Library Coq.Bool.Sumbool
Here are collected some results about the type sumbool (see INIT/Specif.v)
   
sumbool A B, which is written {A}+{B}, is the informative
   disjunction "A or B", where A and B are logical propositions.
   Its extraction is isomorphic to the type of booleans. 
A boolean is either 
true or false, and this is decidable 
Definition sumbool_of_bool : forall b:bool, {b = true} + {b = false}.
  destruct b; auto.
Defined.
Hint Resolve sumbool_of_bool: bool.
Definition bool_eq_rec :
  forall (b:bool) (P:bool -> Set),
    (b = true -> P true) -> (b = false -> P false) -> P b.
  destruct b; auto.
Defined.
Definition bool_eq_ind :
  forall (b:bool) (P:bool -> Prop),
    (b = true -> P true) -> (b = false -> P false) -> P b.
  destruct b; auto.
Defined.
Logic connectives on type 
sumbool 
Section connectives.
  Variables A B C D : Prop.
  Hypothesis H1 : {A} + {B}.
  Hypothesis H2 : {C} + {D}.
  Definition sumbool_and : {A /\ C} + {B \/ D}.
    case H1; case H2; auto.
  Defined.
  Definition sumbool_or : {A \/ C} + {B /\ D}.
    case H1; case H2; auto.
  Defined.
  Definition sumbool_not : {B} + {A}.
    case H1; auto.
  Defined.
End connectives.
Hint Resolve sumbool_and sumbool_or: core.
Hint Immediate sumbool_not : core.
Any decidability function in type 
sumbool can be turned into a function
    returning a boolean with the corresponding specification: 
Definition bool_of_sumbool :
  forall A B:Prop, {A} + {B} -> {b : bool | if b then A else B}.
  intros A B H.
  elim H; intro; [exists true | exists false]; assumption.
Defined.
Implicit Arguments bool_of_sumbool.