Quick links

Princeton Robotics Seminar - Dynamic Game Models for Multi-Agent Interactions: The Role of Information in Designing Efficient Algorithms

Date and Time
Friday, May 12, 2023 - 11:00am to 12:00pm
Computer Science Small Auditorium (Room 105)
Princeton Robotics Seminar
David Fridovich-Keil, from University of Texas at Austin

David Fridovich-Keil
This talk introduces dynamic game theory as a natural modeling tool for multi-agent interactions ranging from large, abstract systems such as ride-hailing networks to more concrete, physically-embodied robotic settings such as collision-avoidance in traffic. We present the key theoretical underpinnings of dynamic game models for these varied situations and draw attention to the subtleties of information structure, i.e., what information is implicitly made available to each agent in a game. Thus equipped, the talk presents a state-of-the-art technique for solving these games, as well as a set of “dual” techniques for the inverse problem of identifying players’ objectives based on observations of strategic behavior.

Bio: David Fridovich-Keil is an assistant professor at the University of Texas at Austin. David’s research spans optimal control, dynamic game theory, learning for control, and robot safety. While he has also worked on problems in distributed control, reinforcement learning, and active search, he is currently investigating the role of dynamic game theory in multi-agent interactive settings such as traffic. David’s work also focuses on the interplay between machine learning and classical ideas from robust, adaptive, and geometric control theory.

Follow us: Facebook Twitter Linkedin