Quick links

The Boosting Approach to Machine Learning

Date and Time
Wednesday, February 13, 2002 - 4:00pm to 5:30pm
Computer Science Small Auditorium (Room 105)
Robert Schapire, from AT&T Labs
Bernard Chazelle
Boosting is a general method for producing a very accurate classification rule by combining rough and moderately inaccurate "rules of thumb". While rooted in a theoretical framework of machine learning, boosting has been found to perform quite well empirically. In this talk, I will introduce the boosting algorithm AdaBoost, and explain the underlying theory of boosting, including our explanation of why boosting often does not suffer from overfitting. I will also describe some recent applications and extensions of boosting.
Follow us: Facebook Twitter Linkedin