Passive Dynamics and Particle Systems

COS 426, Spring 2017 Princeton University

Animation \& Simulation

- Animation
- Make objects change over time according to scripted actions
- Simulation / dynamics

Pixar

- Predict how objects change over time according to physical laws

University of Illinois

Animation \& Simulation

Keyframing

- good for characters and simple motion
- but many physical systems are too complex

Simulation

1. Identify/derive mathematical model (ODE, PDE)
2. Develop computer model
3. Simulate

Simulation

Equations known for a long time

- Motion
(Newton, 1660)

$$
\begin{aligned}
& d / d t(m \mathbf{v})=\mathbf{f} \\
& \boldsymbol{\sigma}=\mathbf{E} \boldsymbol{\varepsilon} \\
& \rho\left(\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}\right)=-k \nabla \rho+\rho \mathbf{g}+\mu \nabla^{2} \mathbf{v}
\end{aligned}
$$

- Fluids
(Navier, Stokes, 1822)

0.2 ops

2014:Tianhe-2 @ NUDT (China)

54,902 teraflops (3.12M cores)

Simulation

Physically-based simulation

- Computational Sciences
- Reproduction of physical phenomena
- Predictive capability (accuracy!)

- Substitute for expensive experiments

Simulation in Graphics

Physically-based simulation

- Computational Sciences
- Reproduction of physical phenomena
- Predictive capability (accuracy!)
- Substitute for expensive experiments

- Computer Graphics
- Imitation of physical phenomena
- Visually plausible behavior
- Speed, stability, art-directability

Simulation in Graphics

- Art-directability

Simulation in Graphics

- Speed

https://www.youtube.com/watch?v=8jD1bz4N3 0

Simulation in Graphics

- Stability
https://www.youtube.com/watch?v=tT81VPk_ukU

Simulation in Graphics

- Rigid bodies
- Collision
- Fracture
- Fluids
- Elasticity

- Muscle + skin
- Paper
- Hair
- Cloth

Dynamics

Passive--no muscles or motors

particle systems leaves
water spray clothing

Active--internal source of energy

Passive Dynamics

- No muscles or motors
- Smoke
- Water
- Cloth
- Fire
- Fireworks
- Dice

Passive Dynamics

- Physical laws
- Newton's laws
- Hooke's law
- Etc.
- Physical phenomena
- Gravity
- Momentum
- Friction
- Collisions
- Elasticity
- Fracture

Particle Systems

- A particle is a point mass
- Position
- Velocity
- Mass
- Drag
- Elasticity

$$
\mathrm{p}=(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

- Lifetime
- Color
- Use many particles to model complex phenomena
- Keep array of particles
- Newton's laws

Particle Systems

- For each frame:
- For each simulation step (Δt)
- Create new particles and assign attributes
- Update particles based on attributes and physics
- Delete any expired particles
- Render particles

Creating Particles

- Where to create particles?
- Predefined source
- Where particle density is low
- Surface of shape
- etc.

Creating Particles

- Where to create particles?
- Predefined source
- Where particle density is low
- Surface of shape - etc.

Creating Particles

- Example: particles emanating from shape
- Line
- Box
- Circle
- Sphere
- Cylinder
- Cone
- Mesh

Creating Particles

- Example: particles emanating from sphere

Creating Particles

- Example: particles emanating from sphere

Selecting random position on surface of sphere

1. $\mathrm{z}=$ random $[-\mathrm{r}, \mathrm{r}]$
2. $\mathrm{phi}=$ random $[0,2 \pi)$
3. $d=\operatorname{sqrt}\left(r^{2}-z^{2}\right)$
4. $\mathrm{px}=\mathrm{cx}+\mathrm{d} * \cos (\mathrm{phi})$
5. $\mathrm{py}=\mathrm{cy}+\mathrm{d}^{*} \sin (\mathrm{phi})$
6. $\mathrm{pz}=\mathrm{cz}+\mathrm{z}$

Creating Particles

- Example: particles emanating from sphere

Selecting random direction within angle cutoff of normal

1. $\mathrm{N}=$ surface normal
2. $\mathrm{A}=$ any vector on tangent plane
$3 . \mathrm{t} 1=$ random $[0,2 \pi)$
3. $\mathrm{t} 2=\operatorname{random}[0, \sin ($ angle cutoff $))$
4. $\mathrm{V}=$ rotate A around N by t1
5. $\mathrm{V}=$ rotate V around VxN by $\operatorname{acos}(\mathrm{t} 2)$

Example: Fountains

Particle Systems

- For each frame:
- For each simulation step (Δt)
- Create new particles and assign attributes
- Update particles based on attributes and physics
- Delete any expired particles
- Render particles

Equations of Motion

- Newton's Law for a point mass
- $\mathrm{f}=\mathrm{ma}$
- Computing particle motion requires solving second-order differential equation

- Add variable v to form coupled first-order differential equations: "state-space form"

Solving the Equations of Motion

- Initial value problem
- Know x(0), v(0)
- Can compute force (and therefore acceleration) for any position / velocity / time
- Compute $x(t)$ by forward int

Solving the Equations of Motion

- Forward (explicit) Euler integration

$$
\begin{aligned}
& \text { Euler Step (1768) } \\
& \qquad y_{n+1}=y_{n}+h \cdot f\left(t_{n}, y_{n}\right)
\end{aligned}
$$

- Idea: start at initial condition and take a step into the direction of the tangent.
- Iteration scheme: $y_{n} \rightarrow f\left(t_{n}, y_{n}\right) \rightarrow y_{n+1} \rightarrow f\left(t_{n+1} y_{n+1}\right) \rightarrow \ldots$

Solving the Equations of Motion

- Forward (explicit) Euler integration
- $\mathrm{x}(\mathrm{t}+\Delta \mathrm{t}) \leftarrow \mathrm{x}(\mathrm{t})+\Delta \mathrm{t} \mathrm{v}(\mathrm{t})$
- $v(t+\Delta t) \leftarrow v(t)+\Delta t f(x(t), v(t), t) / m$

Solving the Equations of Motion

- Forward (explicit) Euler integration
- $\mathrm{x}(\mathrm{t}+\Delta \mathrm{t}) \leftarrow \mathrm{x}(\mathrm{t})+\Delta \mathrm{t} \mathrm{v}(\mathrm{t})$
- $v(t+\Delta t) \leftarrow v(t)+\Delta t f(x(t), v(t), t) / m$
- Problem:
- Accuracy decreases as Δt gets bigger

Solving the Equations of Motion

- Midpoint method (2nd-order Runge-Kutta)

1. Compute an Euler step
2. Evaluate f at the midpoint of Euler step
3. Compute new position / velocity using midpoint velocity / acceleration

$$
\begin{aligned}
& \circ \mathrm{x}_{\text {mid }} \leftarrow \mathrm{x}(\mathrm{t})+\Delta \mathrm{t} / 2^{*} \mathrm{v}(\mathrm{t}) \\
& \circ \mathrm{v}_{\text {mid }} \leftarrow \mathrm{v}(\mathrm{t})+\Delta \mathrm{t} / 2^{*} \mathrm{f}(\mathrm{x}(\mathrm{t}), \mathrm{v}(\mathrm{t}), \mathrm{t}) / \mathrm{m} \\
& \circ \mathrm{x}(\mathrm{t}+\Delta \mathrm{t}) \leftarrow \mathrm{x}(\mathrm{t})+\Delta \mathrm{t} \mathrm{v}_{\text {mid }} \\
& \circ \mathrm{v}(\mathrm{t}+\Delta \mathrm{t}) \leftarrow \mathrm{v}(\mathrm{t})+\Delta \mathrm{t}\left(\mathrm{x}_{\text {mid }}, \mathrm{v}_{\text {mid }}, \mathrm{t}\right) / \mathrm{m}
\end{aligned}
$$

Solving the Equations of Motion

- Adaptive step size
- Repeat until error is below threshold

1. Compute x_{h} by taking one step of size h
2. Compute $\mathrm{x}_{\mathrm{h} / 2}$ by taking 2 steps of size $\mathrm{h} / 2$
3. Compute error $=\left|x_{h}-x_{h / 2}\right|$
4. If (error < threshold) break
5. Else, reduce step size and try again

Solving the Equations of Motion

Explicit Euler step

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

Implicit Euler step

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right)
$$

Why are these methods called like this?

- Explicit: all quantities are known (given explicitly)
- Implicit: y_{n+1} is unknown (given implicitly)
\rightarrow solve (nonlinear) equation(s)!

Solving the Equations of Motion

Explicit Euler step

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

Implicit Euler step

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right)
$$

Why are these methods called like this?

- Explicit: all quantities are known (given explicitly)
- Implicit: y_{n+1} is unknown
(given implicitly)
- Stability conditions for Euler
- Explicit $y_{n}=(1+h \lambda)^{n} y_{0}<\infty \Leftrightarrow|1+h \lambda|<1$
- Implicit $y_{n}=(1-h \lambda)^{-n} y_{0}<\infty \Leftrightarrow|1-h \lambda|^{-1}<1$

Implicit Euler is stable for all $h>0$!

Particle System Forces

- Force fields
- Gravity, wind, pressure
- Viscosity/damping
- Drag, friction
- Collisions
- Static objects in scene
- Other particles
- Attraction and repulsion
- Springs between neighboring particles (mesh)
- Gravitational pull, charge

Particle System Forces

- Gravity
- Force due to gravitational pull (of earth)
- $g=$ acceleration due to gravity ($\mathrm{m} / \mathrm{s}^{2}$)

$$
\begin{array}{l|l}
f_{g}=m g & \mathrm{~g}=(0,-9.80665,0)
\end{array}
$$

Particle System Forces

- Drag
- Force due to resistance of medium
- $\mathrm{k}_{\text {drag }}=$ drag coefficient (kg/s)

$$
f_{d}=-k_{d r a g} v
$$

- Air resistance sometimes taken as proportional to v^{2}

Particle System Forces

- Sinks
- Force due to attractor in scene

$$
f_{s}=\frac{\text { intensity }}{c_{a}+l_{a} \cdot d+q_{a} \cdot d^{2}}
$$

Particle System Forces

- Gravitational pull of other particles
- Newton's universal law of gravitation

$$
\begin{aligned}
& f_{G}=G \frac{m_{1} \cdot m_{2}}{d^{2}} \\
& G=6.67428 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
\end{aligned}
$$

Particle System Forces

- Springs
- Hooke's law
$f_{H}(p)=k_{s}(d(p, q)-s) D$
$D=(q-p) /\|q-p\|$
$d(p, q)=\|q-p\|$
$s=$ resting length
$k_{s}=$ spring coefficient

Particle System Forces

- Springs
- Hooke's law with damping
$f_{H}(p)=\left[k_{s}(d(p, q)-s)+k_{d}(v(q)-v(p)) \cdot D\right] D$
$D=(q-p) /\|q-p\|$
$d(p, q)=\|q-p\|$
$s=$ resting length
$k_{s}=$ spring coefficient

$k_{d}=$ damping coefficient
$v(p)=$ velocity of p
$v(q)=$ velocity of q

$$
k_{d} \sim 2 \sqrt{m k_{s}}
$$

Example: Rope

Particle System Forces

- Spring-mass mesh

Example: Cloth

Particle System Forces

- Collisions
- Collision detection
- Collision response

Particle System Forces

- Collision detection
- Intersect ray with scene
- Compute up to Δt at time of first collision, and then continue from there

Collision Detection

Bounding Volumes

su!uoụued ןeupeds

uniform grid
quadtree / octree

kd-tree

bsp-tree

	1	1	1	2	
	1	1	1	2	
	1	1	2	2	2
1	1	1		2	2

Particle System Forces

- Collision response
- No friction: elastic collision (for $\mathrm{m}_{\text {target }} \gg \mathrm{m}_{\text {particle: }}$: specular reflection)

- Otherwise, total momentum conserved, energy dissipated if inelastic

Particle System Forces

- Impulse driven
- Manipulation of velocities
- Fast, more difficult to compute
- Force driven
- Penetration induces forces

https://www.pixar.com/assets/pbm2001/pdf/slidesh.pdf
- Slow, easy to compute
- Position based response
- Approximate, non physical
- Lightweight

Example: Bouncing

Ning Jin
COS 426, 2013

Particle Systems

- For each frame:
- For each simulation step ($\Delta \mathrm{t})$
- Create new particles and assign attributes
- Update particles based on attributes and physics
- Delete any expired particles
- Render particles

Deleting Particles

- When to delete particles?
- When life span expires
- When intersect predefined sink surface
- Where density is high
- Random

Particle Systems

- For each frame:
- For each simulation step (Δt)
- Create new particles and assign attributes
- Update particles based on attributes and physics
- Delete any expired particles
- Render particles

Rendering Particles

- Rendering styles
> Points
- Polygons
- Shapes
- Trails
- etc.

Rendering Particles

- Rendering styles
- Points
> Textured polygons: sprites
- Shapes
- Trails
- etc.

Rendering Particles

- Rendering styles
- Points
- Polygons
> Shapes
- Trails
- etc.

Rendering Particles

- Rendering styles
- Points
- Polygons
- Shapes
> Trails
- etc.

McAllister

Putting it All Together

- Examples
- Smoke
- Water
- Cloth
- Fire
- Fireworks
- Dice

Example: "Smoke"

Lentine

Example: Fire

Example: Cloth

Example: Cloth

Example: Bouncing Particles

Example: Bouncing Particles

Example: More Bouncing

Example: Flocks \& Herds

Summary

- Particle systems
- Lots of particles
- Simple physics
- Interesting behaviors
- Waterfalls
- Smoke
- Cloth
- Flocks
- Solving motion equations
- For each step, first sum forces, then update position and velocity

