Library Coq.Sets.Integers

Require Export Finite_sets.
Require Export Constructive_sets.
Require Export Classical_Type.
Require Export Classical_sets.
Require Export Powerset.
Require Export Powerset_facts.
Require Export Powerset_Classical_facts.
Require Export Gt.
Require Export Lt.
Require Export Le.
Require Export Finite_sets_facts.
Require Export Image.
Require Export Infinite_sets.
Require Export Compare_dec.
Require Export Relations_1.
Require Export Partial_Order.
Require Export Cpo.

Section Integers_sect.

  Inductive Integers : Ensemble nat :=
    Integers_defn : forall x:nat, In nat Integers x.

  Lemma le_reflexive : Reflexive nat le.
  Proof.
    red in |- *; auto with arith.
  Qed.

  Lemma le_antisym : Antisymmetric nat le.
  Proof.
    red in |- *; intros x y H H'; rewrite (le_antisym x y); auto.
  Qed.

  Lemma le_trans : Transitive nat le.
  Proof.
    red in |- *; intros; apply le_trans with y; auto.
  Qed.

  Lemma le_Order : Order nat le.
  Proof.
    split; [exact le_reflexive | exact le_trans | exact le_antisym].
  Qed.

  Lemma triv_nat : forall n:nat, In nat Integers n.
  Proof.
    exact Integers_defn.
  Qed.

  Definition nat_po : PO nat.
    apply Definition_of_PO with (Carrier_of := Integers) (Rel_of := le);
      auto with sets arith.
    apply Inhabited_intro with (x := 0).
      apply Integers_defn.
      exact le_Order.
  Defined.

  Lemma le_total_order : Totally_ordered nat nat_po Integers.
  Proof.
    apply Totally_ordered_definition.
    simpl in |- *.
    intros H' x y H'0.
    specialize 2le_or_lt with (n := x) (m := y); intro H'2; elim H'2.
    intro H'1; left; auto with sets arith.
    intro H'1; right.
    cut (y <= x); auto with sets arith.
  Qed.

  Lemma Finite_subset_has_lub :
    forall X:Ensemble nat,
      Finite nat X -> exists m : nat, Upper_Bound nat nat_po X m.
  Proof.
    intros X H'; elim H'.
    exists 0.
    apply Upper_Bound_definition.
      unfold nat_po. simpl. apply triv_nat.
    intros y H'0; elim H'0; auto with sets arith.
    intros A H'0 H'1 x H'2; try assumption.
    elim H'1; intros x0 H'3; clear H'1.
    elim le_total_order.
    simpl in |- *.
    intro H'1; try assumption.
    lapply H'1; [ intro H'4; idtac | try assumption ]; auto with sets arith.
    generalize (H'4 x0 x).
    clear H'4.
    clear H'1.
    intro H'1; lapply H'1;
      [ intro H'4; elim H'4;
        [ intro H'5; try exact H'5; clear H'4 H'1 | intro H'5; clear H'4 H'1 ]
        | clear H'1 ].
    exists x.
    apply Upper_Bound_definition. simpl in |- *. apply triv_nat.
    intros y H'1; elim H'1.
    generalize le_trans.
    intro H'4; red in H'4.
    intros x1 H'6; try assumption.
    apply H'4 with (y := x0). elim H'3; simpl in |- *; auto with sets arith. trivial.
    intros x1 H'4; elim H'4. unfold nat_po; simpl; trivial.
    exists x0.
    apply Upper_Bound_definition.
      unfold nat_po. simpl. apply triv_nat.
    intros y H'1; elim H'1.
    intros x1 H'4; try assumption.
    elim H'3; simpl in |- *; auto with sets arith.
    intros x1 H'4; elim H'4; auto with sets arith.
    red in |- *.
    intros x1 H'1; elim H'1; apply triv_nat.
  Qed.

  Lemma Integers_has_no_ub :
    ~ (exists m : nat, Upper_Bound nat nat_po Integers m).
  Proof.
    red in |- *; intro H'; elim H'.
    intros x H'0.
    elim H'0; intros H'1 H'2.
    cut (In nat Integers (S x)).
    intro H'3.
    specialize 1H'2 with (y := S x); intro H'4; lapply H'4;
      [ intro H'5; clear H'4 | try assumption; clear H'4 ].
    simpl in H'5.
    absurd (S x <= x); auto with arith.
    apply triv_nat.
 Qed.

  Lemma Integers_infinite : ~ Finite nat Integers.
  Proof.
    generalize Integers_has_no_ub.
    intro H'; red in |- *; intro H'0; try exact H'0.
    apply H'.
    apply Finite_subset_has_lub; auto with sets arith.
  Qed.

End Integers_sect.