
COS 426: Precept 4
Introduction to Half-Edges

Andy Zeng

Agenda
• Assignment 2 description

• Half-edge data structure

• Traversal

• Modification

Assignment 2
• Part 1 - Analysis

• Implement traversal operations

• Calculate mesh properties

• Vertex normal, avg. edge length, etc.

• Part 2 - Filters

• Filters and Warps similar to assignment 1

• Topological modifiers

Meshes
• Images had implicit adjacency information

• Grid around a pixel (access in O(1) time)

• Easy to express operations

• What about meshes?

• How to apply smoothing?

Meshes
• Meshes can be quite dense

Meshes
• How to access adjacency information quickly?

One - Ring Neighborhood

Half-Edge Data Structure

Half Edge Vertex Face

Vertex Position Half-Edge

Opposite
Half-Edge

Outgoing
Half-Edge …

Face …

Next
Half-Edge

Half-Edge Data Structure

Half-Edge

Vertex

Opposite
Half-Edge

Face

Next
Half-Edge

Half-Edge Data Structure

Vertex

Location

Outgoing
Half-Edge

…
One of the two outgoing edges

will be used

Half-Edge Data Structure

Face

Half-Edge

…

One of the three edges
will be used

Half-Edge Visualization

Exercise: vertex traversal
• How to get one-ring neighbors?

Traversal
• How to get one-ring neighbors?

Half-Edge

Vertex

Opposite
Half-Edge

Face

Next
Half-Edge

Traversal
• How to get one-ring neighbors?

original_he = vertex.he;
current = original_he;
do {

// do something with data
current = he.opposite.next;

} while (he != original_he)

• Assignment will ask you for other kind of adjacency queries

• Vertices around Face, Faces around Vertex etc.

Traversal
• Vertex Normals are defined as weighted average of adjacent faces (

weighted by face area)

• How would you compute vertex normals given per face normal and
area?

Half-Edge

Vertex

Opposite
Half-Edge

Face

Next
Half-Edge

Data Structure Modification
• splitEdgeMakeVert (v1, v2, factor)

v1
v3

v3 = addVertex(weightedAvgPos(v1, v2, factor));
he1.vertex = v3;
he2.vertex = v3;

he3 = addHalfEdge(v3, v2, f1);
he4 = addHalfEdge(v3, v1, f2);

he1.next = he3;
he2.next = he4;

he3.next = he1_next;
he4.next = he2_next;

v2
he1

he1_next

he2

he3

he4he2_next

f1

f2

he1.opposite = he4;
he4.opposite = he1;
he2.opposite = he3;
he3.opposite = he2;

Data Structure Modification
• splitFaceMakeEdge (f,

v1, v2, vertOnF,
switchFaces)

v4

v3

v2

v1

f2 = addFace();

f1

f2

he5 = addHalfEdge(v1, v2, f1);
he6 = addHalfEdge(v2, v1, f2);
he5.opposite = he6;
he6.opposite = he5;

he1

he4
he2

he3

he5

he6

he5.next = he2;
he3.next = he5;
he1.next = he6;
he6.next = he4;
f1.halfedge = he5;
f2.halfedge = he6;

Remember to re-link he4 and he1 to point to f2

Data Structure Modification
• How would you go about subdividing a quad face?

• You’re given split edge and split face

• Just use those - guaranteed validity of dataset after use!

• Part of the assignment

• Think about it during tomorrow’s class!

