A flexible framework for machine learning
Bio: Ferran Alet is a PhD candidate at MIT CSAIL advised by Leslie Kaelbling, Tomas Lozano-Perez, and Joshua Tenenbaum. His research is on machine learning and leverages techniques from meta-learning, learning to search, program synthesis, and insights from mathematics and the physical sciences. During his PhD, he created the MIT Embodied Intelligence Seminar, mentored 17 students, and won the MIT Outstanding Mentor award 2021. Ferran studied mathematics and physics in Barcelona thanks to CFIS, a program for doing two degrees, where he was the valedictorian of his promotion. In college, he participated in the ACM-ICPC programming contest, being the most decorated in the history of his regional phase (South Western Europe). In grad school, he earned a “La Caixa” fellowship and was responsible for the high-level planner of the MIT-Princeton team for the Amazon Robotics Challenge, which won the stowing task in 2017. You can find more information and papers at www.alet-et.al
This talk will be recorded and live-streamed at https://mediacentrallive.princeton.edu/