Global Illumination

COS 426

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Direct Illumination (last lecture)

- For each ray traced from camera
- Sum radiance reflected from each light

Light

$$
I_{i}=\frac{\mathrm{I}_{0}}{c_{a}+l_{a} d+q_{a} d^{2}}
$$

Example

Red's Dream (Pixar Animation Studios)

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
> Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
> Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Shadows

- Hard shadows from point light sources

Light

Camera

Shadows

- Hard shadows from point light sources

Shadows

- Hard shadows from point light sources

Shadows

- Hard shadows from point light sources
- Cast ray towards light; $S_{L}=0$ if blocked, $S_{L}=1$ otherwise

Shadows

- Soft shadows from area light sources
- Umbra = fully shadowed
- Penumbra = partially shadowed
penumbra
source

Shadows

- Soft shadows from area light sources
- Average illumination for M sample rays per light

Shadows

- Soft shadows from circular area light sources
- Average illumination for M sample rays per light

Shadows

- Soft shadows from circular area light sources
- Average illumination for M sample rays per light
- Generate M random sample points on area light (e.g., with rejection sampling)
- Compute illumination for every sample
- Average

$I=\cdots+\sum_{i \in \text { AreaLights }} \frac{1}{M} \sum_{j \in \text { samples }}^{M}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{i j} I_{i j}$

Direct Illumination

- Illumination from polygonal area light sources
- Average illumination for M sample rays per light

$$
I=\cdots+\sum_{i \in \text { Arealiphns }} \frac{1}{M} \sum_{j \text { seamples }}^{M}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{i j} I_{i j}
$$

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
> Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
- Radiosity

Inter-Object Reflection

Inter-Object Reflection

- Radiance leaving point x on surface is sum of reflected irradiance arriving from other surfaces

Solid Angle

- Angle in radians
- Solid angle in steradians

Light Emitted from a Surface

- Power per unit area per unit solid angle Radiance (L)
- Measured in W/m²/sr

$$
L=\frac{d \Phi}{d A d \omega}
$$

Rendering Equation [Kajiya 86]

- Compute radiance in outgoing direction by integrating reflections over all incoming directions

Rendering Equation [Kajiya 86]

- Compute radiance in outgoing direction by integrating reflections over all incoming directions

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
> Recursive ray tracing
- More advanced ray tracing
- Radiosity

Recursive Ray Tracing

- Assume only significant irradiance is in directions of light sources, specular reflection, and refraction

Recursive Ray Tracing

- Compute radiance in outgoing direction by summing reflections from directions of lights specular reflections, and refractions

$$
I=I_{E}+K_{A} I_{A L}+\sum_{L}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Recursive Ray Tracing

- Same as ray casting, but trace secondary rays for specular (mirror) reflection and refraction

$$
I=I_{E}+K_{A} I_{A L}+\sum_{L}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Specular Reflection

- Trace secondary ray in direction of mirror reflection
- Evaluate radiance along secondary ray and include it into illumination model

$$
I=I_{E}+K_{A} I_{A L}+\sum_{L}\left(K_{D}\left(N \cdot L_{i}\right)+K_{S}\left(V \cdot R_{i}\right)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Refraction

- Trace secondary ray in direction of refraction
- Evaluate radiance along secondary ray and include it into illumination model

Recursive Ray Tracing

- ComputeRadiance is called recursively

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray, R3Intersection\& hit) \{

R3Ray specular_ray = SpecularRay(ray, hit);
R3Ray refractive_ray = RefractiveRay(ray, hit);
R3Rgb radiance $=$ Phong(scene, ray, hit) +
Ks * ComputeRadiance(scene, specular_ray) +
Kt * ComputeRadiance(scene, refractive_ray);
return radiance;

Recursive Ray Tracing

- Which paths?

Recursive Ray Tracing

- Specular reflection and refraction -- LD(S|R)*E

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
> More advanced ray tracing
- Radiosity

Beyond Recursive Ray Tracing

Distributed Ray Tracing

- Estimate integral for each reflection by sampling incoming directions

$$
L_{o}\left(x^{\prime}, \vec{\omega}^{\prime}\right)=L_{e}\left(x^{\prime}, \vec{\omega}^{\prime}\right)+\sum_{\text {samples }} f_{r}\left(x^{\prime}, \vec{\omega}, \vec{\omega}^{\prime}\right)(\vec{\omega} \cdot \vec{n}) L_{i}\left(x^{\prime}, \vec{\omega}\right) d \vec{\omega}
$$

Ordinary Ray Tracing vs. Distribution Ray Tracing

Ray tracing
Distributed ray tracing

Monte Carlo Path Tracing

- Estimate integral for each pixel by sampling paths from camera

Ray Tracing vs. Path Tracing

Ray tracing

Path tracing

Photon Mapping

- Trace rays forward from light sources (recursively)
- Store hits on surfaces: "photon map"
- Final "gather" pass backwards from camera: still compute direct lighting, but look up indirect lighting in photon map

Overview

- Direct Illumination
- Emission at light sources
- Scattering at surfaces
- Global illumination
- Shadows
- Inter-object reflections
- Rendering equation
- Recursive ray tracing
- More advanced ray tracing
> Radiosity

Radiosity

- Indirect diffuse illumination - LD*E

Rendering Equation (1)

$$
L_{o}\left(x^{\prime}, \vec{\omega}^{\prime}\right)=L_{e}\left(x^{\prime}, \vec{\omega}^{\prime}\right)+\int_{\Omega} f_{r}\left(x^{\prime}, \vec{\omega}, \vec{\omega}^{\prime}\right)(\vec{\omega} \cdot \vec{n}) L_{i}\left(x^{\prime}, \vec{\omega}\right) d \vec{\omega}
$$

Rendering Equation (2)

$L\left(x^{\prime} \rightarrow x^{\prime \prime}\right)=L_{e}\left(x^{\prime} \rightarrow x^{\prime \prime}\right)+\int_{S} f_{r}\left(x \rightarrow x^{\prime} \rightarrow x^{\prime \prime}\right) L\left(x \rightarrow x^{\prime}\right) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A$

Radiosity Equation

$$
L\left(x^{\prime} \rightarrow x^{\prime \prime}\right)=L_{e}\left(x^{\prime} \rightarrow x^{\prime \prime}\right)+\int_{S} f_{r}\left(x \rightarrow x^{\prime} \rightarrow x^{\prime \prime}\right) L\left(x \rightarrow x^{\prime}\right) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A
$$

Assume everything is Lambertian

$$
\rho\left(x^{\prime}\right)=f_{r}\left(x \rightarrow x^{\prime} \rightarrow x^{\prime \prime}\right) \pi
$$

$L\left(x^{\prime}\right)=L_{e}\left(x^{\prime}\right)+\frac{\rho\left(x^{\prime}\right)}{\pi} \int_{S} L(x) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A$
Convert to
Radiosities

$$
B=\int_{\Omega} L_{o} \cos \theta d \omega \quad L=\frac{B}{\pi}
$$

$$
B\left(x^{\prime}\right)=B_{e}\left(x^{\prime}\right)+\frac{\rho\left(x^{\prime}\right)}{\pi} \int_{S} B(x) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A
$$

Radiosity Approximation

$$
B\left(x^{\prime}\right)=B_{e}\left(x^{\prime}\right)+\frac{\rho\left(x^{\prime}\right)}{\pi} \int_{S} B(x) V\left(x, x^{\prime}\right) G\left(x, x^{\prime}\right) d A
$$

Discretize the surfaces into "elements"

$B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{N} B_{j} F_{i j}$
where $\quad F_{i j}=\frac{1}{A_{i}} \int_{A_{i} A_{j}} \int_{i j} \frac{V_{i j} \cos \Theta_{i}^{\prime} \cos \Theta_{o}}{\pi r^{2}} d A_{j} d A_{i}$

Radiosity Approximation

System of Equations

$$
\begin{gathered}
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{N} B_{j} F_{i j} \\
E_{i}=B_{i}-\rho_{i} \sum_{j=1}^{N} B_{j} F_{i j} \\
B_{i}-\rho_{i} \sum_{j=1}^{N} B_{j} F_{i j}=E_{i}
\end{gathered}
$$

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{1,1} & \cdot & \cdot & -\rho_{1} F_{1, n} \\
-\rho_{2} F_{2,1} & 1-\rho_{2} F_{2,2} & \cdot & -\rho_{2} F_{2, n} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
-\rho_{n-1} F_{n-1,1} & \cdot & \cdot & -\rho_{n-1} F_{n-1, n} \\
-\rho_{n} F_{n, 1} & \cdot & \cdot & 1-\rho_{n} F_{n, n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\cdot \\
\cdot \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\cdot \\
\cdot \\
\cdot \\
E_{n}
\end{array}\right]
$$

$$
\left(1-\rho_{i} \sum_{j=1}^{N} F_{i i}\right) B_{i}-\rho_{i} \sum_{j=1}^{N} F_{i j} B_{j}=E_{i}
$$

$$
B_{i} A_{i}=E_{i} A_{i}+\rho_{i} \sum_{j=1}^{N} F_{j i} B_{j} A_{j} \longleftarrow \underset{\text { energy balance }}{\text { equation }}
$$

Compare with Direct Illumination

Hugo Elias, Wikipedia

Radiosity

- Application
- Interior lighting design
- LD*E
- Issues
- Computing form factors
- Selecting basis functions for radiosities
- Solving large linear system of equations
- Meshing surfaces into elements
- Rendering images

Summary

- Global illumination
- Rendering equation
- Solution methods
- Sampling
- Ray tracing
- Distributed ray tracing
- Monte Carlo path tracing
- Discretization
- Radiosity

Photorealistic rendering with global illumination is an integration problem

