COS 426: Precept 4

 Introduction to Half-Edges
Andy Zeng

Agenda

- Assignment 2 description
- Half-edge data structure
- Traversal
- Modification

Assignment 2

- Part 1 - Analysis
- Implement traversal operations
- Calculate mesh properties
- Vertex normal, avg. edge length, etc.
- Part 2 - Filters
- Filters and Warps similar to assignment 1
- Topological modifiers

Meshes

- Images had implicit adjacency information
- Grid around a pixel (access in $\mathrm{O}(1)$ time)
- Easy to express operations
- What about meshes?
- How to apply smoothing?

Meshes

- Meshes can be quite dense

Meshes

- How to access adjacency information quickly?

One - Ring Neighborhood

Half-Edge Data Structure

Half Edge

Vertex
Face

Vertex
Position
Half-Edge

Opposite
Outgoing
Half-Edge
Half-Edge

Face

Next
Half-Edge

Half-Edge Data Structure

Half-Edge Data Structure

One of the two outgoing edges will be used

Half-Edge Data Structure

One of the three edges will be used

Face

Half-Edge

Half-Edge Visualization

列局:

Exercise: vertex traversal

- How to get one-ring neighbors?

Traversal

- How to get one-ring neighbors?

Traversal

- How to get one-ring neighbors?

$$
\begin{aligned}
& \text { original_he = vertex.he; } \\
& \text { current = original_he; } \\
& \text { do \{ } \\
& \text { // do something with data } \\
& \text { current = he.opposite.next; } \\
& \text { \} while (he != original_he) }
\end{aligned}
$$

- Assignment will ask you for other kind of adjacency queries
- Vertices around Face, Faces around Vertex etc.

Traversal

- Vertex Normals are defined as weighted average of adjacent faces (weighted by face area)
- How would you compute vertex normals given per face normal and area?

Data Structure Modification

$$
\mathrm{v}_{3}=\operatorname{addVertex}(\text { weighted } \operatorname{Avg} \operatorname{Pos}(\mathrm{vi}, \mathrm{v} 2, \text { factor })) ;
$$

her.vertex $=\mathrm{v}_{3}$;
he2.vertex $=\mathrm{v}_{3}$;
he $_{3}=\operatorname{addHalfEdge}\left(\mathrm{v} 3, \mathrm{v} 2, \mathrm{fr}_{\mathrm{I}}\right)$;
he $_{4}=\operatorname{addHalfEdge}\left(\mathrm{v}_{3}, \mathrm{vı}, \mathrm{ff}_{2}\right)$;
hei.next $=$ he3;
he2.next = he4;
he3.next = heI_next;
he4.next = he2_next;
hei. opposite $=$ he4;
he4. opposite $=$ her;
hez. opposite $=$ hez;
he3. opposite $=$ hez;

Data Structure Modification

- splitFaceMakeEdge (f, v1, v2, vertOnF, switchFaces)

$$
\begin{aligned}
& \quad \mathrm{f}_{2}=\operatorname{addFace}() ; \\
& \text { hes }=\operatorname{addHalfEdge}\left(\text { vı, v2, } \mathrm{fi}_{\mathrm{I}}\right) ; \\
& \text { he6 }=\operatorname{addHalfEdge}\left(\mathrm{v2}, \mathrm{vI}, \mathrm{f}_{2}\right) ; \\
& \text { hes.opposite }=\text { he6; } \\
& \text { he6.opposite }=\text { hes; }
\end{aligned}
$$

hes.next $=$ he2;
he3.next $=$ hes;
hei.next = he6;
he6.next $=$ he4;
fi.halfedge $=$ hes;
f2. halfedge = he6;

Remember to re-link he4 and he1 to point to f2

Data Structure Modification

- How would you go about subdividing a quad face?
- You're given split edge and split face
- Just use those - guaranteed validity of dataset after use!
- Part of the assignment
- Think about it during tomorrow's class!

