Library Coq.Sets.Relations_1_facts

Require Export Relations_1.

Definition Complement (U:Type) (R:Relation U) : Relation U :=
  fun x y:U => ~ R x y.

Theorem Rsym_imp_notRsym :
 forall (U:Type) (R:Relation U),
   Symmetric U R -> Symmetric U (Complement U R).
Proof.
unfold Symmetric, Complement in |- *.
intros U R H' x y H'0; red in |- *; intro H'1; apply H'0; auto with sets.
Qed.

Theorem Equiv_from_preorder :
 forall (U:Type) (R:Relation U),
   Preorder U R -> Equivalence U (fun x y:U => R x y /\ R y x).
Proof.
intros U R H'; elim H'; intros H'0 H'1.
apply Definition_of_equivalence.
red in H'0; auto 10 with sets.
2: red in |- *; intros x y h; elim h; intros H'3 H'4; auto 10 with sets.
red in H'1; red in |- *; auto 10 with sets.
intros x y z h; elim h; intros H'3 H'4; clear h.
intro h; elim h; intros H'5 H'6; clear h.
split; apply H'1 with y; auto 10 with sets.
Qed.
Hint Resolve Equiv_from_preorder.

Theorem Equiv_from_order :
 forall (U:Type) (R:Relation U),
   Order U R -> Equivalence U (fun x y:U => R x y /\ R y x).
Proof.
intros U R H'; elim H'; auto 10 with sets.
Qed.
Hint Resolve Equiv_from_order.

Theorem contains_is_preorder :
 forall U:Type, Preorder (Relation U) (contains U).
Proof.
auto 10 with sets.
Qed.
Hint Resolve contains_is_preorder.

Theorem same_relation_is_equivalence :
 forall U:Type, Equivalence (Relation U) (same_relation U).
Proof.
unfold same_relation at 1 in |- *; auto 10 with sets.
Qed.
Hint Resolve same_relation_is_equivalence.

Theorem cong_reflexive_same_relation :
 forall (U:Type) (R R':Relation U),
   same_relation U R R' -> Reflexive U R -> Reflexive U R'.
Proof.
unfold same_relation in |- *; intuition.
Qed.

Theorem cong_symmetric_same_relation :
 forall (U:Type) (R R':Relation U),
   same_relation U R R' -> Symmetric U R -> Symmetric U R'.
Proof.
  compute in |- *; intros; elim H; intros; clear H;
   apply (H3 y x (H0 x y (H2 x y H1))).
Qed.

Theorem cong_antisymmetric_same_relation :
 forall (U:Type) (R R':Relation U),
   same_relation U R R' -> Antisymmetric U R -> Antisymmetric U R'.
Proof.
  compute in |- *; intros; elim H; intros; clear H;
   apply (H0 x y (H3 x y H1) (H3 y x H2)).
Qed.

Theorem cong_transitive_same_relation :
 forall (U:Type) (R R':Relation U),
   same_relation U R R' -> Transitive U R -> Transitive U R'.
Proof.
intros U R R' H' H'0; red in |- *.
elim H'.
intros H'1 H'2 x y z H'3 H'4; apply H'2.
apply H'0 with y; auto with sets.
Qed.