (G) ρw(v).

Our result is a natural generalization of McDiarmid’s:

Theorem 5.2.5. Every graph G satisfies χwf (G) ≤ ρw(G).

Proof. Let c be a positive integer such that for every v, cw(v) is an integer; c exists since the weights

are rational. Let Gw be the graph constructed from G by replicating each vertex v into a clique Cv

of size cw(v). 4 Applying Theorem 5.2.4 to Gw tells us that there is a fractional cρw(G)-colouring

κw of Gw. From this we construct a cw-fractional cρw(G)-colouring κ of G by setting, for each

v ∈ V (G),

κ[v] = κw[Cv].

The result follows from Proposition 5.2.1 (3).

As an aside, we mention the following strengthening of Theorem 5.2.4 that we proved in [34].

Theorem 5.2.6. Every graph G satisfies χf (G) ≤ maxuv∈E(G)
1
4(d(u) + d(v) + ω(u) + ω(v) + 2)

While McDiarmid’s Theorem says that Theorem 5.2.3 can be strengthened so as to consider

only the possible bounds achieved in the closed neighbourhood of a vertex, Theorem 5.2.6 says

that the bounds can be taken in the closed neighbourhood of an edge. The idea is that a graph

should be easy to colour if no two vertices with high ρ are adjacent. While this strengthening of

Theorem 5.2.4 does not improve the analysis in this chapter, it may be of use in future work. We

provide the proof of Theorem 5.2.6 in Section 5.8.

5.3 The general approach

Fix some ∆ ≥ 6 and 0 < ε ≤ 1
2 , and suppose we wish to prove that f(∆) ≥ ε. Let G be a graph with

maximum degree ∆ and clique number ω ≤ ∆− 1; by Theorem 5.2.3 we know that χf (G) ≤ ∆− 1
2

4That is, x ∈ Cu and y ∈ Cv are adjacent precisely if u, v are adjacent or if u = v and x, y are distinct.
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if ω ≤ ∆− 2, so we assume G has clique number ω = ∆− 1. We define Vω as the set of vertices in

ω-cliques, and V ′ω as the set of vertices in Vω with degree ∆. Let Gω and G′ω denote the subgraphs

of G induced on Vω and V ′ω respectively. Notice that a vertex v will have ρ1(v) > ∆− 1
2 if and only

if v is in V ′ω. In plain language, our approach is:

1. Prove that in a minimum counterexample, Gω has a nice structure.

2. Spend a little bit of weight on a fractional colouring that lowers the Reed weight for vertices

in V ′ω at a rate of (1 + ε′) per weight spent, i.e. we spend y weight and (1 + ε′)y = y + ε. If y

is sufficiently small, this lowers the maximum Reed weight over all vertices of G by y + ε.

3. Having already “won” by ε, i.e. having lowered ρ(G) by y + ε using only y colour weight, we

can finish the colouring using Theorem 5.2.5.

More specifically, we find a vertex weighting w such that we have a fractional y o w-colouring of

G, and such that ρ(1−w)(G) ≤ ∆ − y − ε. We then apply Theorem 5.2.5 to find a fractional

(∆ − y − ε) o (1 − w)-colouring of G. Combining these two partial fractional colourings gives us a

fractional (∆− ε)-colouring of G.

Since any v /∈ V ′ω satisfies ρ1(v) ≤ ∆− 1
2 , if (1 + ε′)y ≤ 1

2 we only need to ensure that ρ drops

by (1 + ε′)y for vertices with ρ1(v) = ∆. Actually we can ensure that while we do this, ρ also drops

at a decent rate (easily at least 1
2y) for vertices with ρ < ∆. This means that we can spend more

weight (i.e. increase y), thereby improving ε. It is in our interests to first worry about maximizing

ε′, then worry about maximizing y.

This method depends heavily on properly understanding the structure of vertices with ρ1(v) =

∆. We simplify this structure through reductions, or if you prefer, the structural characterization

of a minimum counterexample:

Lemma 5.3.1. Fix some ∆ ≥ 5 and some ε ≤ 1
2 , with the further restriction that ε ≤ 1

3 if ∆ = 5.

Let G be a graph with maximum degree ∆ and clique number at most ∆− 1 such that

• if ∆ = 5, no component of G is isomorphic to C5 �K2,

• G has fractional chromatic number greater than ∆− ε, and

• no graph on fewer vertices has these properties.
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Then

(i) the maximum cliques of G are pairwise disjoint, and

(ii) there is no vertex v outside a maximum clique C such that |N(v) ∩ C| > 1.

Together, these properties allow us to apply the following result of Aharoni, Berger, and Ziv

[1]:

Theorem 5.3.2. Let k be a positive integer and let G be a graph whose vertices are partitioned

into cliques of size ω ≥ 2k. If G has maximum degree at most ω + k − 1, then χf (G) = ω.

Applying this theorem to an induced subgraph of Gω is the key to proving that we can lower

ρ quickly for any vertex v with ρ1(v) = ∆. The proof of Lemma 5.3.1 is technical, independent of

the main proof, and does not give insight to our approach, so we defer it to Section 5.7. We now

consider the probability distribution on stable sets that, via Proposition 5.2.1, characterizes our

initial colouring phase.

From now until Section 5.7, we consider G to be a graph with maximum degree ∆ ≥ 6, clique

number ω = ∆− 1, and satisfying properties (i) and (ii) of Lemma 5.3.1. We remark that Lemma

5.3.1 gives a characterization of minimum counterexamples with ∆ = 5; although we do not make

use of the characterization here, it is likely to be useful in the future.

5.4 A probability distribution

For every vertex v of G, let Nω(v) denote N(v)∩Vω and let dω(v) denote |Nω(v)|. The initial phase

of our colouring involves choosing a random stable set Sw of Gw, then extending it randomly to a

stable set S of G such that Sw and S have the following desirable properties:

1. For every v ∈ Vω,

Pr(v ∈ Sω) = 1
ω . (5.2)
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2. For every v /∈ Vω,

Pr(Nω(v) ∩ Sω = ∅) ≥
3∑
i=0

1
4 Pr

(
Bin(dω(v), 4

ω ) ≤ i)
)

(5.3)

=
3∑
i=0

4−i
4 Pr

(
Bin(dω(v), 4

ω ) = i)
)
.

3. For every v /∈ Vω,

Pr(v ∈ S) ≥ Pr(Nω(v) ∩ Sω = ∅)
(d(v)− dω(v)) + 1

≥
∑3

i=0
4−i

4 Pr
(
Bin(dω(v), 4

ω ) = i)
)

(d(v)− dω(v)) + 1
. (5.4)

4. S is maximal.

We will put weight on stable sets according to this distribution until we can no longer guarantee

that ρ is dropping quickly. We discuss this stopping condition in Section 5.5.1.

5.4.1 Choosing Sω

Denote the maximum cliques of G by B1, . . . , B`, bearing in mind that they are vertex-disjoint. To

choose Sω we first select, for each 1 ≤ i ≤ `, a subset B′i of Bi of size 4, uniformly at random and

independently for each i. Setting G̃ω to be the subgraph of G induced on ∪iB′i, note that every

vertex in Bi has at most two neighbours outside Bi and therefore ∆(G̃ω) ≤ 5. Thus Theorem

5.3.2 tells us that G̃ω is fractionally 4-colourable. It follows from Proposition 5.2.1 that there is a

probability distribution on the stable sets of G̃ω such that given a stable set S̃ chosen from this

distribution, for any v ∈ G̃ω, Pr(v ∈ S̃) = 1
4 .

We therefore choose Sω from this distribution, subject to our random choice of G̃ω. Since every

v ∈ Gω satisfies Pr(v ∈ G̃ω) = 4
ω , for any v ∈ Gω we clearly have Pr(v ∈ Sω) = 1

ω , i.e. (5.2)

holds. We must now prove that (5.3) holds (the reader may have noticed that any old fractional

ω-colouring of Gω would have given us Sω satisfying (5.2)).

The first step is to observe that for v /∈ Gω and 0 ≤ i ≤ 3,

Pr
(

(Nω(v) ∩ Sω = ∅) | (|Nω(v) ∩ G̃ω| = i)
)
≥ 4− i

4
. (5.5)
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This is because every neighbour of v in G̃ω is in Sw with probability 1
4 , and in the worst case these

events may be disjoint for all i such neighbours (we later conjecture that it is possible to avoid this

worst case; this would improve our bounds substantially for ∆ ∈ {5, 6}).

The second step is to observe that for v /∈ Gω and 0 ≤ i ≤ dω(v),

Pr
(
|Nω(v) ∩ G̃ω| = i

)
= Pr

(
Bin(dω(v), 4

ω ) = i)
)
. (5.6)

To see this, note that Lemma 5.3.1 tells us that any two neighbours x, y ∈ Gω of v are in different

blocks Bi, and therefore the events of x being in G̃ω and y being in G̃ω are independent. Equation

(5.3) follows immediately from Equations (5.5) and (5.6).

5.4.2 Choosing S

Given a choice of Sω, we randomly extend to S as follows:

1. Choose an ordering π of V (G) \ Vω uniformly at random, and label the vertices of V (G) \ Vω

as v1, . . . , vr in the order in which they appear in π.

2. Set S = Sω.

3. For each of i = 1, . . . , r in order, put vi in S if and only if it currently has no neighbour in S.

Since every vertex in Vω is in Sω or has a neighbour in Sω, and every vertex not in Vω is in S

or has a neighbour in S, we can see that S is always a maximal stable set. A vertex vi ∈ V (G) \Vω

is in S if it has no neighbours in Sω, and it is not adjacent to any vj ∈ V (G) \ Vω for j < i. Since

we choose π uniformly at random, any vertex v ∈ V (G) \ Vω satisfies

Pr ((v ∈ S) | (Nω(v) ∩ Sω = ∅)) ≥ 1

|N(v) \ Vω|+ 1
. (5.7)

Equation (5.4) follows immediately from Equation (5.7).
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5.4.3 Bounding the rate at which ρ initially decreases

Suppose we spend weight y to colour G according to the probability distribution on S that we just

described. That is, for S′ ∈ S(G), we place weight q(S′) on S′, where

q(S′) = y · Pr(S = S′).

Then we wish to argue that ρ(G) drops by (1 + ε′)y for some positive ε′. For now, to avoid

consideration of stopping conditions5, suppose that y is very small (y = 1
10 will do for now).

For a fixed ∆ and 0 ≤ d ≤ ∆ we define p(∆, d) as

p(∆, d) =

∑3
i=0

1
4 Pr

(
Bin(d, 4

ω ) ≤ i)
)

(∆− d) + 1
, (5.8)

noting that a vertex v /∈ Gω with dω(v) = d is in S with probability at least p(∆, d). Following

this, we define

µk(∆) = min
0≤d≤k

p(∆, d) and µ(∆) = µ∆(∆) = min
0≤d≤∆

p(∆, d),

noting that any vertex v /∈ Gω is in S with probability at least µ(∆).

Lemma 5.4.1. For every vertex v ∈ V (G), Pr(v ∈ S) ≥ µ(∆).

Proof. To see this we only need to prove that v ∈ Gω is in S with probability at least µ(∆). This

is clearly the case since v is in S with probability 1
ω >

1
∆+1 = p(∆, 0) ≥ µ(∆).

We now set ε′ to be µ(∆). Table 5.2 gives some computed values of µ(∆), and Figure 5.3 shows

some values of p(∆, d). (We will define and consider ỹ(∆) in the next section.) These numbers

were computed using Sage; the code is available at [31].

Lemma 5.4.2. For any vertex v in V ′ω, E(|S ∩ Ñ(v)|) ≥ 1 + 2ε′.

Proof. Since v is in some Bi and has degree ∆ = 1 + ω, v has exactly two neighbours outside Bi.

Each is in S with probability at least ε′, and S contains a vertex in Bi with probability 1. Therefore

the lemma follows from linearity of expectation.

5i.e. when y is large enough to make our model fail
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∆ µ(∆) µ(∆)(∆ + 1) d for which µ(∆) = p(∆, d) ỹ(∆) ỹ(∆)µ(∆)

6 .029376 .205 6 1.518 0.04459
7 .054869 .439 6 1.640 0.08999
8 .062947 .567 7 1.804 0.11353
9 .066406 .664 7 1.969 0.13077
10 .066328 .730 8 2.146 0.14234
100 .009843 .994 29 20.003 0.19691
1000 .000998 .999 135 199.979 0.19973

Table 5.2: Some values of µ(∆), where they are achieved, and corresponding values of ỹ, which
we discuss later. Note that p(∆, 0) = 1/(∆ + 1) is an upper bound for µ(∆). These values are
calculated in [31].
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Figure 5.3: Values of d versus p(∆, d) for ∆ ∈ {6, 7, 10, 50}.

Let v be a vertex in V ′ω ∩ Bi. Since E(|S ∩ Bi|) = 1, and Bi is the unique maximum clique

containing v, we know that at the outset, when we spend weight y, ρ(v) will drop by 1
2(1+1+2ε′)y =

(1 + ε′)y.

For k ≤ ω, let Vk be the set of vertices in a clique of size k but not a clique of size k+ 1, noting

that these vertex sets partition V (G). We note the following.

Lemma 5.4.3. If 4 ≤ k ≤ ω − 1 and v is a vertex in Vk, then v has at most ∆ + 1− k neighbours

in Vω.

Proof. It suffices to prove that if X is a k-clique containing v, then X does not intersect an ω-

clique. Suppose it does intersect some Bi, and note that it may only intersect Bi once by Lemma

5.3.1. Since any vertex in Bi has at most two neighbours outside Bi, |X| must be at most 3, a

contradiction.

Corollary 5.4.4. If v ∈ Vk for some 4 ≤ k ≤ ω − 1, then Pr(v ∈ S) ≥ µ∆+1−k(∆).
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5.5 The initial colouring

The probability distribution described in the previous section tells us what to do in the initial

colouring phase: we choose colour classes according to the distribution. The only thing we need to

worry about is giving a vertex more than colour weight 1. To avoid this, when a vertex is full we

simply delete it and continue as though it never existed. This is the same approach taken in the

proof of Theorems 5.2.3 and 5.2.4. Vertices in Vω will never be full before the end of our process.

Lemma 5.5.1. For any y ∈ [0, ω] there exists a vertex weighting w and a fractional y ow-colouring

of G such that w satisfies the following conditions:

(a) Every vertex v in Vω has w(v) = y/ω.

(b) For 0 ≤ ` ≤ ∆, every vertex v /∈ Vω with exactly ` neighbours in Vω has w(v) ≥ min{p(∆, `)y, 1}.

(c) For 1 ≤ k < ω, every clique X of size k has w(X) ≥ kmin{µ(∆)y, 1}.

(d) For 4 ≤ k < ω, every clique X of size k has w(X) ≥ kmin{µ∆+1−k(∆)y, 1}.

(e) Every vertex v with w(v) < 1 has w(Ñ(v)) ≥ y.

Note that µ(∆)y and µ∆+1−k(∆)y are less than 1.

Proof. We proceed using the following algorithm.

Initially, set H0 = G, set leftover0 = y, and set capacity0(v) = 1 for every vertex in H0. For

i = 0, 1, . . . do the following.

1. Let Ri be a random stable set drawn from the distribution giving S described in Section 5.4.

For every vertex v we set probi(v) as Pr(v ∈ Ri).

2. Set y′i to be minv∈V (Hi)(capacity i(v)/probi(v)), and set yi to be min{leftoveri, y
′
i}.

3. For every v ∈ V (Hi), set wi(v) to be probi(v)yi.

4. For every v ∈ V (Hi), set capacity i+1(v) to be capacity i(v)− wi(v).

5. Set leftoveri+1 to be leftoveri − yi.

92



6. If leftoveri+1 = 0, we terminate the process. Otherwise, let Ui be the vertex set {v ∈ V (Hi) |

capacity i+1(v) = 0}, and set Hi+1 to be Hi − Ui.

Let ν denote the value of i for which leftoveri+1 = 0. For every vertex v, let w(v) =
∑ν

i=0wi(v).

Observe that y =
∑ν

i=0 yi.

We first prove that this process must terminate. Our choice of each yi implies that either

leftoveri+1 = 0, or |Ui+1| < |Ui|. Thus we terminate after at most |V (G)| iterations. Now observe

that every vertex v ∈ Gω has probi(v) = 1/ω throughout the process, and therefore capacityν(v) > 0

since leftover0 = y ≤ ω (this can easily be proved by induction on i). Note that (a) also follows

from this observation. As a further consequence, we can see that Gω is a subgraph of every Hi.

We claim that we actually have a collection of fractional yi o wi-colourings for 0 ≤ i ≤ ν. To

see this we simply appeal to Proposition 5.2.1 (3), noting that Pr(v ∈ Ri) = wi(v)/yi. Since

w =
∑ν

i=1wi and y =
∑ν

i=0 yi, it follows immediately that these colourings together give us a

fractional y o w-colouring of G.

To prove (b), we take v /∈ Vω with ` neighbours in Vω, and assume that w(v) < 1, otherwise we

are done. Since every Hi contains Gω, we can see that

Pr(v ∈ Ri) ≥
∑3

i=0
4−i

4 Pr
(
Bin(dω(v), 4

ω ) = i)
)

|N(v) ∩ V (Hi)| − dω(v) + 1
≥ p(∆, `). (5.9)

Consequently probi(v) ≥ p(∆, `) for all i, and (b) follows. Note that (c) follows immediately from

(b). Similarly, (d) follows from (b) and Lemma 5.4.3.

To see that (e) holds, simply note that Ri is always a maximal stable set in Hi. Therefore if

w(v) < 1, then capacityν(v) > 0, thus v ∈ Hi for every i, meaning that Ri intersects Ñ(v) with

probability 1.

5.5.1 Maximizing the expenditure

Here we consider the best possible choice of y in Lemma 5.5.1. The optimal value of y will be the

largest possible such that the upper bound on ρ1−w(G) is still achieved by some vertex in Gω. If

we increase y beyond this point, we will find that ρ1−w(G) is no longer guaranteed to drop as fast

as y increases.

93



In light of this goal, for 1 ≤ k ≤ 3 we let ỹk(∆) denote the maximum value of y such that

(1 + µ(∆))y ≤ 1
2(∆− 1− k) +

(
1
2 + 1

2kµ(∆)
)
y. (5.10)

For 4 ≤ k ≤ ∆− 2 we let ỹk(∆) denote the maximum value of y such that

(1 + µ(∆))y ≤ 1
2(∆− 1− k) +

(
1
2 + 1

2kµ∆+1−k(∆)
)
y. (5.11)

Now let ỹ(∆) denote min{mink ỹk(∆), ω, ω−3
1−3µ(∆)} (the latter two bounds are for convenience of

proof, and do not affect our results). Our initial colouring phase culminates in the following

consequence of Lemma 5.5.1.

Theorem 5.5.2. For any 0 ≤ y ≤ ỹ(∆), there is a vertex weighting w and fractional y ow-colouring

of G such that ρ1−w(G) ≤ ∆− (1 + µ(∆))y.

Proof. Let v be any vertex in G; it suffices to prove that ρ1−w(v) ≤ ∆− (1 + µ(∆))y. We take the

fractional y o w-colouring guaranteed by Lemma 5.5.1.

First suppose v ∈ Gω, and assume without loss of generality that v ∈ B1. We know that

w(B1) = y by Lemma 5.5.1(a), and that for any u ∈ Ñ(v) \ B1, w(u) ≥ yµ(∆) (by Lemma

5.5.1(b)). Therefore |Ñ(v)| − w(Ñ(v)) ≤ ω − y + 2(1 − yµ(∆)) = ∆ + 1 − y − 2yµ(∆). We

now claim that for any clique C containing v, |C| − w(C) ≤ ω − y. Clearly w(B1) = y. For C

not equal to B1, Lemma 5.3.1 tells us that |C| ≤ 3. Therefore |C| − w(C) ≤ 3 − 3yµ(∆). If

ω − y < 3− 3yµ(∆), then ω − 3 < y(1− 3µ(∆)), contradicting the fact that y ≤ ỹ(∆) ≤ ω−3
1−3µ(∆)}.

Therefore |C| − w(C) ≤ ω − y = ∆− 1− y. Thus

ρ1−w(v) ≤ 1
2(∆− 1− y) + 1

2(∆ + 1− y − 2yµ(∆)) = ∆− (1 + µ(∆))y. (5.12)

Now suppose that v is not in Vω, and let C be a clique containing v such that |C| − w(C) is

maximum. Denote the size of C by k. By Lemma 5.5.1(e), we know that w(Ñ(v)) ≥ y, so

|Ñ(v)| − w(Ñ(v)) ≤ ∆ + 1− y. (5.13)
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Therefore to prove that ρ1−w(v) ≤ ∆− (1 + µ(∆))y, it is sufficient to prove that

k − w(C) ≤ ∆− 1− y − 2yµ(∆), (5.14)

i.e.

(µ(∆) + 1
2)y ≤ 1

2(∆− 1− k) + 1
2w(C). (5.15)

By Lemma 5.5.1(c) we know that w(C) ≥ kµ(∆)y. If k ≥ 4, by Lemma 5.5.1(d) we know that

w(C) ≥ kµ∆+1−k(∆)y. We also know that y ≤ ỹ(∆) ≤ ỹk(∆), so if k ≤ 3 then

(1 + µ(∆))y ≤ 1
2(∆− 1− k) +

(
1
2 + 1

2kµ(∆)
)
y, (5.16)

and if k ≥ 4 then

(1 + µ(∆))y ≤ 1
2(∆− 1− k) +

(
1
2 + 1

2kµ∆+1−k(∆)
)
y. (5.17)

In either case,

(1 + µ(∆))y ≤ 1
2(∆− 1− k) +

(
1
2y + 1

2w(C)
)
, (5.18)

so

(µ(∆) + 1
2)y ≤ 1

2(∆− 1− k) + 1
2w(C), (5.19)

as desired. Thus ρ1−w(v) ≤ ∆− (1 + µ(∆))y.

Since equations 5.10 and 5.11 are linear, we can easily find the optimal values of ỹk(∆) by

solving for

ỹk(∆) =
1
2(∆− 1− k)

1
2 + µ(∆)− 1

2kµ(∆)
(5.20)

when k ≤ 3 and for

ỹk(∆) =
1
2(∆− 1− k)

1
2 + µ(∆)− 1

2kµ∆+1−k(∆)
(5.21)

when ∆− 2 ≥ k ≥ 4. See [31] and Table 5.2 for numerical values.

5.6 Proving the main result

We now have enough results in hand to prove the main result easily.
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Theorem 5.6.1. For ∆ ≥ 6, let G be a graph with maximum degree ∆ and clique number at most

∆− 1. Then G has fractional chromatic number at most ∆−min{1
2 , ỹ(∆)µ(∆)}.

Proof. Let G be a minimum counterexample; Theorem 5.2.4 tells us that G has maximum degree

∆ and clique number ω = ∆− 1. Lemma 5.3.1 tells us that all ω-cliques of G are disjoint, and that

no vertex v has two neighbours in an ω-clique not containing v.

We may therefore set y = ỹ(∆) and apply Theorem 5.5.2. This gives us a vertex weighting

w and fractional y o w-colouring of G such that ρ1−w(G) ≤ ∆ − (1 + µ(∆))y. By Theorem 5.2.5,

χ1−w
f ≤ ρ1−w(G) ≤ ∆ − (1 + µ(∆))y. That is, there is a fractional (∆ − (1 + µ(∆))y) o (1 − w)-

colouring of G. Combining this colouring with the initial fractional y o w-colouring gives us a

fractional (∆− ỹ(∆)µ(∆))-colouring, which tells us that χf (G) ≤ ∆− ỹ(∆)µ(∆).

For all values of ∆ we have investigated, ỹ(∆)µ(∆) < 1
5 . We believe that this is always the

case.

5.7 The structural reduction

In this section we prove Lemma 5.3.1, which tells us that we need only consider graphs whose max-

imum cliques behave nicely. First observe that every proper induced subgraph of G is fractionally

(∆−ε)-colourable, since deleting vertices from a graph with ∆ = 5 cannot create a copy of C5�K2.

We prove the lemma in two parts:

Lemma 5.7.1. Part (i) of Lemma 5.3.1 holds.

Lemma 5.7.2. Part (ii) of Lemma 5.3.1 holds.

5.7.1 Part (i)

We actually split the proof of Lemma 5.7.1 into three parts. Suppose C and C ′ are two intersecting

ω-cliques. Since ω = ∆− 1, we can immediately observe that |C ∩ C ′| ≥ ω − 2. Therefore Lemma

5.7.1 follows as an easy corollary of the next three Lemmas 5.7.3, 5.7.4, 5.7.5. Throughout this

section we will make implicit use of the fact that every vertex in G has at least ∆− 1 neighbours,

as is trivially implied by the minimality of G. Furthermore note that whenever we reduce G to a

graph G′, no component of which is 5-regular, no component of G′ can be isomorphic to C5 �K2.
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Lemma 5.7.3. G does not contain three ω-cliques mutually intersecting in ω − 1 vertices.

Proof. Suppose that G contains an (ω−1)-clique X and vertices x1, x2, x3 each of which is complete

to X. Because there is no (ω+1)-clique, {x1, x2, x3} is a stable set. Let G′ = G\ (X ∪{x1, x2, x3});

as previously observed, since G′ is a proper induced subgraph of G, there is a fractional (∆− ε)-

colouring κ of G′. We extend κ to a fractional (∆ − ε)-colouring of G to obtain a contradiction,

beginning by colouring {x1, x2, x3} using weight at most 2− ε.

First suppose ∆ = 5, so ε ≤ 1
3 . Since each xi has at most two neighbours in G′, we have

|α(xi)| ≥ ∆ − ε − 2. Note that |α(xi) ∪ α(xj)| ≤ ∆ − ε, so for any {i, j} ⊆ {1, 2, 3} we have

|α(xi) ∩ α(xj)| ≥ ∆− ε− 4 ≥ 1− ε ≥ 2
3 . We extend κ to {x1, x2, x3} such that

• |κ[x1] ∩ κ[x2]| ≥ 2
3 , and

• There exist disjoint subsets s1 and s2 of κ[x3], each of size 1
3 , such that s1 ⊂ κ[x1] and

s2 ⊂ κ[x2].

To do this, we first give x1 and x2 weight 2
3 of colour in common, then give x1 and x3 weight 1

3

of colour each such that all the colour on x3 is in κ[x1], then give x2 and x3 weight 1
3 of colour

each such that all the new colour on x3 is in κ[x2]. Finally we complete the colouring of x3

arbitrarily. Confirming that this is possible is straightforward given the pairwise intersections of

α(xi). Furthermore since |κ[{x1, x2}]| ≤ 4
3 and at least 2

3 of the colour in κ[x3] is in κ[{x1, x2}], we

use weight at most 2− ε on {x1, x2, x3}.

Now suppose ∆ ≥ 6, so ε ≤ 1
2 . Our approach is the same as before, except now for any

{i, j} ⊆ {1, 2, 3} we have |α(xi) ∩ α(xj)| ≥ ∆− ε− 4 ≥ 3
2 . Thus we can proceed by giving x1 and

x2 weight 1
2 of colour in common, then assign s1 and s2 as before, but with size 1

2 each. Again we

use weight at most 2− ε on {x1, x2, x3}.

We now have {v ∈ V (G) : |κ(v)| < 1} = V (X). For every v ∈ V (X), we have |α(v)| ≥

∆ − ε − (2 − ε) = ω − 1 = |V (X)|. We may therefore apply Lemma 5.2.2 and extend κ to a

fractional (∆− ε)-colouring of G.

Lemma 5.7.4. G does not contain two ω-cliques intersecting in ω − 1 vertices.

Proof. Suppose C and C ′ are two ω-cliques intersecting in ω − 1 vertices. Let v1, . . . , vω−1 be the

vertices in C ∩ C ′, let x be the vertex in C \ C ′, and let y be the vertex in C ′ \ C, noting that x
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and y are nonadjacent. For 1 ≤ i ≤ ω − 1, if vi has a neighbour outside C ∪ C ′ call it ui.

Claim 1. There exists a fractional (∆− ε)-colouring κ of G \ (C ∩ C ′) satisfying the following:

(1) If ∆ = 5, then |κ[{x, y}]| ≤ 1 + ε.

(2) If ∆ ≥ 6, then |κ[{x, y}]| = 1.

(3) |
⋂
i≤ω−1 κ[ui]| ≤ ε.

We first show how the claim implies the lemma. For each vi ∈ C ∩ C ′, |α(vi)| ≥ ∆ − ε −

|κ[{x, y, ui}]| ≥ ∆− ε− 1− |κ[{x, y}]| ≥ ω− 2. Thus to apply Lemma 5.2.2 and extend κ to G it is

enough to show that |
⋃
i≤ω−1 α(vi)| ≥ ω − 1. Indeed, the set of colours available to at least some

of the vertices in C ∩ C ′ are those which are not forbidden to all of them: If ∆ ≥ 6, then

∣∣∣∣∣∣
⋃

i≤ω−1

α(vi)

∣∣∣∣∣∣ ≥ ∆− ε− |κ[{x, y}]| −

∣∣∣∣∣∣
⋂

i≤ω−1

κ[ui]

∣∣∣∣∣∣ ≥ ω − 2ε ≥ ω − 1

and if ∆ = 5, ∣∣∣∣∣∣
⋃

i≤ω−1

α(vi)

∣∣∣∣∣∣ ≥ ω − 3ε ≥ ω − 1.

Lemma 5.2.2 then guarantees a fractional (∆− ε)-colouring of G, a contradiction.

Proof of Claim 1. There are two cases. Note that by Lemma 5.7.3, if ui exists for each i then

|{ui : 1 ≤ i ≤ ω − 1}| ≥ 2.

Case 1: 2 ≤ |{ui : 1 ≤ i ≤ ω − 1}| < ω − 1 and ui exists for each i.

Without loss of generality suppose that u1 = u2 and consider G′ = G \ (C ∪ C ′ ∪ {u1}). Again,

since G′ is a proper induced subgraph of G, there exists a fractional (∆− ε)-colouring κ of G′. We

extend κ to a fractional colouring of G \ (C ∩ C ′), first colouring x and y, then u1.

Each of x and y has at most two neighbours in G′ so we have |α(x)|, |α(y)| ≥ ∆− ε− 2. Since

|α(x)∪α(y)| ≤ ∆−ε it follows that |α(x)∩α(y)| ≥ ∆−ε−4 ≥ 1 when ∆ ≥ 6, and |α(x)∩α(y)| ≥ 1−ε

when ∆ = 5. We extend κ in the obvious way so that if ∆ ≥ 6 then κ[x] = κ[y], and if ∆ = 5 then

|κ[x] ∩ κ[y]| ≥ 1 − ε, satisfying (1) and (2). It remains to colour u1. Note that u1 has degree at

most ω − 1 in G \ (C ∩ C ′) so |α(u1)| ≥ 2− ε. Because |
⋂

3≤i≤ω−1 κ[ui]| ≤ 1, we can choose κ[u1]

from α(u1) in such a way that |κ[u1] ∩
⋂

3≤i≤ω−1 κ[ui]| ≤ ε, satisfying (3).
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Case 2: |{ui : 1 ≤ i ≤ ω − 1}| = ω − 1 or ui does not exist for some i.

If there exists an edge uiuj in G for some i 6= j, then let G′ = G \ (C ∪ C ′). Otherwise choose

i 6= j such that adding the edge uiuj to G \ (C ∪ C ′) yields a graph with ω < ∆ and let G′ =

G \ (C ∪ C ′) ∪ uiuj . To see that such i and j exist, consider u1, u2 and u3 and suppose that each

pair of these has an (ω − 1)-clique in the common neighbourhood. Because ∆ = ω + 1 there must

be a vertex contained in each of these three cliques, but Lemma 5.7.3 forbids the existence of three

pairwise intersecting ω-cliques.

By the minimality ofG, there exists a fractional (∆−ε)-colouring κ ofG′. We need to extend κ to

x and y. Because each of x and y has at most two neighbours in G′ we have |α(x)|, |α(y)| ≥ ∆−ε−2.

It follows that |α(x) ∩ α(y)| ≥ 1 if ∆ ≥ 6 and |α(x) ∩ α(y)| ≥ 1− ε if ∆ = 5 so we can extend κ in

the obvious way to satisfy (1) and (2). Requirement (3) is guaranteed by the existence of the edge

uiuj . This proves the claim.

As we have shown, the claim implies the lemma.

Lemma 5.7.5. G does not contain two ω-cliques intersecting in ω − 2 vertices.

Proof. Suppose C and C ′ are two ω-cliques intersecting in ω−2 vertices. Let x, x′ be the vertices in

C \C ′ and let y, y′ be those in C ′ \C. Suppose that x is adjacent to y. Then C and (C \{x′})∪{y})

are two ω-cliques intersecting in ω − 1 vertices, contradicting Lemma 5.7.4. By symmetry we may

therefore assume there is no edge between {x, x′} and {y, y′}. The case ∆ = 5 gives us the most

difficulty by far, so we deal with it separately.

Case 1: ∆ ≥ 6.

We construct the graph G′ from G by identifying x, y and x′, y′ into two new vertices z and z′,

respectively, and deleting C ∩ C ′. Clearly ∆(G′) ≤ ∆(G). If G′ contains a ∆-clique, then since z

and z′ have degree at most 5, we have ∆ = 6, and furthermore the ∆-clique must contain both z

and z′. Thus there is a set of four vertices C ′′ forming a 6-clique with z and z′. This means there

must be eight edges between {x, x′, y, y′} and C ′′ in G.

If any vertex in C ′′ has a neighbour outside of {x, x′, y, y′} then C ′′ is a clique cutset in G,

contradicting the fact that every proper induced subgraph of G is fractionally (∆− ε)-colourable.

Thus V (G) = V (C) ∪ V (C ′) ∪ V (C ′′). Further, (N(x) ∪ N(y)) ∩ V (C ′′) = V (C ′′) and (N(x′) ∪
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N(y′)) ∩ V (C ′′) = V (C ′′). If x and x′ have the same two neighbours in C ′′ then G is the graph

(C5 �K3) − 4v shown in Figure 5.2, contradicting the assumption that χf (G) > ∆ − 1
2 . Thus x

and y′ have a common neighbour in C ′′. We may safely switch the roles of y and y′ in this case to

ensure that ω(G′) ≤ ω(G).

It now follows from the minimality of G that there exists a fractional (∆ − ε)-colouring κ of

G′. By unidentifying x, y and x′, y′, we may think of κ as a fractional colouring of G \ (C ∩ C ′)

where κ[x] = κ[y] and κ[x′] = κ[y′]. We now extend κ to a (∆ − ε)-colouring of G. We have

{v ∈ V (G) : |κ(v)| < 1} = V (C ∩C ′). Further, for each v ∈ V (C ∩C ′), |α(v)| ≥ ∆− ε− 2 ≥ ω− 2.

Thus applying Lemma 5.2.2 gives the extension of κ to G, a contradiction.

Case 2: ∆ = 5.

We construct G′ as in the previous case. If G′ has a fractional (∆ − ε)-colouring, we reach a

contradiction as before. Otherwise, it must be the case that G′ contains a ∆-clique or C5 �K2. To

deal with these cases we prove four claims.

Our first claim is that no vertex in G \ (C ∪ C ′) has a neighbour in both {x, x′} and {y, y′}.

To prove this, assume for a contradiction that x and y have a common neighbour w /∈ C ∪C ′. Let

G′′ = G \ (C ∪C ′). By the minimality of G there exists a fractional (∆− ε)-colouring κ of G′′ that

we now extend to a fractional colouring of G. We do so in two steps, first colouring {x, y, x′, y′}.

Since x and y have a common neighbour plus at most one other coloured neighbour each, we have

|α(x)∩α(y)| ≥ ∆−ε−3. On the other hand, each of x′ and y′ has at most two coloured neighbours,

so |κ[N(x′)∪N(y′)]| ≤ 4. We choose κ[x] = κ[y] from α(x)∩α(y) maximizing its intersection with

κ[N(x′) ∪N(y′)], so that after colouring x and y we still have |κ[N(x′) ∪N(y′)]| ≤ 4. This means

that |α(x′) ∩ α(y′)| ≥ 1 − ε so we may choose colours for x′ and y′ so that |κ[x′] ∩ κ[y′]| ≥ 1 − ε.

This ensures that |κ[{x, y, x′, y′}]| ≤ 2 + ε.

It remains to extend the colouring to the vertices in C ∩ C ′. For each vertex v ∈ V (C ∩ C ′),

|α(v)| ≥ ∆− ε− (2+ ε) ≥ ω−2. Applying Lemma 5.2.2, we find a fractional (∆− ε)-colouring of G,

a contradiction. This proves the first claim, so we may henceforth assume no vertex in G \ (C ∪C ′)

has a neighbour in both {x, x′} and {y, y′}.

Our second claim is that G does not contain an edge cut of size at most two. For if it does,

we can take a fractional (∆ − ε)-colouring of either side of this cut. The edges of the cut have
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Figure 5.4: Left: If G contains (C5 �K2) − e, we can easily reduce. Right: Reducing on the six
top vertices renders G′ isomorphic to C5 �K2.

colour weight at most four on their endpoints, and since ∆ − ε > 2 · 2, we can safely merge the

(∆− ε)-colouring of either side of the cut into a fractional (∆− ε)-colouring of G, a contradiction.

This proves the second claim.

Our third claim is that G′ does not contain a ∆-clique. Suppose it does; we now investigate

the structure of G. In G \ (C ∪ C ′) there is an ω − 1 clique C ′′, each vertex of which is complete

(in G) to either {x, x′} or {y, y′}, since no vertex has neighbours in both {x, x′} and {y, y′} (by the

first claim). Since |C ′′| = 3, we may assume that x and x′ have two common neighbours w1 and w2

in C ′′, and y and y′ have a common neighbour w3 in C ′′ \ {w1, w2}. Call the neighbours of y and y′

in G \ (C ′ ∪ C ′′) v and v′ respectively, if these vertices exist. We assume v and v′ exist, as adding

them as pendant vertices does not affect the proof adversely. Let G′′ be the graph obtained from

G \ (C ∪ C ′ ∪ C ′′) by adding the edge vv′ if possible (v and v′ may not be two distinct vertices,

or may already be adjacent). This construction does not create a ∆-clique in G′′ since no pair of

cliques in G intersects in ω − 1 vertices by Lemma 5.7.4. Bearing in mind that ∆ = 5, G′′ cannot

contain a copy of C5 �K2, since the existence of (C5 �K2)−e in G would violate the second claim.

Therefore the minimality of G guarantees that G′′ has a fractional (∆− ε)-colouring κ. We extend

in two cases based on whether or not |{v, v′}| = 2.

Note that if |{v, v′}| = 1, we may assume one of w1, w2 is nonadjacent to v, say w1 is nonadjacent

to v, otherwise G contains a copy of (C5�K2)−e, violating the second claim (see Figure 5.4 (left)).

Now assume |{v, v′}| ≤ 1. We recolour v (if it exists) such that |κ[v] ∩ (α(w1) ∪ α(w2))| ≥ 1 − ε.

This is possible because |α(v)| ≥ 2 − ε and |α(w1)| ≥ 4 − ε, so the intersection of these two sets

is at least (6 − 2ε) − (5 − ε) = 1 − ε. Now we may easily extend κ by colouring w1 such that
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|κ[v] ∩ κ[w1]| ≥ 1 − ε. Next we extend κ by colouring w2 and w3, which we can do greedily since

each of these vertices has at most three neighbours in G\(C∪C ′). Now it remains to colour C∪C ′.

Since |κ[{v, w1, w2, w3}]| ≤ 4 − (1 − ε), there is weight 4
3 of colour we can use on both {x, x′} and

{y, y′}. Since each vertex in {x, x′, y, y′} has only three neighbours in G \ (C ∩ C ′), we can extend

κ to a colouring of G\ (C ∩C ′) such that |κ[{x, x′}]∩κ[{y, y′}]| ≥ 4
3 . After doing this we can easily

extend κ to a fractional (5− ε)-colouring of G by applying Lemma 5.2.2, a contradiction.

Now we handle the case |{v, v′}| = 2, starting with a fractional (5− ε)-colouring of G′′ which we

take as a partial coloring ofG. We begin by extending κ by colouring w3 such that κ[w3] ⊂ κ[{v, v′}],

which is possible because κ[v] and κ[v′] are disjoint (and w3 is adjacent to at most one of v and

v′, since it is adjacent to w1, w2, y and y′). We now extend κ by colouring w1 and w2 in any way,

which we can do greedily. At this point, we have |α(y)| ≥ 8
3 , |α(y′)| ≥ 8

3 , and |α(y) ∪ α(y′)| ≥ 11
3 .

Therefore |α(y) \ κ[{w1, w2}]| ≥ 2
3 , |α(y′) \ κ[{w1, w2}]| ≥ 2

3 , and |(α(y) ∪ α(y′)) \ κ[{w1, w2}]| ≥ 5
3 .

We may therefore give y weight 2
3 of colour not in κ[{w1, w2}], and give y′ weight 2

3 of colour not

in κ[{w1, w2}], then finish colouring y and y′ greedily, since each has at most three neighbours in

G \ C. It follows that |κ[{w1, w2}] ∩ κ[{y, y′}]| ≤ 2
3 , so we can extend κ by colouring {x, x′} such

that |κ[{w1, w2}] ∩ κ[{x, x′}]| ≥ 4
3 . We can now extend κ to a fractional (∆− ε)-colouring of G by

applying Lemma 5.2.2 as in the previous case. This contradiction proves the third claim.

Our fourth claim, which is sufficient to complete the proof, is that G′ does not contain

C5 � K2. If it does, there must be four vertices w, w′, v, and v′ such that in G′, {w,w′, z, z′}

and {v, v′, z, z′} are cliques. Each of w, w′, v, and v′ therefore has two neighbours in {x, x′, y, y′}.

By the first claim, there are two cases, by symmetry: w and w′ are adjacent to both x and x′,

or w and v are adjacent to both x and x′. In the first case, the component of G containing C is

isomorphic to C7 �K2, a contradiction since χf (C7 �K2) = 14
3 . In the second case, the component

of G containing G is isomorphic to the graph shown in Figure 5.4 (right). Observe that the outer

seven vertices induce C7, as do the inner seven vertices. Therefore χf (G) ≤ 2χf (C7) = 5 − 1
3 , a

contradiction. This completes the proof of the lemma.

5.7.2 Part (ii)

Our approach to proving Lemma 5.7.2 involves reducing G to a smaller graph G′. Either G′ is

fractionally (∆ − ε)-colourable by minimality, in which case we finish easily, or G′ contains a K∆
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Figure 5.5: A bump.

or C5 �K2 (when ∆ = 5), in which case we proceed on a case-by-case basis.

To simplify things, we first need to prove a couple of lemmas that exclude induced subgraphs

of G.

Definition 1. Suppose we have a set Y = {y1, y2, y3} of vertices in a maximum clique C, and two

adjacent vertices v1 and v2 such that N(v1)∩ Y = {y1, y2} and N(v2)∩ Y = {y2, y3}. Then we say

that the set X = C ∪ {v1, v2} is a bump (see Figure 5.5).

Lemma 5.7.6. G does not contain a bump.

Proof. Suppose to the contrary that G contains a bump X. To reach a contradiction we take a

fractional (∆− ε)-colouring κ of G′ = G \X and extend it to a (∆− ε)-colouring of G as follows.

First, extend κ by colouring v1 and y3 with the same set of colours. This is possible because v1

has at most ∆− 3 neighbours in G′, and y3 has at most one neighbour in G′, so |α(v1) ∩ α(y3)| ≥

∆− ε− (∆− 3)− 1 > 1.

Next we extend κ by giving v2 and y1 common colour of total weight 1
2 , and leaving them

only partially coloured. This is possible because at this point, v2 has at most ∆ − 1 coloured

neighbours, and y1 has at most 3 coloured neighbours, but both are adjacent to v1 and y3. Therefore

|κ[N(y1) ∪N(v2)]| ≤ ∆− 2 + 1 = ∆− 1, and so |α(y1) ∩ α(v2)| ≥ 1− ε ≥ 1
2 .

At this point observe that |κ[Y ]| = 3
2 ≤ (∆− ε)− 2− (∆− 4), so we may now greedily extend κ

by colouring the ∆− 4 vertices in C \ Y , since each of these has at most two coloured neighbours

in G′. All that remains is to complete the colouring of v2, y1, and y2. First we finish colouring

y1; we can do this greedily because at this point |κ[N(y1)]| ≤ ∆ − 2, since y2 is uncoloured and

κ[v1] = κ[y3]. Next we greedily finish colouring v2, which again we can do because at this point

|κ[N(v2)]| ≤ ∆− 2, since y2 is uncoloured and κ[v1] = κ[y3].
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Figure 5.6: Configurations of edges missing from a K∆ that are forbidden for, respectively, ∆ ≥ 5
(Lemma 5.7.7), ∆ ≥ 6 (Lemma 5.7.8), ∆ ≥ 7 (Lemma 5.7.9), and ∆ ≥ 7 (Lemma 5.7.10).

Finally we must extend to y2, which we can do greedily: since κ[v1] = κ[y3] and |κ[v2]∩κ[y1]| ≥
1
2 , |κ[N(y2)]| ≤ ∆ − 3

2 , so |α(y2)| ≥ 3
2 − ε ≥ 1. Thus G is fractionally (∆ − ε)-colourable, a

contradiction.

We already know, thanks to Lemma 5.7.1, that K∆ minus an edge cannot appear in G. But

given restrictions on ∆, we can forbid other subgraphs arising as K∆ minus a small number of

edges. We use variations of the approach for bumps: we extend a partial fractional colouring of

the graph by leaving a set of vertices to the end, then finishing greedily, having already given their

neighbourhoods lots of repeated colour.

Lemma 5.7.7. G cannot contain K∆ minus a matching of size two.

Proof. Suppose to the contrary thatG contains a subgraphX on ∆ vertices, with vertices v1, v2, v3, v4 ∈

V (X) such that the non-edges of G[X] are exactly {v1v2, v3v4}. We first consider the case where

∆ ≥ 6. We begin with a fractional (∆− ε)-colouring κ of G′ = G \X and extend it to a (∆− ε)-

colouring of G as follows.

First, we extend κ by colouring v1 and v2 with the same set of colours. Each of v1, v2 has at

most two coloured neighbours in G′, and so |α(v1) ∩ α(v2)| ≥ (∆− ε)− 4 ≥ 1. Thus it is possible

to choose κ[v1] = κ[v2].

Next, we extend κ by colouring v3 and v4 in such a way that κ[v3] ∩ κ[v4] ≥ 1
2 . Each of v3, v4

has at most two coloured neighbours in G′ as well as neighbours v1 and v2 which have the same

set of colours, and so |α(v3)∩α(v4)| ≥ (∆− ε)− 5 ≥ 1− ε ≥ ε ≥ 1
2 . Thus we may choose κ[v3] and

κ[v4] as claimed. We now have |κ[v1, v2, v3, v4]| ≤ 5
2 .

It remains to colour the ∆− 4 vertices in X \ {v1, v2, v3, v4}. We can do this easily because for

each such vertex, the total weight of colours appearing twice in its neighbourhood is at least 1 + ε.
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Therefore as we colour greedily, the weight on the closed neighbourhood will never exceed ∆ − ε.

Thus G is fractionally (∆− ε)-colourable, a contradiction.

Now we consider the case where ∆ = 5. Let u denote the neighbour of v5 outside X; if u does

not exist, we can add a pendant vertex to v5 and call it u, for the sake of our argument. We begin

with a fractional (∆ − ε)-colouring κ of G′ = G \X and extend it to a (∆ − ε)-colouring of G as

follows, considering three subcases based on f = |κ[N(v3)] ∩ κ[N(v4)]|.

If f < 1
3 , we give v1 and v2 common colour of weight 2

3 , leaving them only partially coloured.

We then put weight 2
3 − |κ[u] ∩ κ[v1]| of colour from κ[u] \ κ[v1] onto {v3, v4} (putting none on

both), which is possible because there is at least 2
3 colour in κ[u]∩ (α(v3)∪α(v4)). We now extend

κ to completely colour v1 and v2, which is possible because at this point |κ[{v3, v4}]| ≤ 2
3 . Next we

extend κ to completely colour v3 and v4, which is possible because at this point v5 is uncoloured

and |κ[v1] ∩ κ[v2]| ≥ 2
3 . Finally we extend the colouring to include v5, which is possible because

|κ[v1] ∩ κ[v2]| ≥ 2
3 and |κ[u] ∩ κ[{v1, v2, v3, v4}]| ≥ 2

3 . So we may assume f ≥ 1
3 .

If f < 2
3 , we give v1 and v2 common colour of weight 2

3 , leaving them only partially coloured.

We then give v3 and v4 common colour of weight 1
3 , so at this point the total colour appearing on

N(v3) ∪ N(v4) is at most 4 − 1
3 + 2

3 ≤ 5 − ε − 1
3 (because f ≥ 1

3). We then give {v3, v4} enough

colour from κ[u] so that |κ[u] ∩ κ[{v1, v2, v3, v4}]| ≥ 1
3 ; this is possible because f < 2

3 , and so

(α(v3) ∪ α(v4) ∪ κ[v1, v2]) ≥ 4. We may extend to finish colouring v1, v2, v3, v4 greedily, since v5 is

uncoloured and both κ[v1] ∩ κ[v2] and κ[v3] ∩ κ[v4] have size at least 1
3 . Finally we can extend the

colouring to v5, since the weight of colours appearing at least twice on N(v5) is at least 4
3 ≥ 1 + ε.

So we may assume f ≥ 2
3 .

This final case is easiest: we give v1 and v2 common colour of weight 2
3 , then give v3 and v4

common colour of weight 2
3 , then extend to completely colour {v1, v2, v3, v4} greedily, then extend

to v5 greedily. The details are as in the previous cases, but easier. Thus G is fractionally (∆− ε)-

colourable, a contradiction.

Lemma 5.7.8. If ∆ ≥ 6, G cannot contain K∆ minus the edges of vertex disjoint paths, one of

length one and one of length two.

Proof. Suppose to the contrary that ∆ ≥ 6 and G contains a subgraph X on ∆ vertices, with

vertices v1, v2, v3, v4, v5 ∈ V (X) such that the non-edges of G[X] are exactly {v1v2, v1v3, v4v5}. We
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begin with a fractional (∆− ε)-colouring κ of G′ = G \X and extend it to a (∆− ε)-colouring of

G as follows.

First we give v1 and v2 weight 1
2 of common colour, leaving them only partially coloured. This

is possible because v1 and v2 have, in total, at most 5 ≤ ∆− ε− 1
2 coloured neighbours in G \X.

Next we give v4 and v5 the same colour, which is possible because at this point the weight of colour

on their neighbourhoods totals at most 2 + 2 + 1
2 ≤ ∆ − ε − 1, since they are both adjacent to v1

and v2. Next we extend κ to complete the colouring of v1, v2, v3, v4, and v5 greedily, which we

can do since each of these vertices has at least 1
2 weight of repeated colour in its neighbourhood,

and at least one uncoloured neighbour in X. Finally we extend greedily to the remaining vertices

of X, which we can do since each such vertex is adjacent to v1, v2, v4, and v5, and therefore has

repeated colour of weight at least 3
2 in its neighbourhood. Thus G is fractionally (∆−ε)-colourable,

a contradiction.

Lemma 5.7.9. If ∆ ≥ 7, G cannot contain K∆ minus the edges of two vertex-disjoint paths of

length two.

Proof. Suppose to the contrary that ∆ ≥ 7 and G contains a subgraph X on ∆ vertices, with

vertices v1, . . . , v6 ∈ V (X) such that the non-edges of G[X] are exactly {v1v2, v2v3, v4v5, v5v6}. We

begin with a fractional (∆− ε)-colouring κ of G′ = G \X and extend it to a (∆− ε)-colouring of

G as follows.

First we give v1 and v2 the same colour. Next we give v4 and v5 weight 1
2 of common colour.

We then extend greedily to complete the colouring of v3, v4, v5, and v6, then extend greedily to

complete the colouring of G. We can do this because, similar to Lemma 5.7.7, v1 and v2 together

have at most 5 neighbours in G \X, as do v4 and v5.

Lemma 5.7.10. If ∆ ≥ 7, G cannot contain K∆ minus the edges of a three-edge path.

Proof. Suppose to the contrary that ∆ ≥ 7 and G contains a subgraph X on ∆ vertices, with

vertices v1, v2, v3, v4 ∈ V (X) such that the non-edges of G[X] are exactly {v1v2, v2v3, v3v4}. We

begin with a fractional (∆− ε)-colouring κ of G′ = G \X and extend it to a (∆− ε)-colouring of

G as follows.

We first extend κ by colouring v1 and v2 with the same set of colours. Since v1 has at most two
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coloured neighbours in G′ and v2 has at most three coloured neighbours, we have |α(v1)∩α(v2)| ≥

(∆− ε− 5) ≥ 2− ε ≥ 1, and so from this set we choose κ[v1] = κ[v2].

We next extend κ by giving v3 and v4 weight 1
2 of common colour, which is possible because

v3 and v4 together have at most 5 neighbours in G \X, and weight 1 of colour appearing in their

neighbourhood in X. We may then extend greedily to complete the colouring of v3 and v4. Now

since the weight of colours appearing twice in X is at least 3
2 , we may extend the colouring to the

rest of X greedily. Thus G is fractionally (∆− ε)-colourable, a contradiction.

We are now ready to prove Lemma 5.7.2.

Proof of Lemma 5.7.2. Suppose G contains a clique C of size ∆− 1 and a vertex w outside C with

at least two neighbours in C. Call the vertices in C v1, . . . , vω, and suppose w is adjacent to v1

and v2. Let the neighbours of v1 and v2 outside C ∪ {w} be denoted y and z, if they exist. We

may actually assume they exist, since adding them as pendant vertices does not affect our proof

adversely.

We choose w, v1, and v2 such that if possible, w is in a Kω, and subject to that, if possible,

v1 and v2 do not have a common neighbour outside C ∪ {w}, i.e. y 6= z. We construct one of two

reduced graphs from G, depending on whether or not y and z are distinct.

Case 1: y 6= z.

Let p and p′ be the neighbours of v3 outside C. Subject to whether or not we can choose w to

be in a Kω and whether or not we can choose v1 and v2 such that y 6= z, we choose w, v1, v2, and

v3 such that w and v3 are nonadjacent and |{p, p′} ∩ {y, z}| is minimum. Choose v4 nonadjacent

to w as well, noting that this is possible since by Lemma 5.7.1, w has at least two non-neighbours

in C. Construct the graph G1 from G−C by making y adjacent to z and making w adjacent to p

and p′. Clearly ∆(G1) ≤ ∆.

We claim that G1 is not fractionally (∆−ε)-colourable; if it is then we extend a (∆−ε)-colouring

κ of G1 to a colouring of G as follows. First, we extend κ by giving v3 the same colours as w. Since

all the coloured neighbours of v3 are adjacent to w in G1, we have κ[w] ⊆ α(v3), and so we may

choose κ[v3] = κ[w]. We now greedily extend to the vertices v4, . . . , vω, which is possible because

v1 and v2 remain uncoloured; it now remains to colour v1 and v2. Since κ[v3] = κ[w], it follows

that |α(v1)| ≥ (∆− ε)− (∆− 3)− 1 ≥ 2− ε and |α(v2)| ≥ 2− ε. Further, since |κ[y]∩ κ[z]| = 0 we

107



have |κ[N(v1)] ∩ κ[N(v2)]| ≤ ∆− 3, and so |α(v1) ∪ α(v2)| ≥ 2. Thus we may apply Lemma 5.2.2

to extend κ to v1 and v2. It follows that G is fractionally (∆− ε)-colourable, a contradiction. This

proves the claim.

Therefore by the minimality of G we may assume that either G1 contains a ∆-clique, or ∆ = 5

and G1 contains a copy of C5 �K2.

We claim that if ∆ = 5, G1 does not contain a copy X of C5 �K2. Suppose to the contrary

that adding the edges wp,wp′, yz to G yields a copy of C5 � K2. Since G does not contain two

intersecting copies of K4, X contains two disjoint edges that are not edges of G. It follows that

w, y, z ∈ V (X). Further, since C5 �K2 is 5-regular, wp and wp′ both belong to E(X) and further

no vertex in V (X) has a neighbour in G \ (X ∪ {v1, v2, v3}). Therefore {v1, v2, v3} is a clique

cutset of size three, contradicting the fact that every proper induced subgraph of G is fractionally

(∆− ε)-colourable. This proves the claim.

We may now move on to the more complicated task of proving that ω(G1) = ω. Suppose G1

contains a ∆-clique C ′.

Our first claim is that {w, y, z} ∈ C ′ and yz /∈ E(G). By Lemma 5.7.1, adding a single edge

to G cannot create a ∆-clique. It follows that w ∈ V (C ′). Suppose that |{y, z} ∩ C ′| ≤ 1 or that

yz ∈ E(G). Again by Lemma 5.7.1, p, p′ must be distinct and belong to C ′. Now, in G, w has

ω− 2 neighbours in the ω-clique C ′−w, and so w does not belong to an ω-clique by Lemma 5.7.1.

On the other hand, v3 has two neighbours in a ω-clique (namely p and p′) and does belong to a

maximum clique, contradicting our choice of w. This proves the first claim.

Our second claim is that |{p, p′} ∩ {y, z}| = 1. Suppose |{p, p′} ∩ {y, z}| = 0. Then the

edges in {wp,wp′, yz} \E(G) either consist of a single edge, a two-edge matching, or a 2-edge path

disjoint from a third edge. By Lemmas 5.7.1, 5.7.7, and 5.7.8, we know that they consist of a

2-edge path disjoint from a third edge, and that ∆ = 5. In particular, it follows from the first

claim that w is adjacent to both p and p′. Let p′′ and p′′′ denote the neighbours of v4 outside C.

Since G does not contain a bump by Lemma 5.7.6, both y and z have only one neighbour in C. We

may therefore exchange the roles of v3 and v4 without violating the disjointness of {p, p′}, {y, z}.

By the minimality of G, the new resulting reduced graph G′1 (constructed as was G1, but with v3

and v4 swapped) has a K∆. Since y is adjacent to w, v1, p, p′, p′′, and p′′′, the sets {p, p′} and

{p′′, p′′′} must intersect. Since {p, p′, v3, v4} cannot be a clique by Lemma 5.7.1, {p, p′} 6= {p′′, p′′′}.
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Therefore we may assume p′ = p′′′ and that |{p, p′, p′′}| = 3. But then p′ is adjacent to p, p′′, y, z,

v3, and v4, contradicting the fact that ∆ = 5. Therefore |{p, p′} ∩ {y, z}| 6= 0.

Suppose |{p, p′} ∩ {y, z}| = 2. We may assume p = y and p′ = z. Recall that we have chosen

v3 so as to minimize |{p, p′} ∩ {y, z}|. Each of w, y, z has at most three neighbours in C, since

{w, y, z} ∈ C ′ by the first claim. Furthermore, if w belongs to a Kω in G, then it has only two

neighbours in C. If ∆ = 5, by Lemma 5.7.1, v4 sees neither y nor z (since v3 sees y and z),

contradicting our choice of v3. If ∆ ≥ 6 and w is in a Kω in G, then there is a vertex in C \N(w)

that is adjacent to at most one of y, z and nonadjacent to w, contradicting our choice of v3. If ∆ ≥ 6

and w is not in a Kω in G, then either there is a vertex in C \N(w) adjacent to at most one of y, z,

contradicting our choice of v3, or else every vertex in C \N(w) sees both of y, z. In this latter case

we can relabel: relabel y to w′, v1 to v′1, v3 to v′2, w to y′, z to z′, and v4 to v′3. Since v4 was chosen

to be nonadjacent to w, we have a labelling that contradicts the minimality of |{p, p′} ∩ {y, z}|.

This proves the second claim. We may now assume that y = p and that |{y, z, p′}| = 3.

Our third claim is that p′ ∈ C ′. Suppose to the contrary that p′ /∈ C ′. Then in G, w has

ω− 1 neighbours in V (C ′). Thus w belongs to an ω-clique in G−C, and therefore has exactly two

neighbours in C. Also, since wz ∈ E(G) and G does not contain a bump by Lemma 5.7.6, v2 is the

only neighbour of z in C. Further, y belongs to an (ω − 1)-clique in G− C and has at most three

neighbours in C, and at most two if ∆ = 5. Therefore, there is a vertex in C with no neighbour in

{w, y, z}, contradicting our choice of v3. This proves the third claim.

We now know that y = p and {w, y, p′, z} ⊆ V (C ′). Since G does not contain a bump and since

wz ∈ E(G), we know that z has only one neighbour in C. Therefore by our choice of v3 minimizing

|{p, p′} ∩ {y, z}|, every vertex in C is adjacent to w or y. Thus ∆ = 6 and each of w and y has

three neighbours in C.

To complete the proof, we now fractionally colour G directly, beginning with a fractional (∆−ε)-

colouring κ of G−C−{w, y}. We first extend κ by colouring w and v3 with the same set of colours.

Since v3 and w together have at most four coloured neighbours, we have |α(v3)∩α(w)| ≥ (6−ε)−4 ≥

1, and so we may choose κ[v3] = κ[w].

Next we extend κ by colouring y and v2 so that |κ[y] ∩ κ[v2]| ≥ 1
2 , which is possible because at

this point, |κ[N(y) ∪N(v2)]| = 5, since the only coloured vertices in N(y) ∪N(v2) are C ′ − y and

v3 (which has the same colour as w). We now have κ[{v2, v3, w, y}] ≤ 5
2 .
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Next we extend κ by colouring v4 and v5. Since each of v4, v5 is adjacent to either w or y, we

have |κ[N(v4)]| ≤ 7
2 and |κ[N(v5)]| ≤ 7

2 . Thus |α(v4)|, |α(v5)| ≥ 2 and so we may apply Lemma

5.2.2 to choose κ[v4] and κ[v5] greedily.

Finally we greedily extend κ to v1. We have κ[N(v1)] ≤ 9
2 since v1 is adjacent to v2, v3, w, and y.

Applying Lemma 5.2.2, we may choose κ[v1] from α(v1). Thus G is fractionally (∆− ε)-colourable,

a contradiction.

This completes the proof of Case 1.

Case 2: y = z and w is in a Kω in G.

In this case, we know that we can choose w to be in a maximum clique, but we cannot make such

a choice of w, v1, v2 for which y 6= z. Since w is in a maximum clique, it has only two neighbours

in C. Therefore we may choose v3 and v4 to be nonadjacent to both w and y, since Lemma 5.7.1

implies that y has at least two non-neighbours in C. But we need further conditions on our vertex

labelling. Denote by p, p′ and q, q′ the neighbours of v3 and v4 outside C, respectively. We choose

a labelling of the vertices satisfying the following conditions:

L1 w is in a maximum clique. Subject to this condition,

L2 y is in a maximum clique if possible. Subject to this condition,

L3 v3 and v4 are not adjacent to w nor to y. Subject to satisfying the previous conditions,

L4 v3 is chosen so that |N(p) ∩N(p′) ∩N(y)| is maximized.

Construct the graph G2 from G− C by making w adjacent to p and p′ and making y adjacent

to q and q′. Clearly ∆(G1) ≤ ∆.

We claim that G2 is not fractionally (∆−ε)-colourable; if it is then we extend a (∆−ε)-colouring

κ of G2 to a colouring of G as follows. We begin by extending κ to colour v3 with the same colour

as w. Since v3’s only coloured neighbours are p and p′, which are adjacent to w in G2, we may

choose κ[v3] = κ[w]. We now extend κ to the remaining vertices in C. By the choice of κ[v3], we

have |α(v1)|, |α(v2)| ≥ ∆ − ε − 2. Since each of the ∆ − 4 other uncoloured vertices has at most

three coloured neighbours we find |α(vi)| ≥ ∆− ε− 3 for 4 ≤ i ≤ ω. Third, the edges yq, yq′ in G2

ensure that |α(v1) ∪ α(v4)|, |α(v2) ∪ α(v4)| ≥ ∆− ε− 1. Applying Lemma 5.2.2 to C \ {v3} (which

has size ∆− 2), we find a (∆− ε)-colouring of G, a contradiction. This proves the claim.
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Figure 5.7: Three ways to form C5 �K2 in Case 2.

Therefore by the minimality of G we may assume that either G2 contains a ∆-clique, or ∆ = 5

and G2 contains a copy of C5 �K2. Let F = E(G2) \ E(G) ⊆ {wp,wp′, yq, yq′}. Let Fw and Fy

denote the edges incident to w and y in G2, respectively.

We claim that if ∆ = 5, G2 does not contain a copy X of C5 �K2. Suppose to the contrary

that adding the edges wp,wp′, yq, yq′ to G creates a copy of C5 �K2. Since G does not contain two

intersecting copies of K4, X contains at least two vertex-disjoint edges that are not edges of G. It

follows that w, y ∈ V (X). Further, since C5 �K2 is 5-regular, {p, p′, q, q′} ⊆ V (X) and F contains

all four edges wp,wp′, yq, yq′. Since w belongs to a K4 in G, p and p′ must form the intersection

of two K4s in X. Since G does not contain a pair of intersecting K4s, q and q′ do not form the

intersection of two K4s in X, and moreover, y cannot be in N(w) ∪ N(p) ∪ N(p′) in X. Hence y

does not belong to a 4-clique in G. See Figure 5.7, where y is the bottom left vertex. Observe that

v3 belongs to a maximum clique in G, and its neighbours p and p′ belong to another maximum

clique. Further, p and p′ have a common neighbour in a third maximum clique. Since y is not in a

maximum clique, this contradicts L2 in our choice of w and y, and proves the claim.

We now move on to the task of proving that ω(G2) = ω. Suppose G2 contains a ∆-clique C ′.

Our first claim is that |E(C ′)∩Fy| ≥ 1 and |E(C ′)∩Fw| ≥ 1. We can see that |E(C ′)∩Fy| ≥ 1,

otherwise C ′\w is a maximum clique inG intersecting a maximum clique containing w, contradicting

Lemma 5.7.1.

Suppose now that |E(C ′) ∩ Fw| = 0. By the same argument, y cannot belong to a maximum

clique in G. We know that C ′ must contain at least two edges in F , so yq, yq′ ∈ F ∩ E(C ′).

Therefore |N(q) ∩N(q′) ∩N(y)| ≥ ω − 2 and these vertices, along with y form an (ω − 1)-clique.

Further qq′ ∈ E(G), and so q, q′ belong to an ω-clique in G.

If |{p, p′} ∩ {q, q′}| = 1, then we can relabel v4 as w′; since v4 is in a Kω in G and has two
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neighbours in C ′ \{y}, one but not both of which are adjacent to v3, contradicting the fact that we

are not in Case 1. If |{p, p′} ∩ {q, q′}| = 2, this contradicts condition L2 in our choice of labelling,

since G contains two vertices in the Kω C having two neighbours in common in a disjoint Kω

C ′ \ {y}. Therefore |{p, p′} ∩ {q, q′}| = 0.

Note that by L3 we have chosen v3, v4 nonadjacent to both w and y. In particular this means

that {p, p′} and {q, q′, y} are disjoint. By L4, we know |N(p) ∩ N(p′) ∩ N(y)| ≥ |N(q) ∩ N(q′) ∩

N(y)| ≥ ω − 2. In particular this set must intersect N(q) ∩ N(q′) ∩ N(y). But since {p, p′} and

{q, q′, y} are disjoint, if {p, p′}∩C ′ = ∅, there is a vertex of degree ∆+1, a contradiction. Therefore

we may assume without loss of generality that p ∈ C ′ \ {q, q′, y}. But then in G, p is adjacent to

every other vertex in C ′, so its only other neighbour is v3. Since y is nonadjacent to v3, q, and q′,

N(p) ∩N(p′) ∩N(y) ⊆ C ′ \ {q, q′, y, p}, contradicting the fact that its size is at least ω − 2. This

proves the first claim.

Our second claim is that w and y belong to an ω-clique W in G. As a consequence, since

this makes {w, y, v1, v2} a clique, Lemma 5.7.1 tells us that ∆ ≥ 6. To prove this, let W be the

maximum clique in G containing w, and note that W is the closed neighbourhood of w in G− C.

By the first claim, w ∈ V (C ′) and y ∈ V (C ′). By the choice of v3, y /∈ {p, p′} and w /∈ {q, q′}. It

follows that wy ∈ E(G), and so y ∈W . This proves the second claim.

Our third claim is that the only edges between C and W are between {v1, v2} and {w, y}.

To see this assume otherwise, and denote the vertices of W {w, y, w3, . . . , wω}. By the maximum

degree, there must exist 3 ≤ i, j ≤ ω such that vi and wj are adjacent.

To reach a contradiction we extend a fractional (∆ − ε)-colouring κ of G −W − C as follows.

First assign w and vi the same colour, which is possible because together these vertices have at

most weight 1 of colour on (the union of) their neighbourhoods. Then for some i′ /∈ {1, 2, i}, give

y and vi′ colour 1
2 in common, leaving them only partially coloured, noting that this is possible

because at this point y and vi′ have colour at most 1 + 2 = 3 on their neighbourhoods (since w and

vi have the same colour). Next we greedily extend to all vertices of W \ {w, y, wj}, noting that this

is possible because all these vertices are adjacent to y and wj , which together have only 1
2 colour

on them at this point. We then greedily extend to wj , which is possible because wj is adjacent to

w, y, and vi, which together have weight 3
2 colour on them. Next we greedily extend to complete

the colouring of all vertices of (C ∪ {y}) \ {v1, v2}, which is clearly possible because v1 and v2 are
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still uncoloured. Finally we extend to v1 and v2, which is possible because both are complete to

{w, y, vi, vi′}, a set of four vertices with at most 5
2 colour on them. This contradicts the fact that

G is not fractionally (∆− ε)-colourable, and proves the third claim.

Our fourth claim is that {p, p′} ∩ {q, q′} 6= ∅. By the second claim, neither w nor y has any

neighbours outside of W in G−C. By the first claim, C ′ contains an edge in Fw and an edge in Fy;

we may assume without loss of generality that p ∈ V (C ′). By the third claim {p, p′, q, q′}∩W = ∅,

so G contains no edges between {w, y} and {p, p′, q, q′}. Therefore since C ′ is a clique in G2, yp

must be in F , so p ∈ {q, q′}. This proves the fourth claim.

Without loss of generality, for the remainder of Case 2 we assume p ∈ V (C ′) and p = q. Thus

we can also assume that p is adjacent to w3 and w4 in W . By the third claim p does not belong to

W .

We now complete the proof of Case 2. To do so we fractionally colour G by extending a (∆−ε)-

colouring κ of G−W −C −{p} as follows. We begin to extend κ by assigning κ[w] = κ[v5], noting

that v5 may or may not be adjacent to p. This is possible since together these vertices have at

most two coloured neighbours. Next we give v1 and w5 colour 1
2 in common, leaving them partially

uncoloured. This is possible since at this point |κ[N(v1)∪N(w5)]| ≤ 3. Next, we extend κ by giving

w4 and v4 the same set of colours, noting that since both are adjacent to p, at this point at most

7
2 ≤ ∆− ε− 1 colour appears on their neighbourhoods, so this is possible. Next, we give w3 and v3

common colour 1
2 , noting that both are adjacent to p. Since κ[N(v3)∩C] = κ[(N(w3)∩W )∪{v3}]

and |κ[N(v3)∩C]| = 5
2 , we have |α(v3)∩α(w3)| ≥ (∆− ε)− 5

2 −2 ≥ 1. We now greedily extend κ to

colour W −{w, y, w3, w4}, which is possible since y and w3 together have weight 3
2 not yet coloured.

Next we give y and v3 weight 1
2 of colour in common and leave them partially uncoloured, which is

possible because at this point |α(y)| ≥ 3
2 , and |κ[Ñ(v3)]\κ[Ñ(y)]| ≤ 1. We can now greedily extend

to C − {v1, . . . , v5}, since v1 and v2 together have weight 3
2 not yet coloured. Next we can extend

to complete the colouring of w3, since y and p together have weight 3
2 not yet coloured. Next we

can extend to complete the colouring of y, since v1 and v2 together have weight 3
2 not yet coloured.

Finally we can complete the colouring by extending greedily to complete the colouring of v1 and

v2, since each has weight at least 3
2 of colour appearing twice on its neighbourhood. This completes

the proof of Case 2.

This completes the proof of Case 2.
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Case 3: y = z and w is not in a Kω in G.

In this case, by the choice of w, there exists no vertex in G belonging to a maximum clique that

has two neighbours in a different maximum clique. Also, we know that every pair of vertices in C has

either zero or two common neighbours outside of C, for otherwise with a better choice of w, v1, v2

we would be in Case 1. Thus N(w) ∩ V (C) = N(y) ∩ V (C). By Lemma 5.7.1, |V (C) \N(w)| ≥ 2.

Again denote by p, p′ and q, q′ the neighbours of v3 and v4 outside C, respectively. We choose v3 and

v4 from V (C) \N(w) to maximize |{p, p′, q, q′}|. Subject to this, v3 and v4 are chosen to maximize

|{wp,wp′, yq, yq′} ∩ E(G)|. Note that |{p, p′} ∩ {q, q′}| ∈ {0, 2}, that {w, y} ∩ {p, p′, q, q′} = ∅, and

that in particular, y is nonadjacent to v4.

Noting that w, y /∈ {p, p′, q, q′}, we construct the graph G2 from G−C as in Case 2 by making

w adjacent to p and p′ and making y adjacent to q and q′. As in Case 2, we may assume G2 is not

fractionally (∆ − ε)-colourable; if it is then we extend a (∆ − ε)-colouring κ of G2 to a colouring

of G. (Observe that the colouring argument given in Case 2 does not make use of the fact that w

belongs to a maximum clique in that case.)

Therefore we may assume that either G2 contains a ∆-clique, or ∆ = 5 and G2 contains a copy

of C5 �K2. As in the previous case, let F = E(G2) \ E(G) ⊆ {wp,wp′, yq, yq′}. Let Fw and Fy

denote the edges of F incident to w and y in G2, respectively.

We claim that if ∆ = 5, G2 does not contain a copy X of C5 �K2. Suppose to the contrary

that adding the edges wp,wp′, yq, yq′ to G creates a copy of C5 �K2. Since G does not contain two

intersecting copies of K4, X contains two vertex-disjoint edges of F . It follows that w, y ∈ V (X),

and since ∆ = 5, Lemma 5.7.1 tells us that w and y are not adjacent. Further, since C5 � K2

is 5-regular, {p, p′, q, q′} ⊆ V (X) and F contains all four edges wp,wp′, yq, yq′. Since w does not

belong to a K4 in G, p and p′ do not form the intersection of two K4s in X. Likewise, neither do

q and q′. Also, if {p, p′} ∩ {q, q′} 6= ∅ then |{p, p′} ∩ {q, q′}| = 2 (since we are not in Case 1), which

is impossible because intersection of the neighbourhoods of two nonadjacent vertices in C5 �K2 is

the intersection of two K4s, a contradiction. Therefore w, y, p, p′, q, q′ are six distinct vertices.

Since exchanging the roles of v3 and v4 cannot reduce |F |, G contains no edges from {wq,wq′, yp, yp′}.

It follows that pp′ ∈ E(G) and qq′ ∈ E(G). Therefore by symmetry, bearing in mind that w and y

are nonadjacent in both G and G2, the only possible case is shown in Figure 5.8. Note here that

there is a different choice of w that would put us in Case 1, a contradiction.
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Figure 5.8: The only way to form C5 �K2 in Case 3. If w is the top vertex, we may instead choose
w as the vertex immediately below it to put us in Case 1.

We now proceed to prove that ω(G2) < ∆. Suppose G2 contains a ∆-clique C ′.

Our first claim is that |E(C ′)∩Fw| ≥ 1 and |E(C ′)∩Fy| ≥ 1. Suppose that |E(C ′)∩Fw| = 0.

Then clearly y ∈ V (C ′), and by Lemma 5.7.1, both edges yq, yq′ belong to E(C ′), and qq′ ∈ E(G).

But then C ′ − y is an ω-clique containing two neighbours of v4, which also belongs to an ω-clique.

This contradicts our choice of w. By a symmetric argument, |E(C ′)∩Fy| ≥ 1. This proves the first

claim.

Our second claim is that wy ∈ E(G) and ∆ ≥ 6. By the first claim, w and y belong to V (C ′).

By the choice of v3 and v4, w, y /∈ {p, p′, q, q′}. Thus wy ∈ E(G), and so w, y, v1, v2 form a K4. If

∆ = 5 this contradicts Lemma 5.7.1. This proves the second claim.

Our third claim is that |E(C ′)∩F | ≥ 3. Suppose that |E(C ′)∩F | = 2. By Lemma 5.7.7, the

two edges in E(C ′) ∩ F do not form a matching, and so they form a two-edge path. By the first

claim, one of the edges must be between w and y, contradicting the second claim. This proves the

third claim.

Our fourth claim is that |E(C ′) ∩ F | = 4. Suppose that |E(C ′) ∩ F | = 3. By Lemma 5.7.8,

at least two pairs of the edges in E(C ′)∩F intersect. Since w, y /∈ {p, p′, q, q′} the edges E(C ′)∩F

do not form a triangle, so they form a three-edge path. By Lemma 5.7.10 and the second claim,

∆ = 6.

Since wy ∈ E(G) and by symmetry between w and y and between p and p′, we may assume

p = q and the edges of the path are p′w,wp, py. Since |{p, p′}∩{q, q′}| 6= 1, p′ = q′ and pp′ ∈ E(G).

By the choice of v3, v4 maximizing |{p, p′, q, q′}|, v5 must be complete to {p, p′} or to {w, y}. But

then v5 belongs to two 5-cliques in G, contradicting Lemma 5.7.1. This proves the fourth claim.

We now know that |E(C ′)∩F | = 4. Suppose that the edges in E(C ′)∩F form two vertex-disjoint

two-edge paths. Then by Lemma 5.7.9, ∆ = 6. Now |{p, p′, q, q′}| = 4 and so wq,wq′, yp, yp′ ∈
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E(G). This contradicts the choice of v3 and v4, for reversing their roles would yield |F | = 0.

Since we are in Case 3, the edges in E(C ′) ∩ F therefore form a cycle of length four. It follows

that {p, p′} = {q, q′} and wy, pp′ ∈ E(G). By the choice of v3 and v4 maximizing |{p, p′, q, q′}|,

each of v5, . . . , vω is complete to either {w, y} or {p, p′}. Therefore by Lemma 5.7.1, ∆ ≥ 7. Since

each of w, y, p, p′ is adjacent to ∆− 3 vertices of C ′ in G, each has at most three neighbours in C.

Therefore ∆ = 7, and G is isomorphic to the graph (C5 �K3)− 2v pictured in Figure 5.2. Thus G

is indeed fractionally 13
2 -colourable and thus fractionally (∆− ε)-colourable, a contradiction.

This completes the proof of Case 3, and the proof of the lemma.

5.8 A superlocal version of Reed’s conjecture

In this section we prove Theorem 5.2.6. We have already mentioned Reed’s Conjecture and its

fractional relaxation in Section 5.2.1.

Conjecture 5.8.1 (Reed [69]). Every graph satisfies χ ≤ d1
2(∆(G) + 1 + ω(G))e.

Inspired by structural observations, King conjectured that McDiarmid’s Theorem 5.2.4 holds

in the integer setting [57].

Conjecture 5.8.2 (King [57]). Every graph G satisfies χ(G) ≤ dmaxu∈V (G)(ω(v) + d(v) + 1)e =

dmaxu∈V (G) ρ(v))e.

A typical example of a graph G for which γ(G) is far from χ(G) is the star K1,r. For such graphs

we have ∆(G) + ω(G) + 1 = maxv d(v) + ω(v) + 1, so the bound offered by the local conjecture

isn’t any better. And yet a greedy colouring algorithm can very easily 2-colour a star. So can we

get a better bound when vertices that are hard to colour (i.e. have high γ`(v)) form a stable set?

The answer, at least in the fractional setting and for certain graph classes, is yes. Our idea is that

a graph should be easy to colour if no two vertices with high ρ(v) are adjacent. This gives rise to

116



the invariants γ`̀ and γ′`̀ , which we define as follows:

For uv ∈ E(G), define γ′`̀ (uv) as 1
4(d(u) + d(v) + ω(u) + ω(v) + 2)

= 1
2(ρ(u) + ρ(v)).

Define γ′`̀ (G) as max
uv∈E(V )

γ′`̀ (uv).

For uv ∈ E(G), define γ`̀ (uv) as dγ′`̀ (uv)e.

Define γ`̀ (G) as dγ′`̀ (G)e.

In [34], we posed the natural conjecture regarding these invariants:

Conjecture 5.8.3. Every graph G satisfies χ(G) ≤ dγ`̀ (G)e.

One piece of evidence in support of this conjecture is the fact that the fractional relaxation

holds; Theorem 5.2.6 can be restated in this notation as follows.

Theorem 5.8.4. Every graph G satisfies χf (G) ≤ γ′`̀ (G).

In [34], we proved that Conjecture 5.8.3 holds for graphs with no stable set of size 3 and for line

graphs and quasi-line graphs. The proofs closely follow the proofs of the Local Reed’s Conjecture

for the corresponding graph classes, which appear in [18] and [57].

The proofs of Theorems 5.2.3, 5.2.4, and 5.8.4 all rely on the same natural fractional colouring

algorithm, originally due to Reed [65]: we add equal weight to every maximum stable set until

a vertex is completely coloured, then we discard all completely coloured vertices and continue

the process, respecting the fact that discarding vertices changes the set of maximum stable sets.

Improving the bounds we get is merely a matter of refining the analysis.

In the following discussion, we will use a slightly simpler definition of a fractional colouring than

we have been working with. Clearly, to show G is fractionally k-colourable, it is enough to find a

nonnegative weighting w on the stable sets of G such that
∑

S w(S) ≤ k, and for every vertex v,∑
S3v w(S) = 1. The proof of Theorem 5.2.4 relies on the following lemma, whose proof appears

in §2.2 of [57].

Lemma 5.8.5. Let S be a maximum stable set of G chosen uniformly at random. Then for any

vertex v, E(|S ∩N(v)|) ≥ 2− (ω(v) + 1)Pr(v ∈ S).
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Before proving Theorem 5.8.4 we need an easy generalization. For adjacent vertices u and v we

define N(u, v) as (N(u) ∪N(v)) \ {u, v}.

Lemma 5.8.6. Let S be a maximum stable set of G chosen uniformly at random. Then for any

adjacent vertices u and v,

E(|S∩N(u, v)|) ≥ 4− (ω(v)+2)Pr(v ∈ S)− (ω(u)+2)Pr(u ∈ S)−
∑

w∈N(v)∩N(u)

Pr(w ∈ S). (5.22)

Proof. We know by Lemma 5.8.5 that

E(|S ∩N(v)|) ≥ 2− (ω(v) + 1)Pr(v ∈ S) and (5.23)

E(|S ∩N(u)|) ≥ 2− (ω(u) + 1)Pr(u ∈ S). (5.24)

By linearity of expectation we have

E(|S ∩N(u, v)|) = E(|S ∩N(u)|) + E(|S ∩N(v)|)− E(|S ∩ Ñ(u) ∩ Ñ(v)|). (5.25)

Also by linearity of expectation, we have

E(|S ∩ Ñ(u) ∩ Ñ(v)|) = Pr(u ∈ S) + Pr(v ∈ S) +
∑

w∈N(v)∩N(u)

Pr(w ∈ S). (5.26)

Substituting (5.23), (5.24), and (5.26) into (5.25) gives us (5.22).

We are now ready to prove Theorem 5.8.4.

Proof of Theorem 5.8.4. We fractionally colour G using the following iterative method.

1. Set w(S) = 0 for every S ∈ S. Set G0 = G. Set i = 0.

Set T = 0. T stands for total weight used.

For each v ∈ V , set wov = 0 (wo stands for weight on).

2. If V (Gi) = ∅ or T = γ′`̀ (G) then stop.
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3. For each vertex v of Gi, let pi(v) be the probability that v is in a uniformly random maximum

stable set of Gi. Set low = min{1−wov
pi(v) |v ∈ V (Gi)}. Set vali = min(low, γ′`̀ (G)− T ).

4. Let Si be the set of maximum stable sets of Gi. For each stable set in Si, increase w(S) by

vali
|Si| . For each vertex v of Gi, increase wov by pi(v)vali. Increase T by vali.

5. Let Gi+1 be the graph induced by those vertices v which satisfy wov < 1. Increment i and go

to Step 2.

Our choice of vali ensures two things: that T never exceeds γ′`̀ (G), and that if the ith iteration

is not the last, then V (Gi+1) is properly contained in V (Gi). Thus the algorithm must terminate.

We claim that at the end of the procedure, the w(S) weights give a fractional γ′`̀ (G)-colouring.

It is easy to show by induction that at the end of each iteration and for every v ∈ V , wov =∑
{S∈S|v∈S}w(S) and T =

∑
S∈S w(S). The definitions of low and vali ensure that no wov is ever

more than 1. We stop if V (Gi) = ∅ or T = γ′`̀ (G); in the first case we know that we have the

desired fractional colouring. We must now show that the same is true in the second case. It suffices

to show that in this case, each wov = 1.

So assume that for some v we have wov < 1 when we complete the process. For each vertex

u and iteration i, denote by ai(u) the amount by which wou was augmented in iteration i, i.e.

ai(u) = valipi(u). There are two cases; we will show that each results in a contradiction.

Case 1: v has a neighbour u with wou < 1.

In this case {u, v} ⊆ V (Gi) for every i. For every i, let S be a maximum stable set drawn at

random from Si. Then by Lemma 5.8.6,

valiE(|S ∩N(u, v)|) =
∑

x∈N(u,v)

ai(x) ≥ 4vali− (ω(v) + 2)ai(v)− (ω(u) + 2)ai(u)−
∑

w∈N(u)∩N(v)

ai(w)

Summing over all iterations,

119



∑
x∈N(u,v)

wox ≥ 4T − (ω(v) + 2)wov − (ω(u) + 2)wou −
∑

w∈N(u)∩N(v)

wow

> ω(u) + ω(v) + d(u) + d(v) + 2− (ω(v) + 2)− (ω(u) + 2)− |N(u) ∩N(v)|

= d(u) + d(v)− |N(u) ∩N(v)| − 2 = |N(u, v)|,

a contradiction since wox ≤ 1 for each x ∈ N(u, v).

Case 2: Every neighbour u of v has wou = 1 at the end of the procedure.

For every neighbour u of v there exists some j such that u ∈ V (Gj) but u /∈ V (Gj+1). Choose

u maximizing j; this implies that NGi(v) = ∅ for all i > j, and consequently ai(v) = vali for each

i > j. When i ≤ j we again have

∑
x∈N(u,v)

ai(x) ≥ 4vali − (ω(v) + 2)ai(v)− (ω(u) + 2)ai(u)−
∑

w∈N(u)∩N(v)

ai(w)

by Lemma 5.8.6. Summing over the iterations up to j we see

∑
x∈N(u,v)

∑
i≤j

ai(x)

≥ 4(T −
∑
i>j

ai(v))− (ω(v) + 2)
∑
i≤j

ai(v)− (ω(u) + 2)
∑
i≤j

ai(u)−
∑

w∈N(u)∩N(v)

∑
i≤j

ai(w)

= d(u) + d(v) + ω(u) + ω(v) + 2− 4
∑
i>j

ai(v)−

(ω(v) + 2)
∑
i≤j

ai(v)− (ω(u) + 2)
∑
i≤j

ai(u)−
∑

w∈N(u)∩N(v)

∑
i≤j

ai(w)

≥ d(u) + d(v) + ω(u) + ω(v) + 2− (ω(v) + 2)
∑
i

ai(v)− (ω(u) + 2)wou −
∑

w∈N(u)∩N(v)

wow

> d(u) + d(v)− |N(u) ∩N(v)| − 2 = |N(u, v)|,

where the third inequality follows since ω(v) + 2 ≥ 4. This is a contradiction as wox ≤ 1 for each

x ∈ N(u, v).

It follows that for every v ∈ V (G), wov = 1. This completes the proof.
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Chapter 6

On the excluded grid theorem

6.1 Introduction

In the Graph Minors project, Robertson and Seymour introduced the notions of treewidth and tree

decomposition of graphs as an important tool in the proof of Wagner’s conjecture. 1 In particular,

as a step toward proving Wagner’s conjecture for the class of graphs not containing a fixed planar

graph as a minor, they proved the so-called Excluded Grid Theorem [75].

Theorem 6.1.1 (Roberton, Seymour [75]). For every k, there exists f(k) such that every graph

not containing a k × k-grid as a minor has treewidth at most f(k).

We will give precise definitions in the next section. In Robertson and Seymour’s original proof,

they showed that one can take f(k) to be a certain extremely large function of k containing iterated

exponential towers. In a subsequent paper with Thomas, they improved on this and showed that

f(k) could be taken to be about 202k5 [73]. At the same time, they suggested that this relationship

might be tightened to take f(k) = O(k2 log k). They also gave examples of graphs with treewidth

at least a multiple of k2 log k not containing a k × k-grid minor, so this would be best possible.

These are still the best known lower bounds, but Demaine et al. conjecture that there exist graphs

with treewidth Ω(k3) and no k × k-grid minor[25].

A polynomial upper bound on f(k) of any kind remained elusive for many years, although the

question received a fair bit of attention from other researchers. Demaine and Hagiaghayi showed

1Wagner’s conjecture states that for every infinite sequence of graphs G1, G2, . . . there exist i < j such that Gi is
isomorphic to a minor of Gj .
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that for each fixed graph H, graphs excluding an H-minor and a k × k-grid minor have treewidth

at most cHk, for some very large constant depending on H [24]. For general graphs, Diestel et al.

gave a simpler proof of a bound similar to Robertson et al.’s in [27]. Leaf and Seymour improved

Robertson et. al’s exponential function to take f(k) = 28k2 log k[61]. Kawarabayashi and Kobayashi

gave a different proof of a similar result [54]. In a landmark achievement, Chekuri and Chuzhoy

gave the first polynomial upper bound for f(k). They showed that one can take f(k) = O(k99)

in [13],[12], and later improved this to f(k) = O(k20) in [21] [22].

A key tool in Chekuri and Chuzhoy’s proof is the existence, in graphs with large treewidth, of

many disjoint subgraphs with ‘good’ linkedness properties (we will give precise definitions soon).

Our contribution in this chapter is a quantitative improvement of their result. Our proof also has

the advantage of being self-contained, while the result in [12] is implicitly shown inside the proof

of a complex algorithm. We use the same general scheme as [12] to obtain our main theorem,

but in several places we use different techniques. In particular we avoid probabilistic arguments.

Moreover in Section 6.6.2 we prove a theorem about partitioning a graph into parts with relatively

more edges inside than leaving each part, which may be of independent interest. With some work

(i.e. following arguments in [12]), Theorem 6.3.1 implies an upper bound f(k) = O(kδ), for some

δ < 99, but > 20. So this improves on Chekuri and Chuzhoy’s first result, but not their most recent.

The work presented in this chapter is joint with Paul Seymour and has not appeared elsewhere.

6.2 Definitions and notation

Before we can state our results precisely, we need to define some terms. A tree decomposition of a

graph G is a pair (T,B) where T is a tree on vertices v1, . . . , v` and B = {B1, . . . , B`} is a multiset

of subsets of V (G), called bags, satisfying ∪iBi = V (G). Further for each edge uv ∈ E(G) there

exists some Bi containing both u and v, and the set of bags containing a given vertex v correspond

to the vertices of a subtree of T . The width of a tree decomposition is the size of its largest bag

minus 1, and the treewidth of a graph is the minimum width of a tree decomposition. The treedwith

of G is denoted tw(G).

A set of vertices T ⊆ V (G) is vertex-well-linked if for any two equal-sized subsets T1, T2 of

T (not necessarily disjoint) there are |T1| vertex-disoint paths, each joining a vertex in T1 to a
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vertex in T2. A set T ⊆ V (G) is edge-well-linked if for any two equal-sized subsets T1, T2 of T

(not necessarily disjoint) there are |T1| edge-disoint paths, each joining a vertex in T1 to a vertex

in T2. If 0 < α ≤ 1, we say a set T is α-well-linked if for every separation (A,B) in G we have

|A ∩B| ≥ αmin{|A ∩ T |, |B ∩ T |}.

Reed proved that treewidth and the size of a largest vertex-well-linked set are tied by a constant

factor [70].

Lemma 6.2.1. Let G be a graph, and suppose k is the size of the largest vertex-well-linked set in

G. Then k
4 − 1 ≤ tw(G) ≤ k − 1.

If S ⊆ V (G) we denote by Γ(S) those vertices in S with a neighbour in V (G) \ S. We will also

need a simple lemma whose proof can be found in [12].

Lemma 6.2.2. Let x1, . . . , xn be integers with
∑k

i=1 xi = N and xi ≤ 2N
3 for each i. Then there

exists a partition (A,B) of [n] such that
∑

i∈A xi ≥
N
3 and

∑
i∈B xi ≥

N
3 .

Let G be a graph with maximum degree ∆(G) and assume that G has a set T of k vertex-well-

linked vertices. We can now define the main object of our interest.

Definition 6.2.3. Let h be an integer and α ≤ 1 be a positive number. We say S ⊆ V (G) is an

(α, h)-good router for T if

(a) S ∩ T = ∅,

(b) Γ(S) is α-well-linked in G[S],

(c) there exist h vertex disjoint paths between S and T .

The set T will generally be fixed in what follows, and so we usually just call S an (α, h)-good

router.

6.3 The main result

We prove the following.

Theorem 6.3.1. Let G be a graph and T ⊆ V (G) be a set of k vertex-well-linked vertices. Suppose

that r, h, α satisfy

123



1. 2700(r + 1)2hα−1∆(G) ≤ k

2. 2α∆(G) log(512krh2α−2∆(G)2) < 1
8r

Then there exist r disjoint (α, h)-good routers in G.

In [12] they show implicitly that G has r disjoint (α, h)-good routers for certain values of

h = O(kε), r = O(k
ε
20 ) and α−1 = Ω(k

ε
10 ) for some ε < 1 (they use ε ≈ 1

98 but ε = 10
11 seems to

work). Their proof may imply something more general, but their techniques require at least that

hα−1 = O(k) and α−1 = Ω(r2) and ∆(G) = O(log3(k)). Our result implies theirs, and gives more

flexibility in the parameters r, h and α. In particular, it weakens the dependence of α on r- under

the conditions of Theorem 6.3.1, one could take α−1 = O(r∆(G) log k).

The rest of the chapter is dedicated to proving Theorem 6.3.1. It is organized as follows. In

Section 6.4 we reduce the problem to an easier formulation to work with. Then, in Section 6.5 we

state the two main lemmas we need, and deduce Theorem 6.3.1. These two lemmas correspond

roughly to results that Chekuri and Chuzhoy use in [12] but our proofs are completely different.

The last three sections contain proofs.

6.4 An alternate characterization of good routers

Let G be a graph, and fix a set T of vertex-well-linked vertices. As was observed in [12], the next

lemma shows that Property (c) in the definition of a good router can be replaced by a lower bound

on the size of |Γ(S)| if we assume that G is minimal with the property that T is vertex-well-linked.

For the rest of this chapter, we will make this minimality assumption on G. We also assume that

T is a vertex-well-linked set of maximum size k, and so tw(G) ≤ 4k by Lemma 6.2.1.

Lemma 6.4.1. Let G be a graph, T a set of k vertex-well-linked vertices. Suppose further that G

is minimal, with respect to vertex-deletion, such that T is vertex-well-linked. If S ⊂ V (G) satisfies

Properties (a), (b) and

(c’) |Γ(S)| ≥ 4h
α

then S is an (α, h)-good router for T .
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Lemma 6.4.1 is an easy corollary of the next lemma, which essentially comes from [14], and

Menger’s theorem [64].

Lemma 6.4.2. Let H1, H2 ⊆ V (G) be disjoint subsets of vertices and suppose that H1 is vertex-

well-linked and H2 is α-well-linked for some 0 < α ≤ 1. Let G′ be obtained from G by adding a

vertex s complete to H1 and a vertex t complete to H2. Now suppose that the minimum s− t vertex

cut in G′ has size γ ≤ k, and that γ ≤ α
4 |H2|. Then there exists a vertex v ∈ V (G) such that H1 is

still vertex-well-linked in G \ {v}.

If G is minimal such that T is vertex-well-linked and S satisfies Properties (a), (b) and (c’), then

by Menger’s theorem and Lemma 6.4.2 there are at least α
4 |Γ(S)| vertex-disjoint paths between S

and T . Thus Property (c) is implied by Property (c’), and so S is an (α, h)-good router.

A proof of Lemma 6.4.2 can be found in Section 6.8.

6.5 A roadmap of the proof

Recall, we want to find r disjoint (α, h)-good routers for some appropriately chosen parameters.

As described in Section 6.4, we assume G is minimal such that T is vertex-well-linked. We also

assume hereafter for simplicity that the vertices in T have degree 1. This is easy to achieve since

replacing a vertex in T with a new degree-1 vertex adjacent to it doesn’t affect the well-linkedness

of T .

There are two major steps to the proof of Theorem 6.3.1. We begin with a partition of the

vertex set of G\T , such that each set X in the partition has |Γ(X)| ≤ 4h
α and Γ(X) is α-well-linked

in G[X] and G[X] is connected. That is, each part satisfies Properties (a) and (b) but not Property

(c’). Assume the partition is chosen so that the graph H obtained from G by contracting each

part into a single vertex and deleting loops has a minimum number of edges. By construction H

has maximum degree ∆(H) ≤ 4h∆(G)
α and H has treewidth < k, since H is a minor of G. The

following lemma allows us to partition V (H) \ T into r parts where the number of edges in each

part is relatively large compared to the number of edges leaving.

Lemma 6.5.1. Let H be a connected graph with maximum degree ∆(H), treewidth tw(H) < k and

a set T ⊂ V (H) of k vertices of degree 1. Suppose that T is edge-well-linked. Suppose further that
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|E(H \ T )| ≥ 225(r + 1)2∆(H).

Then there exist nonempty subsets {X1, . . . , Xr} of V (H) \ T such that for each 1 ≤ i ≤ r

• |δH(Xi)| ≤ 32kr∆(H)2

• |EH(Xi)| ≥ |δH(Xi)|
8r

This lemma will be proved in Section 6.6.

The partition of H given by Lemma 6.5.1 corresponds naturally to a partition of G. The next

step is to show that each of these parts, taken as a subgraph of G, contains an (α, h)-good router.

To achieve this, we will repartition each of the r parts Xi into a collection of sets, such that each

set X satisfies Properties (a) and (b), and such that the new partition has a smaller number of

edges between parts than there were in H[Xi]. The minimality of |E(H)| will then imply that one

of the parts must satisfy Property (c’). The repartitioning will be given by the following lemma.

Lemma 6.5.2. Let x be a number satisfying 4α∆(G) log(x) ≤ 1
2 . Let G be a graph with maximum

degree ∆(G), and X ⊆ G with |Γ(X)| ≤ x. Then, there exists a partition C of X, where each part

C ∈ C has Γ(C) α-well-linked in C and such that the number of edges of G with ends in different

parts of C is at most 2α∆(G)|Γ(X)| log(|Γ(X)|).

Lemma 6.5.2 will be proved in Section 6.7, but for now we already have the tools necessary to

prove our main result, Theorem 6.3.1.

Proof of Theorem 6.3.1. Let X be a partition of V (G) \ T such that each part X ∈ X satisfies

Properties (a) and (b) but not Property (c’). Such a partition exists, since each vertex taken

as a singleton set satisfies (a) and (b) but not (c’). Let H be the graph obtained from G by

contracting each part in X to a single vertex and deleting loops, and assume that the partition X

is chosen so that |E(H)| is minimum. Now, by Property (c’) the graph H has maximum degree

∆(H) ≤ 4hα−1∆(G). Also, since H is a minor of G, we have tw(H) ≤ tw(G) < k. Since T is

vertex-well-linked in G, it is edge-well-linked in H.

We claim that |E(H \ T )| ≥ k
3 . To see this, we contend that there is a partition of T into two

sets T1 and T2 so that |T1| ≥ k
3 and |T2| ≥ k3 and so that if t, s ∈ T have a common neighbour in

V (H) \ T , then they both belong to the same part. Then, there are k
3 edge-disjoint paths from T1

to T2 by the edge-well-linkedness of T . By the choice of the partition, each of these must use an
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edge in E(H \ T ) and the claim follows. To obtain such a partition, it suffices to observe that each

vertex in H has degree at most 4hα−1∆(G) ≤ k
3 and to apply Lemma 6.2.2.

We deduce that |E(H \ T )| ≥ k
3 ≥ 900(r + 1)2hα−1∆(G) ≥ 225(r + 1)2∆(H). Then, according

to Lemma 6.5.1, we can find a partition of V (H)\T into r non-empty parts {X1, . . . , Xr} satisfying

for each 1 ≤ i ≤ r

• |δH(Xi)| ≤ 32kr∆(H)2

• |EH(Xi)| ≥ |δH(Xi)|
8r

Let Y1, . . . , Yr be the subsets of V (G) obtained by uncontracting the vertices in each set Xi. Any

subset of Yi satisfies Property (a) easily, since the Xi are disjoint from T .

Now, let x = 32kr∆(H)2. Since ∆(H) ≤ 4hα−1∆(G) it follows from our assumptions that

4α∆(G) log(x) ≤ 1
2 . It then follows from Lemma 6.5.2 that there exists a partition of each Yi into

parts satisfying Property (b) with at most

2α∆(G)|Γ(Yi)| log(|Γ(Yi)|)

≤ 2α∆(G)|δ(Yi)| log(|δ(Yi)|)

≤ 2α∆(G) log(x)|δ(Yi)|

≤ 2α∆(G) log(512krh2α−2∆(G)2)|δ(Yi)|

< |δ(Yi)|
8r

edges going between different parts. If none of the parts in this partition satisfies Property (c’)

then this contradicts the minimality of |E(H)|. So Yi has a subset satisfying Properties (a), (b)

and (c’). This gives r disjoint (α, h)-good routers, as needed.

6.6 Proof of Lemma 6.5.1

In this section, we give the proof of Lemma 6.5.1. In order to do so, we need to treat the cases where

the graph has a large number of vertices separately from the case where the number of vertices
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is bounded. We need different machinery for each of these two cases. In Section 6.6.1 we present

tools to deal with the case when the number of vertices is large. Then in Section 6.6.2 we develop

what we will need to deal with the bounded case. We then complete the proof in Section 6.6.3.

6.6.1 Dual branch-decompositions

To deal with the case where the graph has a large enough number of vertices, we establish here the

existence of a certain decomposition of a graph along bounded size edge cuts. Most of these results

are essentially proved in Section 3 of Graph Minors X [76], but we give the theorems explicitly for

completeness.

A ternary tree is a tree where every vertex has degree either 1 or 3. For a tree T we denote by

L(T ) its set of leaves. The main result in this section is the following.

Lemma 6.6.1. Suppose G has treewidth < k and maximum degree ∆. Then there exists a ternary

tree T and a bijective mapping between V (G) and L(T ) with the following property: Each edge

e ∈ E(T ) partitions L(T ) into two sets in the natural way, say Xe and V (G)\Xe. For each e there

are at most k∆ edges between Xe and its complement.

We will give a sketch of the proof, but for that we need a little background. First, some

definitions. Let us define, for each X ⊆ V (G), a function κ0(X) = |{uv ∈ E(G); |{u, v} ∩X| = 1}|.

Then let κ(X) = κ0(X)− k∆, and observe that κ(X) = κ(V (G) \X) and κ is submodular. Hence

κ meets the requirements to be a connectivity function as defined in [76]. The efficient subsets of

V (G) are those which correspond to one side of edge cuts with at most k∆ edges. A bias is a set

B of efficient subsets satisfying

• if X ⊆ V (G) is efficient then B contains one of X,V (G) \X

• if X,Y, Z ⊆ V (G) then X ∪ Y ∪ Z 6= V (G).

We say that a bias B extends a set A of efficient sets if A ⊆ B.

An incidence is a pair (v, e) where v ∈ V (T ) and e is an edge of T incident with v. An exact

tree-labelling over A is a pair (T, α) where T is a ternary tree and α is a map from the incidences

of T to the efficient subsets of V (G) such that

1. for each e = uv ∈ E(T ), α(u, e) = V (G) \ α(v, e)
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2. for each incidence (v, e) in T where v is a leaf, either α(v, e) = V (G) or α(v, e) ∪X = V (G)

for some X ∈ A

3. if v ∈ V (T ) has degree three, incident with edges e, f, g, say, then α(v, e)∪α(v, f)∪α(v, g) =

V (G), and these three sets are mutually disjoint.

In [76] it is shown that for any set A of efficient subsets, there is a bias extending A if and only

if there is no exact tree-labelling over A.

A tangle of order k is a collection T of separations of order < k in G such that

i. for every separation (A,B) of order < k either (A,B) or (B,A) belongs to T

ii. if (A1, B1), (A2, B2), (A3, B3) belong to T then A1 ∪A2 ∪A3 6= G

iii. if (A,B) ∈ T then V (A) 6= V (G).

Assertions i.,ii. and iii. are called the tangle axioms. The tangle number of G, denoted tn(G)

is the maximum order of a tangle in G. We have (see for example [46])

tn(G) ≤ tw(G) + 1 ≤ 3
2tn(G).

Now we need a lemma that is similar to Lemma 4.3 (1) in [76]. Let A = {{v}; v ∈ V (G)}.

Lemma 6.6.2. There is a bias extending A if and only if G has a tangle of order k + 1.

Proof of Lemma 6.6.2. If T is a tangle in G of order k+ 1 then let B = {V (A); (A,B) ∈ T }. Since

|A ∩ B| ≤ k we have |E(A, V (G) \ A)| ≤ k∆ so B is a bias and it extends A by the third tangle

axiom.

Conversely, let B be a bias extending A and let T be the set of all separations (A,B) of order

≤ k with V (A) ∈ B. We claim that T is a tangle of order k + 1. Well, if (A,B) is a separation of

order ≤ k then both V (A) and V (B) are efficient, so one of them belongs to B, say V (A). Then

(A,B) ∈ T . So the first axiom holds, and clearly the second and third do as well. This completes

the proof of Lemma 6.6.2.

Proof of Lemma 6.6.1. Let A = {{v}; v ∈ V (G)}. The above discussion implies that the following

are equivalent.
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1. There is an exact tree-labelling over A

2. There is no bias extending A

3. There is no tangle of order k + 1 in G

4. tn(G) ≤ k

Consequently if tw(G) ≤ k − 1 then there is an exact tree-labelling (T, α) over A.

We now need to give the bijection between L(T ) and V (G). From the definition of an exact tree-

labelling, for each incidence (v, e) of T where v is a leaf, we have α(v, e) = V (G) or α(v, e) = V (G)\x

for some x ∈ V (G).

Claim 2. We may assume T has no leaf incidences (v, e) with α(v, e) = V (G).

Suppose there is such an incidence (v, e). Let u be the other end of e. We have α(u, e) = ∅ /∈ A.

In particular u is not a leaf. Assume u is incident with edges e1 = uv1 and e2 = uv2. Let T ′ be

obtained from T as follows. Let V (T ′) = V (T )\{u, v} and E(T ′) = E(T )\{e, e1, e2}∪{f = v1v2}.

We now define an exact tree-labelling over A using T ′ instead of T . For each incidence (w, h)

of T ′, define α′(w, h) = α(w, h) if (w, h) is an incidence of T . Define α′(v1, f) = α(v1, e1) and

α′(v2, f) = α(v2, e2). It is easy to check that (T ′, α′) is an exact tree-labelling over A. The claim

follows by repeatedly removing leaf incidences in this manner.

Now, for each leaf incidence (v, e) of T , define γ(v) = V (G) \α(v, e); note that γ(v) is always a

single vertex. We claim that γ is the desired bijection between L(T ) and V (G). Since each α(v, e)

corresponds to an efficient subset, i.e. an edge cut with at most k∆ edges, it is enough to prove

the following.

Claim 3. Let e = uv ∈ E(T ) and let T ue and T ve be the components of T \ e containing u and v,

respectively. Then {γ(w) : w ∈ L(T ) ∩ Tu} = α(v, e) and {γ(w) : w ∈ L(T ) ∩ Tv} = α(u, e).

Proof. If e is a leaf edge, then the claim is clearly true. Suppose then that both u and v have degree

3, and suppose that u is incident with edges e, e1 = uv1, e2 = uv2. Assume the claim is true for e1

and e2. We have L(T ) ∩ T ve = L(T ) ∩ T ue1 ∩ T
u
e2 and L(T ) ∩ T ue = L(T ) ∩ (T v1e1 ∪ T

v2
e2 ). From the

definition of a tree-labelling, we have α(u, e) = V (G) \ (α(u, e1) ∪ α(u, e2)) = α(v1, e1) ∩ α(v2, e2).
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Also α(v, e) = V (G) \ α(u, e) = α(u, e1) ∪ α(u, e2). So the claim is true for e as well. Inductively

the claim holds for all edges.

This completes the proof of Lemma 6.6.1.

The decomposition given by Lemma 6.6.1 will allow us to obtain the disjoint subsets of a graph

called for in Lemma 6.5.1 by partitioning the ternary tree appropriately.

Lemma 6.6.3. Let T be a ternary tree and suppose r < L(T ). Then there exists a partition of T

into subtrees T1, . . . , Tr, each containing at least L(T )
2r−1 leaves, and δT (Ti) ≤ r−1 for each 1 ≤ i ≤ r.

Further, there exists a set of b r2c disjoint subtrees T1, . . . , Tb r2 c
, each containing at least L(T )

2r−1 leaves,

and δT (Ti) ≤ 3 for each i.

Proof. Let F denote the family of subtrees of T which contain at least L(T )
2r−1 leaves in L(T ) and

which have at most r − 1 edges leaving them. We begin by finding r disjoint subtrees in F (but

not necessarily with union spanning the entire tree). To do this, we use the Helly property for a

family of subtrees of a tree. Namely, either there exist r disjoint subtrees in F or there exists a

set of r − 1 vertices in T meeting every member of F . If we find the r disjoint trees then we’re

done; else we find r − 1 vertices that hit all subtrees in the family. We can assume that none of

these vertices belong to L(T ) (because in this case L(T )
2r−1 > 1 and so any member of F containing a

leaf also contains its parent). Now, removing these r − 1 vertices, we are left with at most 2r − 1

connected components. Each of them is a tree with at most r − 1 edges leaving to the rest of T .

One of them must have L(T )
2r−1 leaves, contradicting the fact that we hit all such subtrees. So there

must exist r disjoint trees each with at least L(T )
2r−1 leaves, we want to grow these subtrees so that

they partition T . We can add vertices to the subtrees greedily until they partition the vertices of

T . This proves the first assertion.

Then consider the ‘touching graph’ of the subtrees, i.e. make a vertex for each subtree and

join two if there is an edge between them in T . This touching graph is a simple tree, and it has

r vertices, and therefore r − 1 edges, and hence average degree ≤ 2. It follows that at least half

of the subtrees in our set have at most 3 edges sticking out. This proves the second assertion and

completes the proof of Lemma 6.6.3.
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6.6.2 A partition into sets containing many edges relative to the number leaving

In this section, we show the following lemma which almost gives the subsets that we are looking

for in Lemma 6.5.1, but without the guarantee of an upper bound on the number of edges leaving

each set. We will therefore apply it in the case when the graph has a bounded number of vertices

(and hence a bounded number of edges).

Lemma 6.6.4. Let G be a graph with maximum degree ∆ and let r > 0. Suppose that |E(G)| ≥

225r2∆(G). Then there exists a partition of V (G) into r parts {X1, . . . , Xr}, with the property that

for each 1 ≤ i ≤ r, 4(r − 1)|E(Xi)| ≥ |δ(Xi)|.

Proof. Choose a partition {X1, . . . , Xr} of V (G) so that the product
∏

1≤i≤r |E(Xi)| is maximized.

Consider two parts Xi and Xj , say, and let v ∈ Xi with xi neighbours in Xi and xj neighbours in

Xj . From the maximality of the chosen partition we have

(|E(Xj)|+ xj)(|E(Xi)| − xi) ≤ |E(Xi)||E(Xj)|

or simply |E(Xj)|xi ≥ |E(Xi)|xj − xixj . Summing this inequality over all vertices in Xi it follows

that

|E(Xj)|(2|E(Xi)|) ≥ |E(Xi)||E(Xi, Xj)| − 2|E(Xi)|∆.

Simplifying and summing over all j 6= i, we obtain

∑
i 6=j
|E(Xj)|+ (r − 1)∆ ≥ 1

2 |δ(Xi)|.

If |E(Xi)| ≥ ∆, then the required inequality 4(r − 1)|E(Xi)| ≥ |δ(Xi)| holds. Thus it is enough to

show that for each i we have |E(Xi)| ≥ ∆.

Suppose to the contrary that |E(X1)| < ∆, say. We claim that there exists some i 6= 1 with

|E(Xi)| ≥ 225∆. For if not, then the total number of edges inG is less than (∆+(r−1)225∆)(1+(r−

1))+r∆ ≤ 225r2∆, contrary to our hypothesis. Without loss of generality assume |E(X2)| ≥ 225∆.

Then |E(X1)||E(X2)| ≤ 1
225 |E(X2)|2.

By Lemma 6.6.5 (see below) there exists a partition of X1 ∪X2 into two parts Y1, Y2 such that

|E(Y1)|, |E(Y2)| ≥ 1
15(|E(X1)| + |E(X2)| + |E(X1, X2)|). But then |E(Y1)||E(Y2)| > 1

225 |E(X2)|2,
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contradicting the maximality of
∏

1≤i≤r |E(Xi)|.

Lemma 6.6.5. Let G be a graph with maximum degree at most ∆ (possibly with loops) and suppose

|E(G)| ≥ 5
2∆. Then there exists a partition {X1, X2} of V (G) such that |E(X1)|, |E(X2)| ≥

1
15 |E(G)|.

Proof. We begin by obtaining an auxiliary graph G′ from G, where G′ has exactly four vertices

and every vertex has degree at least half the maximum degree (note G′ may have maximum degree

greater than ∆).

Since |E(G)| ≥ 5
2∆, the graph G must have at least 5 vertices. If G has two vertices the sum

of whose degrees is less than ∆, then identify these two vertices, keeping loops. Abusing notation

slightly, let G denote this new graph. Repeat this step until there no longer exists such a pair

of vertices in G. Let d1 ≤ d2 ≤ · · · ≤ dn be the degree sequence in G. Then d1 + d2 > ∆ and

d3, . . . , dn ≥ 1
2(d1 +d2). Thus, let G′ be obtained from G by identifying the two vertices of smallest

degree. Observe that in G′ every vertex has degree at least half that. Identifying the two vertices

in G′ with smallest degree preserves this property; so until G′ has exactly four vertices, repeat this

step. Any partition of V (G′) satisfying the conclusion of the lemma gives a corresponding partition

of V (G) which also satisfies it, by unidentifying vertices.

Now, write ∆′ and E′ for the maximum degree and number of edges in G′, respectively, and

observe that ∆′ ≤ E′ ≤ 2∆′. Let v1, v2, v3, v4 be the four vertices of G′ and for i 6= j let eij be

the number of edges between vi and vj . Finally let `i denote the number of loops incident with vi.

For each i, we have 2`i +
∑

j 6=i eij ≥
1
4E
′. It follows that for each i, there exists j 6= i such that

`i + eij ≥ 1
12E

′. If we can find two disjoint pairs i, j with this property then this gives the desired

partition. Assume for a contradiction then, that the only pairs satisfying the previous inequality

are 1, 2 and 1, 3 and 1, 4 and without loss of generality suppose e12 ≤ e13 ≤ e14. We can assume

further that e24 + `2 + `4 <
1
15E

′ and e23 + `2 + `3 <
1
15E

′ and e34 + `3 + `4 <
1
15E

′. By assumption

2`1 + e12 + e13 + e14 ≤ 2(2`2 + e12 + e23 + e24); we deduce that 2`1 + e13 + e14 < e12 + 4
15E

′. It

follows that e14 + `1 <
4
15E

′ and therefore that e12 + `1, e13 + `1 <
4
15E

′ as well, a contradiction.
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6.6.3 The proof

We are now ready to prove Lemma 6.5.1. Let us first recall the statement.

Lemma. Let H be a connected graph with maximum degree ∆(H), treewidth tw(H) < k and a

set T ⊂ V (H) of k vertices of degree 1. Suppose that T is edge-well-linked. Suppose further that

|E(H \ T )| ≥ 225(r + 1)2∆(H).

Then there exist nonempty subsets {X1, . . . , Xr} of V (H) \ T such that for each 1 ≤ i ≤ r

• |δH(Xi)| ≤ 32kr∆(H)2

• |EH(Xi)| ≥ |δH(Xi)|
8r

Proof of Lemma 6.5.1. We consider two cases, depending on the size of |V (H)|.

Case 1: |V (H \ T )| ≥ 64kr∆(H).

In this case we can actually obtain a stronger conclusion than the lemma statement, namely

• |δH(Xi)| ≤ 5k∆(H)

• |EH(Xi)| ≥ |δH(Xi)|
2 .

By Lemma 6.6.1, there exists a ternary tree T and a bijection between V (H) \ T and L(T )

such that for each edge of T , the corresponding cut in H contains at most k∆ edges. According to

Lemma 6.6.3 there exist r disjoint subtrees of T , say T1, . . . , Tr, each containing at least |V (H\T )|
4r−1

leaves of T and such that for each i we have |δT (Ti)| ≤ 3. It follows that there exist r subsets of

V (H \ T ), say X1, . . . , Xr with |Xi| ≥ |V (H\T )|
4r−1 and |δH(Xi)| ≤ 3k∆(H) + k ≤ 5k∆(H) (where

the additional k term comes from the terminals T ). Now, since H is connected each vertex in Xi

either belongs to Γ(Xi) or has a neighbour in Xi, and so |EH(Xi)| ≥ 1
2( |V (H\T )|

4r−1 − |δH(Xi)|). Since

|V (H \ T )| ≥ 64kr∆(H), we have |EH(Xi)| ≥ |δH(Xi)|( r

r−1
4

− 1
2) ≥ |δH(Xi)|

2 , as required.

To be sure each setXi is nonempty we need |V (H\T )|
4r−1 positive, but this is true since 8kr∆(H) > 1.

Case 2: |V (H \ T )| ≤ 64kr∆(H).

In this case we have |E(H \ T )| ≤ 32kr∆(H)2. By hypothesis, we also have |E(H \ T )| ≥

225(r+1)2∆(H). Applying Lemma 6.6.4, there exist r+1 disjoint subsets X1 . . . Xr+1 ⊆ V (H \T )

with the property that |E(Xi)| ≥ 1
4r |δ(Xi)| for each 1 ≤ i ≤ r + 1.
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Now, viewing each Xi as a subset of |V (H)|, we can assume, by discarding one set if necessary,

that each of X1, . . . , Xr has at most k
2 neighbours in T . Because T is edge-well-linked, edges

incident with vertices in T make up at most half of the edges in δ(Xi). Thus each Xi satisfies

|δ(Xi)| ≤ 32kr∆(H)2 and |E(Xi)| ≥ 1
8r |δ(Xi)|.

6.7 Proof of Lemma 6.5.2

Let us restate Lemma 6.5.2 for convenience.

Lemma. Let x be a number satisfying 4α∆(G) log(x) ≤ 1
2 . Let G be a graph with maximum degree

∆(G), and X ⊆ G with |Γ(X)| ≤ x. Then, there exists a partition C of X, where each part C ∈ C

has Γ(C) α-well-linked in C and such that the number of edges of G with ends in different parts of

C is at most 2α∆(G)|Γ(X)| log(|Γ(X)|).

Proof of Lemma 6.5.2. We begin with X ⊆ G; the set X has a subset Γ(X) of vertices which have

neighbours in V (G)\X. For convenience, we will consider X along with a ‘half-edge’ incident with

each vertex in Γ(X). We’ll denote the set of half-edges by δ(X). If C is a subset in a partition of

X we denote by Γ(C) those vertices that either have a neighbour in a different part, or belong to

Γ(X).

We begin with the partition C = {X} and, by hypothesis |Γ(X)| ≤ x. If Γ(X) is α-well-linked

in X then this is the desired decompostion of X with 0 edges.

So X is not α-well-linked, and so there exists a separation (A,B) of X with |A∩B| < αmin{|A∩

Γ(X)|, |B∩Γ(X)|}|. Assume that |A∩Γ(X)| ≤ |B∩Γ(X)|. Then there are at most α|A∩Γ(X)|∆(G)

edges between A and X \A. We have α∆(G) ≤ 1
6 so |Γ(A)| ≤ 2

3 |Γ(X)|. We now have a partition of

X into A and X \A; if both are α-well-linked we stop, otherwise we further decompose pieces along

small cuts. We continue refining the partition iteratively until we either find a large α-well-linked

cluster or we get a decomposition of X into small α-well-linked clusters. In the first situation, we

are happy. In the second situation, let us count the number of edges we have between parts.

We use a potential function argument. Let C = {C1, . . . , Cn} be a partition of X. For each

edge e ∈ E(X) ∪ δ(X) we will assign a potential function φ(e, C).
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First, for each z > 0 define ρ(z) = 4α∆(G) log(z), and we need that ρ(x) < 1
2 . Let

φ(e, C) :=


φ(e) = 1 + ρ(z) + ρ(z′) if for some i, j, e ∈ E(Ci, Cj), and |Γ(Ci)| = z, |Γ(Cj)| = z′,

φ(e) = 1 + ρ(z) if e ∈ δ(X) and some end of e ∈ Ci with |Γ(Ci)| = z,

0 otherwise, i.e. both ends belong to the same part.

Observe that φ(e) ≤ 2, for every edge e. So the sum of all potentials of edges in E(X) ∪ δ(X)

is at most twice the number of such edges.

At the start the total potential is just |Γ(X)|(1 + 4α∆(G) log(|Γ(X)|))|. Each time we refine

the partition we claim that the potential decreases. Consider partitioning a part C ⊆ X into two

new sets (C1, C2). Assume that |Γ(C) ∩ C1| ≤ |Γ(C) ∩ C2|. We have |Γ(C1)|, |Γ(C2)| ≤ |Γ(C)|,

since α∆(G) < 1. For each edge e ∈ δ(C) ∩ δ(C2) the value of φ(e) decreases by ρ(|Γ(C)|) −

ρ(|Γ(C2)|). For each edge e ∈ δ(C) ∩ δ(C1), since |Γ(C1)| ≤ 2
3 |Γ(C)| the potential decreases by at

least 4α∆(G)(log(|Γ(C)|)− log(2
3 |Γ(C)|)) ≥ 4α∆(G) log(1.5), so we have a total decrease of at least

4 log(1.5)α∆(G)|C1 ∩ Γ(C)|. Finally, those edges e ∈ E(C1, C2), which previously had potential 0,

now have a positive φ(e) = 1+ρ(|Γ(C1)|+ρ(Γ(C2))) ≤ 2. So in total the increase in potential from

these edges is at most 2α∆(G)|C1 ∩ Γ(C)| and overall, the potential is decreased.

So, when we have refined the partition of X to a point where all parts are α-well-linked, we

are left with a total potential of at most |Γ(X)|(1 + 4α∆(G) log(|Γ(X)|))|. Each half-edge in δ(X)

contributes at least 1 to the total, and so we must have created at most 2α∆(G)|Γ(X)| log(|Γ(X)|)

new edges, as needed.

6.8 Proof of Lemma 6.4.2

Here we give the proof of Lemma 6.4.2. The proof is an adaptation of a similar result in [14] but

we provide it for completeness.

Proof of Lemma 6.4.2 (adapted from [14]). We know there exists a separation (A,B) with H1 ⊆ A

and |H2 ∩ (B \A)| ≥ 1
2H2 and |A ∩B| = γ. The second condition is true since γ ≤ 1

2 |H2|. Choose

such a separation (A,B) that also minimizes |B|. (Note we don’t necessarily require H2 ⊆ B here.)

We claim there’s a vertex in B \ A that we can delete. If not, then pick a vertex v ∈ B \ A and

there’s some separation (S, T ) with |S ∩H1| = ` and |S ∩ T | = ` and v ∈ S ∩ T .

Now, denote by i = |H2∩(B\A)∩(S\T )| and j = |H2∩(B\A)∩(T \S)| and h = |(H2∩S∩T )\A|.
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By submodularity of vertex cuts we have

|A ∩B|+ |S ∩ T | ≥ |(S ∩A) ∩ (B ∪ T )|+ |(B ∩ T ) ∩ (S ∪A)|.

Also, we have

|A ∩B|+ |S ∩ T | ≥ |(A ∩ T ) ∩ (B ∪ S)|+ |(B ∩ S) ∩ (A ∪ T )|.

Recall that |A ∩B|+ |S ∩ T | = `+ γ.

We know (since H1 ⊆ A) that |(S ∩A) ∩ (B ∪ T )| ≥ ` and also |(A ∩ T ) ∩ (B ∪ S)| ≥ `. So we

can assume that |(B ∩ S) ∩ (A ∪ T )| ≤ γ and |(B ∩ T ) ∩ (S ∪A)| ≤ γ otherwise we are done.

We claim that (T \S)∩B and (S\T )∩B are both nonempty. For, suppose (T \S)∩B = ∅. Then

A∩B ⊆ S, and since v ∈ B \A there are at least γ+1 vertices in (A∩B)∪{v} ⊆ (B∩S)∩ (A∪T ).

The analogous argument for (S \T )∩B is similar. Therefore the minimality of B implies that both

i < 1
2 |H2| and j < 1

2 |H2|.

From the α-well-linkedness ofH2 we must have α|H2∩A| ≤ γ and so (i+j+h) ≥ |H2|− γ
α . We can

assume by symmetry that i < j and so |(B∩T )∩(S∪A)| ≥ α(i+h) ≥ α(|H2|− γ
α−j) > α(1

2 |H2|− γ
α).

Combined with the fact that γ ≥ |(B∩T )∩(S∪A)| we conclude that γ > α
4 |H2|, a contradiction.
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Chapter 7

An algorithm for p-centres in

δ-hyperbolic graphs

7.1 Introduction

In this final chapter, we change gears and present an algorithmic result with applications in large

graph analytics. This is joint work with William Sean Kennedy and Iraj Saniee and has been

submitted for publication; a manuscript can be found on the arXiv [33].

The p-center algorithm is a discrete variant of one of the most frequently used clustering al-

gorithms, the so-called k-means clustering. The goal of the p-center algorithm is to identify on a

given graph a pre-specified number p of vertices (called centers), such that the maximum distance

of any graph vertex to its nearest center is minimized. For any given p, the algorithm naturally

partitions a graph into p clusters induced by the position of its p-centers. Clusters induced by the

p-centers are not necessarily balanced in size as they are determined by the metric properties of the

graph. Thus p-center clustering is more appropriate for distance-based partitioning or classification

than other frameworks, such as community detection. Unfortunately, as a clustering algorithm the

complexity of the p-center algorithm is generally prohibitive, O(np) for an n-vertex graph, making

it inapplicable to even moderate size graphs.

Proved nearly four decades ago, Shier’s minimax result for trees and metric trees leads to

an exact algorithm with quasilinear time complexity (in the number of vertices and edges of the
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graph) for determination of an optimal set of p-centers by repeatedly finding diametrical pairs of

vertices and removing a ball from the graph containing one end of the current diametrical pair [80].

Hochbaum and Shmoys [49] gave a (multiplicative) 2-approximation algorithm for determining p-

centres in graphs satisfying the triangle inequality with running time O(m log2m). Subsequently,

Dyer and Frieze [30] improved this to a 2-approximation algorithm with running time O(np). These

algorithms are, in a sense, best possible as Hsu and Nemhauser [50] show that determining an α-

approximate solution to p-centers is NP-hard whenever α < 2.

In an insightful paper, Chepoi and Estellon essentially applied Shier’s technique from [80] to

graphs with small hyperbolic constant, δ [16]. These are graphs whose metric structure differs

from the metric structure of a tree by a fixed constant (as we will explain in Section 7.2 and, in

particular, Section 7.2.2 and Figure 7.1. For more details see [44, 8, 16]). The algorithmic version of

this scheme gives rise to what is essentially an O(n3) time approximation for p-center on an n-vertex

graph with hyperbolic constant δ appearing both as a prefactor in the complexity expression and

also in the degree of approximation in terms of an additive constant to the radius of the optimal

p-center partition. Of course the cubic time complexity O(n3) is still impractical for graphs of

hundreds of thousands to millions of vertices as would be even a quadratic-time approximation.

Since there is evidence that real-life networks extracted from social media, co-authorship and

collaboration, friendship and many other settings have small hyperbolic constants [56], it would be

desirable to know if the cubic complexity is tight or can be further reduced, at least by negotiating

on the degree of the approximation. In this chapter we will see that by giving up to 3δ in the

(additive) approximation, one can achieve a quasilinear time p-center approximation. As such,

this scheme is the first p-center approximation applicable to large graphs, particularly when p is

relatively small, for example in the range 10− 104 and n is large, for example, 105 − 109 vertices.

In the following sections we describe how the cubic complexity of [16] to quasilinear reduction

is achieved without adding more than 3δ to the radius of the optimal p-center clusters. In Section

7.2 we outline necessary definitions, in particular, for geodesic metric spaces (Section 7.2.1) and

hyperbolicity (Section 7.2.2). We then turn to a more formal discussion of p-centers, p-packings,

and the dual problems which take center stage in our discussion (Section 7.3). In Section 7.3.1 we

focus on algorithms for solving and approximating these problems on δ-hyperbolic graphs. The

formal statements of our main results are also found in Section 7.3.1. Section 7.4 contains the

139



proofs of the main results.

7.2 Definitions and notation

In this chapter we consider only simple, undirected graphs. Let G = (V,E). To each edge uv, we

associate a line segment of length 1, so that we may refer to any point on uv at distance t from u

and 1− t from v (0 ≤ t ≤ 1). This (uncountably infinite) set of points of G is denoted A(G). We

will use the notation n = |V (G)| and m = |E(G)|. The distance d(u, v) between any two points u

and v in A(G) is the length of a shortest path between them in G. When u and v are vertices, we

write [u, v] to refer to a shortest (also called geodesic) path. Note that shortest paths need not be

unique. For a geodesic path P = [u, v] and i ∈ [0, d(u, v)], the point P [i] is the one at distance i

from u on P .

7.2.1 Geodesic metric spaces and graphs

Let (X, d) be a metric space. If x, y are points in X, a geodesic segment [x, y], when it exists, is

a continuous curve parametrized by the line segment [a, b] of length d = d(x, y). That is, a map

ρ : [0, d] → X with ρ(0) = x, ρ(d) = y and d(ρ(s), ρ(t)) = |s − t| for each s, t ∈ [0, d]. A metric

space is geodesic if for every pair of points there exists a geodesic segment joining them. Note that

geodesic segments need not be unique, e.g. a diagonal pair of points on a cycle.

Any graph as we have defined above can be viewed as a geodesic metric space (A(G), d). Such

a metric space is called graphic and it will be convenient in what follows to think of graphs in this

way. In a graphic metric space, a geodesic [x, y] is simply a shortest path from x to y regardless of

x and y being in V (G) or in A(G).

Let S ⊆ X be compact. The diameter diam(S) of S is the maximum length of a geodesic

between two vertices in S. For u ∈ S, FS(u) is the set of points in S whose distance from u is

maximum. Two points u, v ∈ S are diametrical if d(u, v) = diam(S). They are locally diametrical

if u ∈ FS(v) and v ∈ FS(u). It follows that d(u, v) ≤ diam(S) for v ∈ FS(u) and d(v, u) ≤ diam(S)

for u ∈ FS(v).

If v is a point of A(G) and r ∈ R, we write Br(v) for the closed ball of radius r about v,

i.e. all points at distance at most r from v. For a geodesic path P = [u, v] and for the length
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Figure 7.1: A geodesic triangle ∆(x, y, z) with internal points mx,my and mz and internal distances
αx, αy and αz labelled.

0 ≤ θ < d(u, v), the point i = [u, v][θ] ∈ A(G) is at distance θ from u on P . When there is no

ambiguity, we identify the point i = P [θ] with the length θ. Clearly the two points [u, v][i] and

[v, u][i] do not generally coincide.

7.2.2 Hyperbolicity

The concept of hyperbolicity of a metric space was introduced by Rips and Gromov in [44]. There

are several essentially equivalent definitions but in this chapter we will mainly use the δ-thin-triangle

characterization.1 For points x, y, z in X, we write ∆(x, y, z) to denote a geodesic triangle formed

by x, y, z; that is the union of three geodesics [x, y], [y, z], [x, z] (usually the choice of geodesics won’t

matter).

Given a geodesic triangle ∆ ≡ ∆(x, y, z), let π be half the perimeter, π = 1
2(d(x, y) + d(y, z) +

d(x, z)) and define αx = π − d(y, z) and similarly αy = π − d(x, z) and αz = π − d(x, y). Thus

αx + αy = d(x, y) and so on. One can imagine a triangle drawn in the Euclidean plane with side

lengths d(x, y), d(x, z) and d(y, z). Its inscribed circle would touch the triangle sides [x, y], [y, z] and

[z, x] at points mz,mx and my respectively. From elementary geometry, [x, y][αx] = [y, x][αy] = mz

and [y, z][αy] = [z, y][αz] = mx and [z, x][αz] = [x, z][αx] = my, as illustrated in Figure 7.1.

The points mx,my,mz are called the internal points and αx, αy, αz the internal distances

corresponding to x, y, z respectively in ∆. The insize of the triangle ∆ is the maximum of

maxθ∈[0,αx] d([x, y][θ], [x, z][θ]), maxθ∈[0,αy ] d([y, x][θ], [y, z][θ]), and maxθ∈[0,αz ] d([z, x][θ], [z, y][θ]).

1For a comprehensive treatment of δ-hyperbolicity see [8].
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Definition 2. Let (X, d) be a geodesic metric space, and δ ≥ 0. Let δ be minimum such that

the insize of every geodesic triangle is at most δ. We say that X is δ-hyperbolic (equivalently, the

hyperbolicity of X is δ).

If G is a graph whose associated graphic metric space is δ-hyperbolic then we say G is δ-

hyperbolic. The reader may verify that every tree is 0-hyperbolic. Hyperbolicity is sometimes

defined in terms of a four-point condition.

Lemma 7.2.1 (4-point condition, see Proposition 1.22 in [8]). Let (X, d) be a δ-hyperbolic metric

space. There is a constant δ4−point ≤ δ such that for any 4 points x, y, z, w ∈ X, their ordered

set of sums of opposite sides, without loss of generality d(x, y) + d(w, z) ≥ d(x, z) + d(y, w) ≥

d(x,w) + d(y, z), satisfy d(x, y) + d(w, z)− d(x, z)− d(y, w) ≤ 2δ4−point.

The fact that in a δ-hyperbolic metric space δ4−point is always less than or equal to δ follows

directly from the proof of Proposition 1.22 on page 411.

7.3 p-centers and p-packings

Let (X, d) be a geodesic metric space and S be a compact subset of X. Throughout this chapter

we rely on two intimately related notions, p-centers and p-packings.

Definition 7.3.1 (p-centers). A set C ⊂ X r-dominates S if for every point s ∈ S there exists a

point c ∈ C with d(s, c) ≤ r. The p-radius of S, denoted by rp(S), is the minimum r such that

there exists a set of at most p points Cp(S) that r-dominates S. The points in Cp(S) are called

p-centers of S.

Definition 7.3.2 (p-packings). A set D ⊆ S is an r-dispersion in S if each pair of points s, s′ ∈ D,

s 6= s′, d(s, s′) ≥ r. The p-diameter of S, denoted by dp(S), is the maximum r such that there

exists a set of at least p points Dp(S) that is an r-dispersion in S. The points in Dp(S) are called

a p-packing.

Consider a set of p points C which r-dominate S. By definition, for any choice of p+ 1 points

D, each d ∈ D is within r of some c ∈ C, and by the pigeonhole principle, at least two, say a1 and
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a2, are within r of the same c ∈ C. Hence,

d(a1, a2) ≤ d(a1, c) + d(a2, c) ≤ 2r.

So, mini 6=j d(ai, aj) ≤ 2r. Since this holds for all choices of C and D, we have the following

observation which first appeared in [80].

Observation 7.3.3. rp(S) ≥ 1
2dp+1(S).

It turns out that these two invariants are equal whenever S has a tree-metric. Indeed, Shier

showed the following.

Theorem 7.3.4 (Shier [80]). Let T be a tree. Then rp(T ) = 1
2dp+1(T ).

As discussed in Section 7.2.2, δ-hyperbolic spaces are treelike, by which we mean that they

possess a metric structure that differs from a tree metric by δ. Therefore, it is logical to attempt to

extend Shier’s result on p-center covering and packing to such structures. Chepoi and Estellon [16]

do exactly this by giving an elegant extension of Shier’s theorem to δ-hyperbolic spaces.

Theorem 7.3.5 (Chepoi and Estellon [16]). Let X be a δ-hyperbolic metric space and S a finite

subset of X. Then

rp(S) ≤ 1
2dp+1(S) + δ

This relationship between rp(S) and dp+1(S) is a key element in algorithms for approximating

p-centers and p-packing.

7.3.1 Algorithms for p-centers and p-packings

The p-packing problem, sometimes referred to as the p-dispersion problem, has received some

attention in the literature. For example it is known to be NP-hard [38]. Highly relevant to our work

is the heuristic that iteratively adds each of the p points by maximizing the points’ distance from

previously chosen points (see for example [39, 67]). This heuristic is shown to be a 2-approximation

algorithm by Ravi, Rosenkrantz and Tayi [67]. For more information, we refer the interested reader

to [40] that has an empirical comparison of ten p-dispersion heuristics.
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To our knowledge, the previous best algorithm in terms of an additive error not exceeding δ

for the p-radius follows from the Chepoi-Estellon bound (Theorem 7.3.5). Indeed, the proof in

[16] leads to a polynomial algorithm to solve p-centres in graphs with an additive error of δ on the

p-radius.2 Specifically, in time O((n3 log n+n2m) log(diam(G))) the authors in [16] determine a set

U of p points such that U (rp + δ)-dominates V (G). Their algorithm involves finding diametrical

pairs of vertices in subsets of V (G) O(n log(diam(G))) times. Johnson’s algorithm [52] finds the

diameter in time O(n2 log n+ nm); hence the running time in Chepoi-Estellon [16] follows.

As pointed out in the introduction, in this work we leverage the fact that instead of finding

diametrical pairs, one can just use locally diametrical pairs (introduced in Section 7.2.1) with

significant reduction in computational time with only a small penalty in the p-radius. Our main

result is the following.

Theorem 7.3.6. Let G be a δ-hyperbolic graph, p ≥ 3 an integer and rp(G) the optimal radius of

the p-center for G. There exists an algorithm to find a set of p points that (rp + 3δ)-dominates G.

Further, the algorithm runs in time O(n log n+ (m+n)((2p+ 1)(d4 + 3δ+ 2δ log2 ne) + (p+ 1))) =

O(p(δ + 1)(m+ n) log n).

Though the Chepoi-Estellon algorithm [16] achieves a better approximation (an additive factor

of δ instead of our 3δ), its running time is O((n3 log n+ n2m) log(diam(G))). We first show below

how to improve their running time by a factor of n (Lemma 7.3.9), but this approach still remains

infeasible for large graphs. When p ∈ {1, 2} we can achieve the same Chepoi-Estellon p-radius

bound but in quasilinear time.

Theorem 7.3.7. Let (X, d) be a δ-hyperbolic metric space, S a finite subset of X and p ∈ {1, 2}.

There exists an algorithm to determine a set of p points that (rp + δ)-dominate S. Further, the

algorithm runs in time O((2δ + 1)tX), where tX is the time required to find the set of points at

maximum distance from a given point in X. In particular in a δ-hyperbolic graph the running time

is O((2δ + 1)(m+ n)).

For p = 1, the previous best algorithm we know of is due to Chepoi et al. [15]: the approximation

2The cited result also gives rise to an algorithm for general δ-hyperbolic spaces whose running time depends on
the time to compute FS(x) for x ∈ X and S ⊆ X. Because our interest is primarily in graphs, we direct the reader
to [16] for details.
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error is ≤ 5δ, and the computation requires just two breadth-first searches. In contrast, we require

2δ + 1 breadth-first searches to achieve the smaller additive factor of δ.

The remainder of this section is organized as follows. We start by showing how to improve

the time complexity of the Chepoi-Estellon algorithm by only approximately finding diametrical

pairs of vertices, that is via finding locally diametrical pairs. In the proofs of our main results, we

will repeatedly apply this idea, showing that it is sufficient to solve the easier and computationally

more efficient approximate version of this expensive sub-problem. We then move on to proofs of

Theorems 7.3.7 and 7.3.6 in Sections 7.4 and 7.4.1, respectively.

Recall from Section 7.2.1 that a pair of vertices {u, v} is locally diametrical if there is no vertex

w such that d(u,w) > d(u, v) or d(v, w) > d(v, u). Clearly a diametrical pair is locally diametrical

but the converse is not true in general (e.g., a cycle with handles). It turns out to be sufficient

to find locally diametrical pairs in the main lemma of [16]. Indeed, the following lemma is simply

Lemma 1 from [16], but with the requirement that u and v be diametrical replaced with the weaker

property of being locally diametrical.

Lemma 7.3.8. Let X be a δ-hyperbolic metric space and S ⊆ X be a compact set and r ∈ R.

Suppose that u and v are locally diametrical in S and let [u, v] be a geodesic. Let c = [u, v][r]. Then

B2r(u) ∩ S ⊆ Br+δ(c) ∩ S.

The proof of Lemma 1 in [16] works essentially unchanged to prove Lemma 7.3.8 by replacing

diametrical pairs with locally diametrical pairs. Since we will use a refined version of the same

argument that is needed for Lemma 7.3.8 in the proof of Theorem 7.3.6, we skip the proof of

Lemma 7.3.8. We prove below (Lemma 7.3.10) that we can find a locally diametrical pair with at

most 2δ+ 1 breadth-first searches. Hence, we achieve the following significant reduction in the run

time of the Chepoi-Estellon algorithm.

Lemma 7.3.9. Let G be a δ-hyperbolic graph and p an integer. There exists an algorithm to find

a set of p points that (rp + δ)-dominates V (G) that runs in time O(n2 log(diam(G))(2δ + 1)).

It remains to show how to efficiently determine locally diametrical pairs.

Lemma 7.3.10. Given a δ-hyperbolic graph G and S ⊆ V (G). There is an algorithm that finds a

locally diametrical pair of vertices by performing at most 2δ + 1 breadth-first searches; that is, the

running time is O((2δ + 1)(m+ n)).
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Proof. Choose a vertex u ∈ S arbitrarily and find a vertex v1 ∈ FS(u) by BFS. Then, find v2 ∈

FS(v1). Next, find a vertex v3 ∈ FS(v2). If d(v2, v3) = d(v1, v2), then let v = v1 and w = v2 and

we have found a locally diametrical pair. Otherwise d(v2, v3) > d(v1, v2) and continue the process

until vk, vk+1 are found such that d(vk, vk+1) = d(vk, FS(vk)) and d(vk, vk+1) = d(vk+1, FS(vk+1)).

This must happen for at most k ≤ diam(S) − d(v1, v2). But by Proposition 3 in [15] d(v1, v2) ≥

diam(S) − 2δ4−point ≥ diam(S) − 2δ so k cannot exceed 2δ. This means no more than (2δ + 1)

BFS steps or no more than O(2δ+ 1)(m+n) steps are needed for finding a locally diametrical pair

starting from u ∈ S. Then algorithm returns the locally diametrical pair (vk, vk+1).

7.4 Approximating p-centers

In general, in searching for p-centers, first we approximately solve the dual problem, that is, we

find D, a (p+ 1)-packing, with |D| ≥ p+ 1 such that

max{ r | d(s, s′) ≥ r, ∀s 6= s′ ∈ D} ≤ dp+1(V ).

This together with Observation 7.3.3 yields

1

2
max{ r | d(s, s′) ≥ r, ∀s 6= s′ ∈ D} ≤ rp(V ). (7.1)

Given these (p + 1)-points we find a set of p-points C such that setting λ = 1
2 max{ r | d(s, s′) ≥

r, ∀s 6= s′ ∈ D},

1. C λ-dominates the points in D, and

2. for each a ∈ D there exists some a′ ∈ D and c ∈ C such that c is on a geodesic between a

and a′.

We prove later that these two properties together with δ-hyperbolicity allow us to show that for a

carefully-selected set D, the p points in C (λ+ 3δ)-dominate V , that is,

min{ r | for each x ∈ V, ∃c ∈ C with d(x, c) ≤ r} ≤ λ+ 3δ. (7.2)
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Substituting the value of λ in (7.2) and applying (7.1) yields,

min{ r | for each x ∈ V, ∃c ∈ C with d(x, c) ≤ r}

≤ 1

2
max{ r | d(s, s′) ≥ r, ∀s 6= s′ ∈ D}+ 3δ

≤ rp(V ) + 3δ.

It follows that C (rp(V ) + 3δ)-dominates V as desired.

We now apply this approach to find a 1-center of a graph.

Theorem 7.4.1. Let G be a δ-hyperbolic graph. There exists an algorithm to find a point c that

(r1 + δ)-dominates V (G). The algorithm requires time O((2δ + 1)(m+ n)).

Proof. Let x, y be a locally diametrical pair of vertices and let [x, y] be a geodesic segment. As

described above, set λ = d(x,y)
2 and choose c = [x, y][λ]. Clearly, C = {c} satisfies Properties 1 and

2 above. We now show that C = {c} (λ+ δ)-dominates V .

Let z be any point in V and consider the geodesic triangle ∆(x, y, z) as depicted and labeled

in Figure 7.2. Without loss of generality, assume that d(y, z) ≤ d(x, z). Since (x, y) is locally

diametrical, then

d(y, z) ≤ d(x, z) ≤ d(x, y)

which implies that

αz ≤ αy ≤ αx.

(This means that in the figure c lies to the right of mz, as shown.) Then

d(z, c) ≤ αz + δ + d(c,mz) ≤ αz + δ + λ− αy ≤ δ + λ.

As the claim holds for any z, c (λ + δ)-dominates V (G), and therefore, since λ = 1
2d(x, y) ≤

1
2d2(V ) ≤ r1(V ), the latter inequality by Observation 7.3.3, and thus c (r1 + δ)-dominates V (G),

as desired. To complete the proof, we note that by Lemma 7.3.10, x, y and [x, y][λ] can be found
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z

αy

y x

mz

mx
my

c

Figure 7.2: A geodesic triangle ∆(x, y, z) with points mx,my,mz and c labelled as in the proof of
Theorem 7.4.1. Dashed lines indicate a distance ≤ δ and the red line indicates the upper estimate
for d(z, c).

in time O((2δ + 1)(m+ n)).

We note that in the course of the above proof we demonstrated the following fact that we shall

reuse.

Observation 7.4.2. Let z be any vertex in V (G), (x, y) a locally diametrical pair of vertices,

c ∈ A(G) the mid-point of [x, y] and λ = d(x,y)
2 . Then d(z, c) ≤ λ+ δ.

In extending these proof techniques to the general case for p > 1, we run into the following

two difficulties, each costing us an additional δ in our approximation error. First, Property 2 only

guarantees that p of the
(
p+1

2

)
pairs of points in D have a geodesics connecting them containing

some point ci ∈ C. This will force us use two geodesic triangles to bound the distance from some

points in V to their closest center in C. Second, in achieving the quasilinear runtime, we are only

able to find a (λ+2δ)-approximation for the (p+1)-packing problem. We omit further details until

Section 7.4.1.

To finish off this section, we prove that when p = 2 we can find a 2-center solution which

(r2 + δ)-dominates G. Like Theorem 7.4.1, this is stronger than our general result (Theorem 7.3.6)

and the proof does not use the machinery outlined at the beginning of Section 7.4 that relies on

Properties 1 and 2. Theorems 7.4.1 and 7.4.3 may be special cases of a general and stronger result

than our main result, so we include it.

Theorem 7.4.3. Let G be a δ-hyperbolic graph. There exists an algorithm to find points c1, c2 that

(r2 + δ)-dominate V (G). The algorithm requires time O((2δ + 1)(m+ n)).
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Proof. Let x, y be a locally diametrical pair of vertices and let [x, y] be a geodesic segment. Choose z

so that min{d(z, x), d(z, y)} is maximized (requires two BFS). We let our 3-packing be D = {x, y, z}.

Assume without loss of generality that d(x, y) ≥ d(x, z) ≥ d(y, z), and so, λ = 1
2 max{ r | d(s, s′) >

r, ∀s 6= s′ ∈ D} = 1
2d(y, z).

We choose c1 = [x, y][λ] and c2 = [y, x][λ]. We claim that C = {c1, c2} satisfy Equation 7.2,

with t = 1, and so, C (r2 + δ)-dominates G.

To prove the claim, let ∆1 = ∆(x, y, z) be a geodesic triangle. Let w be any point of G and

let ∆2 = ∆(x, y, w) be a geodesic triangle so that ∆1 and ∆2 share the geodesic [x, y]. We will

show that min{d(w, c1), d(w, c2)} ≤ λ+ δ. Take αx, αy, αw and mx,my,mw to denote the internal

distances and points in ∆2. Without loss of generality assume d(w, x) ≤ d(w, y) which implies that

d(w, x) ≤ d(y, z) = 2λ and αx ≤ αy. We distinguish two cases, as illustrated in Figure 7.3.

c2 y

z

x c1 mwλ

w

mxmy

αw

λ

z

c2x yλ

w
mx

mw c1

αw

my≤ δ
≤ δ

Figure 7.3: Figure for Cases 1 and 2 in the proof of Theorem 7.4.3. The red lines indicate the
upper estimate for d(w, c1). Dashed lines indicate a distance ≤ δ.

Case 1: λ < α2
x < d(x, y)− λ

From the choice of z, it follows that either d(w, x) ≤ d(y, z) = 2λ or d(w, y) ≤ 2λ. Assume without

loss of generality that d(w, x) = d(w,m2
y) + d(m2

w, x) ≤ 2λ. Therefore, d(w, c1) ≤ d(w,m2
y) +

d(m2
y,m

2
w) + d(m2

w, c1) ≤ d(w,m2
y) + δ + d(m2

w, x)− λ ≤ λ+ δ.

Case 2: α2
x ≤ λ

In this case m2
w lies between x and c1 on the geodesic segment [x, y]. By the local maximality of

x and y, we have d(y, w) = α2
y + α2

w ≤ α2
y + α2

x = d(x, y) and so d(w,m2
y) = α2

w ≤ α2
x = d(x,m2

w).
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Then d(w, c1) ≤ d(w,m2
y) + d(m2

y,m
2
w) + d(m2

w, c1) ≤ d(x, c1) + δ = λ+ δ.

To complete the proof, we need only show that c1, c2 can be found in O((2δ+ 1)(m+n)) time.

By Lemma 7.3.10, x and y can be found in time O((2δ+ 1)(m+n)) and the vertex z can be found

by doing a breadth-first search rooted at x and one rooted at y. Given D = {x, y, z}, the vertices

c1 and c2 can then be found by storing the last breadth-first search used in finding x and y and

λ = 1
2 min{d(x, x), d(y, z)}. The runtime now follows.

7.4.1 The general algorithm

Our algorithm and proof follow the same three basic steps, though each step is more involved. As

a reminder these three steps are 1) approximately solving the dual problem, or finding a (p + 1)-

packing, 2) deriving p-points from this dual solution that satisfy Properties 1 and 2, and 3) bounding

the approximation guarantee by showing Equation 7.2.

It turns out the difficult part of these three steps is Step 1. For this step, we need to extend the

notion of a ‘locally diametrical pair’ to a ‘locally diametrical set’ in such a way that i) it provides

us with both the tools we need to satisfy Properties 1 and 2 and ii) it can be determined efficiently.

We find a set of (p+ 1) vertices D = {v0, v1, ..., vp} with

λ(D) := 1
2 max{ r | d(s, s′) ≥ r, ∀vi 6= vj ∈ D}

such that the following three properties hold

(a) (Vertex relabeling) d(v0, vi) = 2λ(D) for some vi ∈ D,

(b) (Extending locally diametrical pairs to locally diametrical sets) For each vi ∈ D with d(vi, vj) =

2λ(D) for some vj , there exists no w ∈ V (G) with d(w, vk) > 2λ(D),∀vk ∈ D \ {vi}, and

(c) (δ-hyperbolic version of locally diametrical sets) for each i ≥ 1, there exists no vertex v ∈ V (G)

with d(v0, v) > d(v0, vi) + 2δ and d(vi, v) ≤ 2λ(D) and d(v, vj) > 2λ(D) for each j 6= i.

These three requirements provide us with what is needed to determine a set of (p + 1) vertices

satisfying Properties 1 and 2. Specifically, we prove
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Lemma 7.4.4. Let G be a δ-hyperbolic graph and Λn = d4 + 3δ + 2δ log2 ne. There exists an

algorithm to find a set D of p+ 1 vertices satisfying (a), (b) and (c). The algorithm runs in time

O(n log n+ (m+ n)((2p+ 1)Λn + (p+ 1))).

Given a set of p + 1 vertices satisfying Properties (a), (b) and (c) it is straightforward to find

C = {c1, ..., cp} satisfying Properties 1 and 2. For each 1 ≤ i ≤ p, let ci be the vertex at distance

λ from vi on the shortest path from vi to v0, i.e. ci = [vi, v0][λ].

Lemma 7.4.5. Let G be a δ-hyperbolic graph. Suppose that D = {v0, v1, ..., vp} satisfy (a), (b) and

(c). Then the set of p points C = {ci | ci = [vi, v0][λ]} (λ+ 3δ)-dominate G.

As described above (beginning of Section 4), such C (rp(V ) + 3δ)-dominates V as desired. So,

given the Lemmas 7.4.4 and 7.4.5, the proof of Theorem 7.3.6 follows once establishing the runtime,

which we do now. First, determining the set D takes O(n log n + (m + n)((2p + 1)Λn + (p + 1))).

Given D, the set of vertices {ci, 1 ≤ i ≤ p} can clearly be constructed by performing a breadth-first

search rooted at v0. Theorem 7.3.6 now follows.

In the next two sections we establish Lemmas 7.4.4 and 7.4.5. Lemma 7.4.4 is the more inter-

esting of the two proofs, and takes us deeper into the analysis of locally diametrical sets. The proof

of Lemma 7.4.5 is a sophistication of the ideas in Theorems 7.4.1 and 7.4.3. We begin with that

lemma.

7.4.2 Proof of Lemma 7.4.5

We show that every vertex of G is at distance at most λ+ 3δ from some centre ci. Let w ∈ V (G)

and suppose that w is at distance greater than λ + 3δ from each centre. Property (b) implies

d(w, vi) ≤ 2λ for some i. We prove below the following claim.

Claim 4. d(w, vj) > 2λ for each j 6= i.

Using the claim, we can prove Lemma 7.4.5. Consider the geodesic triangle ∆(vi, v0, w), and

recall that ci belongs to the geodesic [vi, v0]. There are two cases to handle.

First, suppose that d(vi,mw) ≥ λ. Then a w-ci-path can be constructed by concatenating the
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geodesics from [w,mv0 ], [mv0 ,mw] and [mw, ci], and so, since d(w, vi) ≤ 2λ

d(w, ci) ≤ d(w,mv0) + d(mv0 ,mw) + d(mw, ci)

≤ d(w,mv0) + δ + d(mw, vi)− λ

≤ λ+ δ,

a contradiction.

Otherwise, if d(vi,mw) < λ, then

λ+ 3δ < d(w, ci) ≤ d(w,mv0) + d(mv0 ,mw) + d(mw, ci)

≤ d(w,mv0) + δ + d(mw, ci).

Since d(vi, ci) = d(vi,mw) + d(mw, ci) = λ, we deduce that d(w,mv0) > d(vi,mw) + 2δ. It follows

that d(v0, w) > d(v0, vi) + 2δ, which along with Claim 4, contradicts Property (c).

It follows that w is within λ+ 3δ from at least one centre. We need only prove the claim.

Proof of Claim 4. Suppose that w is at distance at most 2λ from both vi and vj . Let c′i and c′j

be the vertices at distance λ from i and j respectively on the geodesic [vi, vj ]. We will show that

at least one of d(ci, c
′
i) and d(cj , c

′
j) is at most δ. Consider the geodesic triangle ∆(vi, vj , v0) =

[vi, vj ]∪ [vi, v0]∪ [vj , v0] and let mvi ,mvj ,mv0 be as described above. Assume for contradiction that

both d(ci, c
′
i) and d(cj , c

′
j) are greater than δ. It follows that d(vi,mvj ) < λ and d(vj ,mvi) < λ.

But then d(vi, vj) = d(vi,mv0)+d(mv0 , vj) = d(vi,mvj )+d(vj ,mvi) < 2λ, a contradiction. Assume

then, without loss of generality, that d(ci, c
′
i) ≤ δ.

Now consider the geodesic triangle ∆(vi, vj , w) and let mw be defined as usual. First, suppose

that d(vi,mw) ≥ d(vi, c
′
i). Then

d(w, c′i) ≤ d(w,mvj ) + δ + d(vi,mw)− d(vi, c
′
i) ≤ d(w, vi) + δ − λ ≤ λ+ δ.

Now, suppose that d(vi,mw) < d(vi, c
′
i). Then

d(w, c′i) ≤ d(w,mvi) + δ + d(vj ,mw)− d(vj , c
′
i) ≤ d(w, vj) + δ − λ ≤ λ+ δ.
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In either case, d(w, c′i) ≤ λ+ δ, and so d(w, ci) ≤ λ+ 2δ, a contradiction.

7.4.3 Proof of Lemma 7.4.4

A proof sketch is as follows. We first show that we can a find (p + 1)-packing that is within

O(δ log2 n) of an optimal solution. To do so, we find a tree T which approximately preserves

distances on our input graph G. It turns out that exactly solving the (p+ 1)-packings on trees can

be done efficiently, though in contrast to before, we solve the p-centres first and use this to construct

a dual solution in G. The fact that T is a good approximating tree allows us to bound how close our

(p+ 1)-packing is to an optimal solution and in turn helps us achieve the quasilinear running time.

Finally, given this initial (p + 1)-packing, we iteratively improve the solution whenever possible

until we achieve Properties (a), (b), (c). Clearly, (a) can hold for all solutions after relabelling, so

the only difficulty is in insuring both (b) and (c) hold.

We will use the following theorem, which we will deduce from known results at the end of this

section, to find our initial (p+ 1)-packing. Let Λn = d4 + 3δ + 2δ log2 ne.

Theorem 7.4.6. There exists an algorithm to find a set P of p + 1 vertices satisfying d(u, v) ≥

κ,∀u 6= v ∈ P, for some κ with dp+1(G)− κ ≤ Λn. The algorithm runs in time O(n log n).

Given the set P of (p + 1)-points from Theorem 7.4.6, we now describe an efficient iterative

algorithm which finds (p + 1)-points satisfying Properties (a), (b) and (c). Our argument bounds

the number of iterations using the following potential function.

Definition 3. Let G be a graph and let P ⊆ V be a set of p vertices and suppose that κ is the

largest value such that d(u, v) ≥ κ for all u 6= v ∈ P. Let η(P) denote the number of vertices in P

which are exactly at distance κ from at least one other vertex in P. We define the potential of P

as φ(P ) := p(κ+ 1)− η(P).

Algorithm 4 together with Subroutines 2 and 3 describe the algorithm. We first prove that

if Algorithm 4 terminates then it is correct, that is, P ′ satisfies (a), (b) and (c). The algorithm

terminates if the potential φ(P) has not increased after successive executions of Subroutines 3

and 2. As Subroutine 2 executes last, the returned P satisfies (a) and (b) as satisfying (b) is the

stopping condition and, as mentioned above, (a) always holds after a relabelling. Since φ(P) is
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Algorithm 1: Finding an initial set P of vertices

Input: Graph G = (V,E) and integer p.
Output: A set P of p+ 1 vertices satisfying d(u, v) ≥ κ,∀u 6= v ∈ P, for some κ with

dp+1(G)− κ ≤ Λn.
Let T = (V, F ) be the tree determined by Theorem 7.4.7.
Let λ be the p-radius of the p-centers of T determined by Theorem 7.4.8.
Let P be a set of maximum size s.t. d(u, v) ≥ 2λ for each u 6= v ∈ P (Theorem 7.4.9).
Let P ′ be a set of p+ 1 unique vertices chosen arbitrarily from P.
return P = P ′

Subroutine 2: Satisfying Properties (a) and (b).

Input: A set P satisfying Property (a) for λ(P).
Output: A set P ′ satisfying Property (a) and (b) for λ(P ′) ≥ λ(P).
We say that a vertex u ∈ P is improvable to w /∈ P if there exists v ∈ P with
d(u, v) = 2λ(P) and d(w, x) > 2λ(P),∀x ∈ P \ {u}.
repeat

for i from 0 to p do
if vi is improvable to some v then

replace vi in P with the improved vertex (P = (P \ vi) ∪ {v}).
else

do nothing.
end

until no vertex is found to be improvable.
return P ′ = P.

Subroutine 3: Satisfying Properties (a), (b) and (c).

Input: A set P satisfying Property (a) and (b) for λ(P).
For this step we label the vertices of P in a specific way. Let v0 and vp be vertices in P with
d(v0, vp) = 2λ(P). Then label the remaining vertices of P as {v0, v1, . . . , vp} so that
d(v0, vi) ≥ d(v0, vj) for each i > j.
In this context, we say that a vertex vi (1 ≤ i ≤ p) is improvable to v′i /∈ P if
d(v0, v

′
i) > d(v0, vi) and d(vi, v

′
i) ≤ 2λ(P) and d(v′i, vj) > 2λ(P) for each j 6= i.

for i from 1 to p do
if vi is improvable then

replace vi in P with the vertex v′i furthest from v0 that satisfies d(vi, v
′
i) ≤ 2λ(P) and

d(v′i, vj) > 2λ(P) for each j 6= i.

end
return P.

unchanged by Subroutine 2, P is unchanged as well. For the purpose of analysis, we will adopt the

following notation. Let {v0, . . . , vp} be the labelling specified in the description of Subroutine 3.

Then, for each vi(i ≥ 1), if it was improved, let v′i be the vertex vi was replaced by. Otherwise write

v′i = vi. So, now consider P = {v0, v
′
1, . . . , v

′
p}, that is output by Subroutine 3. For contradiction,
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Algorithm 4: Finding an optimal and optimized set of vertices

Input: A set P satisfying Property (a) for λ(P).
Output: A set P ′ satisfying Property (a), (b) and (c) for λ(P ′) ≥ λ(P).
Let P be the returned set of Subroutine 2 with input P.
repeat

Let P ′ be the returned set of Subroutine 3 with input P.
Let P be the returned set of Subroutine 2 with input P ′.

until φ(P ′) = φ(P)
return P ′ = P

suppose that P does not satisfy Property (c). Then, there exist an index i and a vertex v′′i with

d(v0, v
′′
i ) > d(v0, v

′
i)+2δ and d(v′i, v

′′
i ) ≤ 2λ(P) and d(v′′i , v

′
j) ≥ 2λ(P),∀j 6= i. Further, by the choice

of v′i, there must exist some index j > i with d(v′′i , vj) < 2λ(P). We will apply Lemma 7.2.1 to reach

a contradiction, using the vertices v0, v
′
i, v
′′
i , vj , as illustrated in Figure 7.4. By the choice of labelling,

we have 2λ(P) ≤ d(v0, vj) ≤ d(v0, vi) ≤ d(v0, v
′
i) < d(v0, v

′′
i )− 2δ. There are three distance sums to

consider. We claim that d(v0, v
′′
i ) + d(v′i, vj) > max{d(v0, v

′
i) + d(v′′i , vj), d(v0, vj) + d(v′i, v

′′
i )}+ 2δ.

This is clear because both d(v′′i , vj) ≤ 2λ(P) and d(v′i, v
′′
i ) ≤ 2λ(P) while d(v′i, vj) ≥ 2λ(P). By

Lemma 7.2.1, this contradicts the δ-hyperbolicity of G. It follows that P also satisfies (c).

vi

v0

v′j

vj

≥ κ

≤ κ

v′i

v′′i

≤ κ

Figure 7.4: Proof that P satisfies Property (c)

It remains to prove that the algorithm terminates and to bound the runtime. To see that

Algorithm 4 terminates, we first note that whenever a vertex in P is improved in Subroutine 2, the

distance to its closest neighbour strictly increases. Therefore, after at most p+1 rounds of the repeat

until loop Subroutine 2, λ(P) strictly increases. Further, each round (except the last one) in which

the potential doesn’t change is proceeded by an iteration of Subroutine 3. By Theorem 7.4.6, for

the initial (p+1)-points P?, dp+1(G)−2λ(P?) ≤ Λn. Hence, φ(P?) ≥ (p+1)(2λ(P?)+1)−(p+1) =

(p + 1)2λ(P?) ≥ (p + 1)(dp+1(G) − Λn). Further, any set of p + 1 vertices has dispersion at most

dp+1(G) and therefore has potential at most (p + 1)(dp+1(G) + 1). We conclude that the repeat
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until loop of Algorithm 4 can be executed at most (p+ 1)Λn rounds in total.

We now examine the complexity of the algorithm. To obtain the initial set P as in Theorem

7.4.6 takes time O(n log n). Given a set P, we can determine and record the set of distances

{d(v, vi) : v ∈ V (G), 0 ≤ i ≤ p} by performing a breadth-first search rooted at each vertex vi ∈ P.

From these distances, it can easily be checked in linear (O(n)) time whether a vertex is improvable.

To complete the first round the first time we perform Subroutine 2, we must perform p+1 breadth-

first searches. Each time a vertex is improved (in either Subroutine 2 or Subroutine 3), we need an

additional one. From the discussion above it follows that at most p+1+((p+1)+p)Λn breadth-first

searches need be done. The algorithm therefore runs in time O(n log n+(m+n)((2p+1)Λn+(p+1))).

We now deduce Theorem 7.4.6 and its corresponding Algorithm 1. In finding our initial (p+1)-

packing, we use the following definitions and results. For a graph G and constant k, we say that a

tree T with vertex set V (G) is a k-approximating tree if |dG(u, v)− dT (u, v)| ≤ k for every pair of

vertices u, v ∈ V . Chepoi et al. showed in [15] that δ-hyperbolic graphs have good approximating

trees that can be computed in linear (O(m)) time.

Theorem 7.4.7 ([15]). Let G = (V,E) be a δ-hyperbolic graph, and let Λn = d4 + 3δ + 2δ log2 ne.

There exists a Λn-approximating tree T = (V, F ) of G. Furthermore T can be computed from G in

time O(m).

Fredrickson [43] showed that p-centres can be solved in linear time on trees.

Theorem 7.4.8 ([43]). Let T be a tree and p an integer. There exists an algorithm to solve

p-centres exactly on T in time O(n).

Shier proved in [80] (see Theorem 7.3.4) that in trees, the p-radius is always half the p + 1-

diameter. In [11] Chandrasekaran and Daughety gave an algorithm to find the p-diameter (and an

optimal packing of size p) in a tree in time O(n2 log n). Their technique involves a binary search

for λp through repeated application of a subroutine which, when given a half-integer λ, produces a

maximum number of points which are pairwise at distance > 2λ. More precisely,

Theorem 7.4.9 ([11]). Let T = (V,E) be a tree and let 2λ be an integer. There exists an algorithm

which, in time O(n log n), produces a set W ⊆ V of maximum size such that d(u, v) ≥ 2λ for each

u 6= v ∈ V .
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Combining Theorem 7.4.9 with Theorem 7.3.4 and Theorem 7.4.8 we obtain an O(n log n)

algorithm to find an optimal packing of size p in a tree.

Now, suppose that G is δ-hyperbolic and T is a Λn-approximating tree for G. By definition

of an approximating tree, for every u, v ∈ V we have |dT (u, v) − dG(u, v)| ≤ Λn. It follows that

|dp+1(T )− dp+1(G)| ≤ Λn. Thus we obtain Algorithm 1 and Theorem 7.4.6 that yields our initial

(p+ 1)-packing.

At this point, the reader may be wondering why we go to the trouble of Algorithm 1 to obtain

our initial (p+ 1)-packing. Indeed, one could start with any packing at the beginning of Algorithm

4, and repeat rounds of Subroutines 2 and 3 until a packing satisfying Properties (a), (b) and (c)

is found. However, as we have just seen, the number of times we may need to repeat the rounds is

upper bounded by the difference between the dispersion of our initial set and the optimal dispersion

dp+1. When the initial set is chosen using Algorithm 1, this difference is O(δ log n), whereas trying

to save time choosing the initial set (say, by choosing it arbitrarily) may result in an additional

linear factor in the complexity bound. Applying the greedy 2-approximation algorithm of Ravi,

Rosenkrantz and Tayi mentioned in Section 7.3.1 adds a factor of dp+1, which may also be linear.

However, the practitioner may wish to experiment.
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Appendix: The unavoidable set of
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