Quick links

Games in Networks: the price of anarchy and learning

Date and Time
Thursday, December 11, 2008 - 4:30pm to 6:00pm
Computer Science Small Auditorium (Room 105)
Eva Tardos, from Cornell
Sanjeev Arora
Network games play a fundamental role in understanding behavior in many domains, ranging from communication networks through markets to social networks. Such networks are used, and also evolve due to selfish behavior of the users and owners. In light of these competing forces, it is surprising how efficient these networks are. It is an exciting challenge to understand the operation and success of these networks in game theoretic terms: what principles of interaction lead selfish participants to form such efficient networks? We will focus on congestion games, and study the degradation of quality of solution caused by the selfish behavior of users. We model users as learning algorithms, and show that natural learning behavior can avoid bad outcomes predicted by the price of anarchy in atomic congestion games such as the load-balancing game. We use tools from the theory of dynamical systems and algebraic geometry to show when players use a class of natural learning algorithms the distribution of play converges to the set of weakly stable equilibria, and that the set of weakly stable equilibria are the pure Nash equilibria with probability 1 when congestion costs are selected at random independently on each edge (from any monotonically parametrized distribution). The talk is a survey and self-contained. ----- About the speaker: Eva Tardos is a Professor of Computer Science at Cornell University where she is currently chair. Her research is in Algorithm Design and Algorithmic Game Theory. Algorithmic game theory is an emerging new area of designing systems and algorithms for selfish users. She is a winner of the Fulkerson Prize and the Dantzig Prize.
Follow us: Facebook Twitter Linkedin