Quick links

Enabling Self-sufficient Robot Learning

Date and Time
Tuesday, April 4, 2023 - 12:30pm to 1:30pm
Location
Computer Science Small Auditorium (Room 105)
Type
CS Department Colloquium Series
Host
Szymon Rusinkiewicz

Rika Antonova
Autonomous exploration and data-efficient learning are important ingredients for helping machine learning handle the complexity and variety of real-world interactions. In this talk, I will describe methods that provide these ingredients and serve as building blocks for enabling self-sufficient robot learning.

First, I will outline a family of methods that facilitate active global exploration. Specifically, they enable ultra data-efficient Bayesian optimization in reality by leveraging experience from simulation to shape the space of decisions. In robotics, these methods enable success with a budget of only 10-20 real robot trials for a range of tasks: bipedal and hexapod walking, task-oriented grasping, and nonprehensile manipulation.

Next, I will describe how to bring simulations closer to reality. This is especially important for scenarios with highly deformable objects, where simulation parameters influence the dynamics in unintuitive ways. The success here hinges on finding a good representation for the state of deformables. I will describe adaptive distribution embeddings that provide an effective way to incorporate noisy state observations into modern Bayesian tools for simulation parameter inference. This novel representation ensures success in estimating posterior distributions over simulation parameters, such as elasticity, friction, and scale, even for scenarios with highly deformable objects and using only a small set of real-world trajectories.

Lastly, I will share a vision of using distribution embeddings to make the space of stochastic policies in reinforcement learning suitable for global optimization. This research direction involves formalizing and learning novel distance metrics on this space and will support principled ways of seeking diverse behaviors. This can unlock truly autonomous learning, where learning agents have incentives to explore, build useful internal representations and discover a variety of effective ways of interacting with the world.

Bio: Rika is a postdoctoral scholar at Stanford University and a recipient of the NSF/CRA Computing Innovation Fellowship. Rika completed her Ph.D. work on data-efficient simulation-to-reality transfer at KTH. Earlier, she obtained a research Master's degree from the Robotics Institute at Carnegie Mellon University. Before that, Rika was a software engineer at Google, first in the Search Personalization group, then in the Character Recognition team (developing open-source OCR engine Tesseract).


To request accommodations for a disability please contact Emily Lawrence, emilyl@cs.princeton.edu, at least one week prior to the event.

Follow us: Facebook Twitter Linkedin