COS 426 : Precept 5 Working with Half-Edge

Agenda

- How to tackle implementation of more advanced features
- Specific discussion
- Truncate
- Extrude
- Triangle Subdivision
- Bevel(?)
- Quad Subdivision(?)

How do I start?

- Some of the operations are tricky to implement!
- Think locally - independence of operations
- Modifying a vertex/edge/face should not influence other primitives
- Start small
- Just work on one primitive at a time
- Decouple topology and geometry
- What are necessary topological changes?
- What are necessary geometrical changes?
- Apply geometrical change after topological

Caution is advised

- Need to think ahead
- What data might change?
- Do you need to store it beforehand?
- Pen and paper!
- Draw things out, make sure you understand what is happening
- Count!
- After applying your operation how many new vertices you expect to see?

Truncate

- Corners of the shape are cutoff
- Main primitive
- Vertex
- How many new vertices?
- +2 per vertex
- How many new faces?
- +1 per vertex

Truncate - topology

- Start locally - just consider single vertex
- Need to add two new vertices, and a single new face

Start

$2 \times$ SplitEdge

Split Face

Truncate - topology

- Start locally - just consider single vertex
- Need to add two new vertices, and a single new face

Truncate - geometry

- We need to move vertices along halfedges
- You may want to store the respective offset vectors per vertex before hand
- As you modify one vertex lengths of edges will change!

Extrude

- Each face is moved along its normal, with new faces stitched to original face position
- Main primitive
- Face
- How many new vertices?
- +n per n-gon
- How many new faces?
- +n per n-gon

Extrude - topology

- Again, following figures are for illustration only, new vertices should be added at a location of the old ones!

Extrude - topology

- Extrude is bit harder - you need to perform adding new geometry and relinking manually.
- Desired:

Extrude - topology

- Let's change notation a bit, introduce old and new vertices

Extrude - topology

- Let's change notation a bit, introduce old and new vertices

$$
\begin{gathered}
n v_{i}=\text { splitEdgeMakeVert(} \\
\left.\quad \mathrm{ov}_{\mathrm{i}}, o \mathrm{ov}_{\mathrm{i}+1}, 0\right)
\end{gathered}
$$

Extrude - topology

$\mathrm{nf}_{\mathrm{i}}=\mathrm{splitFaceMakeEdge();}$

Extrude - topology

Extrude - topology

Want to delete old edge
Should be stored before hand

he $_{4}=$ old_halfedges[0];
joinFaceKillEdgeSimple(he ${ }_{6}$);

Extrude - geometry

- Actually, very simple
- Move each $n v_{i}$ by factor * f.normal

Triangle Topology

- Each face becomes 4 faces, by splitting all edges in half
- Assumes all triangles!
- Call your Filters.triangulate();
- Main primitive
- Face

- How many new vertices?
- +1 per edge
- How many new faces?
- +3 per face

TriTop - topology

- Need to split all edges!
- Create list of half edges
- Half of them, when splitting halfedge, opposite will also be split
- Join new vertices around a face
- Determine whether a vertex is old or new by index in vertices array
- All new will be added to the end of the array!

TriTop - topology

- SplitEdge for each half edge in pre-computed list
- SplitFace per each face, joining new vertices

TriTop - geometry

- None - we're done!
- For Loop Subdivision - store array of new positions for each vertex, where you will write positions calculated according to weight rules
- After done with topology, update positions!

$$
\beta= \begin{cases}\frac{3}{8 n} & n>3 \\ \frac{3}{16} & n=3\end{cases}
$$

Optional features

- Bevel
- Quad Subdivision
- We will just gloss over those

Bevel

- Let's think about required topology.

Bevel topology

Start with truncate

Relink original edge

Bevel - topology

- Select half edges that join truncated points
- Caution when selecting half-edges to perform split
- Make sure you're not double counting
- Moving an edge requires manual relinking

Bevel - geometry

- All new vertices are at location of the respective original vertex
- Can move them towards the centroid of the main face

Quad Topology

- n -gon to quad split
- Split each edge (SplitEdge)
- Join 2 new vertices (SplitFace)
- Split newly create edge (SplitEdge)
- Join rest of new vertices (SplitFace)
- Move to interior vertex to centroid location

Quad Topology

Start

SplitEdge

SplitEdge

SplitFace

SplitFace

Move

Quad Subdivision

- Three classes
- Old vertices 0
- Midpoints
-
- Centroids

Scott Schaefer

