Ellen D. Zhong

Zhong_small.png

Email: zhonge [at] princeton.edu

Office: 314 Computer Science

I am an Assistant Professor of Computer Science at Princeton University, where I am also affiliated with the Princeton Laboratory for Artificial Intelligence, the Center for Statistics and Machine Learning, the Omenn-Darling Bioengineering Institute, and the Department of Molecular Biology. I am in interested in problems at the intersection of AI and the molecular sciences with the goal of developing methods that enable new scientific discoveries.

My research program spans methodological research in AI and computer vision, as well as close collaboration with experimentalists in molecular biology and chemistry. A focus of my group is developing deep learning methods for 3D reconstruction of protein structure from imaging data, and we develop open-source software in active use by the structural biology community.

Our research has been recognized with the NIH Director’s New Innovator Award, the Schmidt Sciences AI2050 Early Career Fellowship, a Major Society Award from the Microscopy Society of America, the Eric and Wendy Schmidt Transformative Technology Fund Award, and the E. Lawrence Keyes, Jr./Emerson Electric Co. Faculty Advancement Award from Princeton University. I am grateful for support from the NIH, the Chan Zuckerberg Initiative, Schmidt Sciences, Janssen Pharmaceuticals, Generate Biomedicines, and Princeton University.

I received my Ph.D. from MIT in 2022 before joining the Princeton faculty. Previously, I have worked at Google DeepMind on the AlphaFold team, and at D. E. Shaw Research on molecular dynamics algorithms for drug discovery.

I also spend some time with companies and research institutes. My current industry and professional engagements include:

CV  /  Scholar  /  GitHub  /  Twitter  /  Lab

selected publications

See here for a full list of publications.
  1. cryodrgn_et_SI2.gif
    CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells
    Ramya Rangan*, Ryan Feathers*, Sagar Khavnekar, Adam Lerer, Jake Johnston, Ron Kelley, Martin Obr, Abhay Kotecha, and Ellen D. Zhong
    Nature Methods, Jun 2024
  2. af3.jpg
    Accurate structure prediction of biomolecular interactions with AlphaFold 3
    Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein, David A. Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn Tunyasuvunakool, Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie, Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A. Khan, Caroline M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula, Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski, Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M. Jumper
    Nature, May 2024
  3. cryofire.gif
    Amortized Inference for Heterogeneous Reconstruction in Cryo-EM
    Axel Levy, Gordon Wetzstein, Julien Martel, Frederic Poitevin, and Ellen D Zhong
    In Neural Information Processing Systems (NeurIPS), Dec 2022
  4. covid_spike_short_small.gif
    Latent Space Diffusion Models of Cryo-EM Structures
    Karsten Kreis*, Tim Dockhorn*, Zihao Li, and Ellen D Zhong
    In NeurIPS Workshop on Machine Learning for Structural Biology (MLSB), Dec 2022
    Oral presentation
  5. cryodrgn2.png
    CryoDRGN2: Ab Initio Neural Reconstruction of 3D Protein Structures From Real Cryo-EM Images
    Ellen D Zhong, Adam Lerer, Joseph H Davis, and Bonnie Berger
    In International Conference on Computer Vision (ICCV), May 2021
  6. spliceosome.gif
    CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks
    Ellen D Zhong, Tristan Bepler, Bonnie Berger+, and Joseph H Davis+
    Nature Methods, Feb 2021
  7. cscs.png
    Learning the language of viral evolution and escape
    Brian Hie, Ellen D Zhong, Bonnie Berger+, and Bryan Bryson+
    Science, Feb 2021
  8. cryodrgn_iclr.png
    Reconstructing continuous distributions of 3D protein structure from cryo-EM images.
    Ellen D Zhong, Tristan Bepler, Joseph H Davis, and Bonnie Berger
    In International Conference on Learning Representations (ICLR), May 2020
    Spotlight presentation