Library Coq.ZArith.Zwf

Require Import ZArith_base.
Require Export Wf_nat.
Require Import Omega.
Open Local Scope Z_scope.

Well-founded relations on Z.

We define the following family of relations on Z x Z:

x (Zwf c) y iff x < y & c <= y

Definition Zwf (c x y:Z) := c <= y /\ x < y.

and we prove that (Zwf c) is well founded

Section wf_proof.

  Variable c : Z.

The proof of well-foundness is classic: we do the proof by induction on a measure in nat, which is here |x-c|

  Let f (z:Z) := Zabs_nat (z - c).

  Lemma Zwf_well_founded : well_founded (Zwf c).
    red in |- *; intros.
    assert (forall (n:nat) (a:Z), (f a < n)%nat \/ a < c -> Acc (Zwf c) a).
    clear a; simple induction n; intros.
n= 0
    case H; intros.
    case (lt_n_O (f a)); auto.
    apply Acc_intro; unfold Zwf in |- *; intros.
    assert False; omega || contradiction.
inductive case
    case H0; clear H0; intro; auto.
    apply Acc_intro; intros.
    apply H.
    unfold Zwf in H1.
    case (Zle_or_lt c y); intro; auto with zarith.
    left.
    red in H0.
    apply lt_le_trans with (f a); auto with arith.
    unfold f in |- *.
    apply Zabs.Zabs_nat_lt; omega.
    apply (H (S (f a))); auto.
  Qed.

End wf_proof.

Hint Resolve Zwf_well_founded: datatypes v62.

We also define the other family of relations:

x (Zwf_up c) y iff y < x <= c

Definition Zwf_up (c x y:Z) := y < x <= c.

and we prove that (Zwf_up c) is well founded

Section wf_proof_up.

  Variable c : Z.

The proof of well-foundness is classic: we do the proof by induction on a measure in nat, which is here |c-x|

  Let f (z:Z) := Zabs_nat (c - z).

  Lemma Zwf_up_well_founded : well_founded (Zwf_up c).
  Proof.
    apply well_founded_lt_compat with (f := f).
    unfold Zwf_up, f in |- *.
    intros.
    apply Zabs.Zabs_nat_lt.
    unfold Zminus in |- *. split.
    apply Zle_left; intuition.
    apply Zplus_lt_compat_l; unfold Zlt in |- *; rewrite <- Zcompare_opp;
      intuition.
  Qed.

End wf_proof_up.

Hint Resolve Zwf_up_well_founded: datatypes v62.