3D Rendering

COS 426

Syllabus

I. Image processing
II. Modeling
III. Rendering
IV. Animation

Image Processing
(Rusty Coleman, CS426, Fall99)

What is 3D Rendering?

- Topics in computer graphics
- Imaging = representing 2D images
- Modeling = representing $3 D$ objects
- Rendering = constructing $2 D$ images from 3D models
- Animation = simulating changes over time

What is 3D Rendering?

- Construct image from 3D model

3D Rendering Scenario I

- Interactive
- Images generated in fraction of a second (<1/10) as user controls rendering parameters (e.g., camera)
- Achieve highest quality possible in given time
- Useful for visualization, games, etc.

3D Rendering Scenario II

- Offline
- One image generated with as much quality as possible for a particular set of rendering parameters
- Take as much time as is needed (minutes)
- Photorealisism: movies, cut scenes, etc.

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?

3D Rendering Example

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?
- Camera
- Visible surface determinaton
- Lights
- Reflectance
- Shadows
- Indirect illumination
- Sampling
- etc.

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?
- Camera
- Visible surface determinaton
- Lights
- Reflectance
- Shadows
- Indirect illumination
- Sampling
- etc.

Camera Models

- The most common model is pin-hole camera
- Light rays arrive along paths toward focal point
- No lens effects (e.g., everything in focus)

Other models consider ...
Depth of field
Motion blur
Lens distortion

Camera Parameters

-What are the parameters of a camera?

Pinhole Camera Parameters

- Position
- Eye position (p_{x}, p_{y}, p_{z})
- Orientation
- View direction ($\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}$) or "look at" point
- Up direction ($\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}$)
- Coverage
- Field of view $\left(\mathrm{fov}_{\mathrm{x}}, \mathrm{fov}_{\mathrm{y}}\right)$
- Resolution
- In x and y

View Plane

Eye position

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?
- Camera
- Visible surface determination
- Lights
- Reflectance
- Shadows
- Indirect illumination
- Sampling
- etc.

Visible Surface Determination

- The color of each pixel on the view plane depends on the radiance ("amount of light") emanating from visible surfaces

How find visible surfaces?

Figure 29. Characterization of ten opaque-object algorithms b. Comparison of the algorithms.

In Practice... Brute Force

- Ray tracing
- for each pixel: determine closest object hit by ray
- compute color
- Rasterization
- for each object: enumerate pixels it hits
- keep track of color, depth of current-best surface at each pixel

Ray Casting

- For each sample ...
- Construct ray from eye position through view plane
- Find first surface intersected by ray through pixel
- Compute color of sample based on surface radiance

Ray Casting

- For each sample ...
- Construct ray from eye position through view plane
- Find first surface intersected by ray through pixel
- Compute color of sample based on surface radiance

Ray Casting Example

Rays from camera in simple scene

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?
- Camera
- Visible surface determinaton
- Lights
- Reflectance
- Shadows
- Indirect illumination
- Sampling
- etc.

Lighting Simulation

- Lighting parameters
- Light source emission
- Surface reflectance
- Atmospheric attenuation
- Camera response

Lighting Simulation

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?
- Camera
- Visible surface determinaton
- Lights
- Reflectance
- Shadows
- Indirect illumination
- Sampling
- etc.

Shadows

- Occlusions from light sources

Shadows

- Occlusions from light sources
- Soft shadows with area light source

Shadows

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?
- Camera
- Visible surface determinaton
- Lights
- Reflectance
- Shadows
- Indirect illumination
- Sampling
- etc.

Path Types

Path Types

$\operatorname{LD}(\mathrm{S} \mid \mathrm{T}) * \mathrm{E}$

direct diffuse + indirect specular and transmission

Path Types

$\operatorname{LD}(\mathrm{S} \mid \mathrm{T}) * \mathrm{E}$

+ soft shadows

Path Types

$\mathrm{LD}(\mathrm{S} \mid \mathrm{T}) * \mathrm{E}+$ $\mathrm{L}(\mathrm{S} \mid \mathrm{T}) * \mathrm{DE}$

+ caustics

Path Types

+ indirect diffuse illumination

3D Rendering Issues

- What issues must be addressed by a 3D rendering system?
- Camera
- Visible surface determinaton
- Shadows
- Reflectance
- Indirect illumination
- Sampling
- etc.

Sampling

- Scene can be sampled with any ray
- Rendering is a problem in sampling and reconstruction

Summary

- Topics for upcoming lectures
- Camera
- Visible surface determinaton
- Shadows
- Reflectance
- Indirect illumination
- Sampling
- etc.

Tricycle
(James Percy, CS 426, Fall99)

For assignment \#3, you will write a ray tracer!

Ray Casting

COS 426

Ray Casting

- Primitive operation for one class of renderers:
- Given a ray (origin, direction)
- Find point of first intersection with scene
- May return:
- Whether intersection occurs
- Point of intersection (x,y,z)
- Parameters of intersection on object
- Used for:
- Camera (primary) rays: backwards ray tracing
- Accumulate brightness from lights: forwards ray tracing
- Shadow rays
- Indirect illumination (path tracing)

Traditional (Backwards) Ray Tracing

- The color of each pixel on the view plane depends on the radiance emanating along rays from visible surfaces in scene

Light

Camera

Scene

- Scene has:
- Scene graph with surface primitives
- Set of lights
- Camera
struct R3Scene \{
R3Node *root;
vector<R3Light *> lights;
R3Camera camera;
R3Box bbox;
R3Rgb background;
R3Rgb ambient;
\};

Light

Camera

Scene Graph

- Scene graph is hierarchy of nodes, each with:
- Bounding box (in node's coordinate system)
- Transformation (4×4 matrix)
- Shape (mesh, sphere, ... or null)
- Material (more on this later)

Scene Graph

- Simple scene graph implementation:

```
struct R3Node {
    struct R3Node *parent;
    vector<struct R3Node *> children;
    R3Shape *shape;
    R3Matrix transformation;
    R3Material *material;
    R3Box bbox;
};
```

```
struct R3Shape {
    R3ShapeType type;
    R3Box *box;
    R3Sphere *sphere;
    R3Cylinder *cylinder;
    R3Cone *cone;
    R3Mesh *mesh;
};
```


Ray Casting

- For each sample (pixel) ...
- Construct ray from eye position through view plane
- Compute radiance leaving first point of intersection between ray and scene

Light

Camera

Ray Casting

- Simple implementation:

R2Image $*$ RayCast(R3Scene $*$ scene, int width, int height) \{

R2Image $*$ image $=$ new R2Image (width, height);
for (int $\mathrm{i}=0 ; \mathrm{i}<$ width; $\mathrm{i}++$) \{
for (int $\mathrm{j}=0 ; \mathrm{j}<$ height; $\mathrm{j}++$) \{ R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j); R 3 Rgb radiance $=$ ComputeRadiance (scene, \&ray); image->SetPixel(i, j, radiance);
\}
\}
return image;

Ray Casting

- Simple implementation:

R2Image $*$ RayCast(R3Scene $*$ scene, int width, int height) \{

R2Image $*$ image $=$ new R2Image (width, height);
for (int $\mathrm{i}=0 ; \mathrm{i}<$ width; $\mathrm{i}++$) \{
for (int $\mathrm{j}=0 ; \mathrm{j}<$ height; $\mathrm{j}++$) \{ R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j); R 3 Rgb radiance $=$ ComputeRadiance (scene, \&ray); image->SetPixel(i, j, radiance);
\}
\}
return image;

Constructing Ray Through a Pixel

Constructing Ray Through a Pixel

- 2D Example
Θ = frustum half-angle
$\mathrm{d}=$ distance to view plane
right $=$ towards \times up

P1 $=\mathrm{P}_{0}+\mathrm{d}^{*}$ towards $-\mathrm{d} * \tan (\Theta) *$ right
$\mathrm{P} 2=\mathrm{P}_{0}+\mathrm{d} *$ towards $+\mathrm{d} * \tan (\Theta) *$ right
$\mathrm{P}=\mathrm{P} 1+((\mathrm{i}+0.5) /$ width $) *(\mathrm{P} 2-\mathrm{P} 1)$
$\mathrm{V}=\left(\mathrm{P}-\mathrm{P}_{0}\right) /\left\|\mathrm{P}-\mathrm{P}_{0}\right\|$
(d cancels out...)

Ray: $P=P_{0}+t V$

Ray Casting

- Simple implementation:

R2Image $*$ RayCast(R3Scene $*$ scene, int width, int height) \{

R2Image $*$ image $=$ new R2Image (width, height);
for (int $\mathrm{i}=0 ; \mathrm{i}<$ width; $\mathrm{i}++$) \{
for (int $\mathrm{j}=0 ; \mathrm{j}<$ height; $\mathrm{j}++$) \{ R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j); R 3 Rgb radiance $=$ ComputeRadiance(scene, \&ray); image->SetPixel(i, j, radiance);
\}
\}
return image;

Ray Casting

- Simple implementation:


```
struct R3Intersection { bool hit; R3Node *node; R3Point position; R3Vector normal; double t;

Light


Surfaces

Camera

\section*{Ray Casting}
- Simple implementation:

```

struct R3Intersection { bool hit; R3Node *node; R3Point position; R3Vector normal; double t;

Light

Surfaces

Camera

Ray Intersection

- Ray Intersection
- Sphere
- Triangle
- Box
- Scene
- Ray Intersection Acceleration
- Bounding volumes
- Uniform grids
- Octrees
- BSP trees

Ray Intersection

- Ray Intersection
> Sphere
- Triangle
- Box
- Scene
- Ray Intersection Acceleration
- Bounding volumes
- Uniform grids
- Octrees
- BSP trees

Ray-Sphere Intersection

Ray-Sphere Intersection

Ray: $\mathrm{P}=\mathrm{P}_{0}+\mathrm{tV}$
Sphere: $|P-O|^{2}-r^{2}=0$

Ray-Sphere Intersection I

Ray: $P=P_{0}+t V$
Sphere: $|\mathrm{P}-\mathrm{O}|^{2}-\mathrm{r}^{2}=0$

Algebraic Method

Substituting for P , we get:

$$
\left|P_{0}+t V-O\right|^{2}-r^{2}=0
$$

Solve quadratic equation:

$$
a t^{2}+b t+c=0
$$

where:

$$
\begin{aligned}
& a=1 \\
& b=2 V \cdot\left(P_{0}-O\right) \\
& c=\left|P_{0}-C\right|^{2}-r^{2}=0 \\
& P=P_{0}+t V
\end{aligned}
$$

Ray-Sphere Intersection II

Ray: $P=P_{0}+t V$
Sphere: $|\mathrm{P}-\mathrm{O}|^{2}-\mathrm{r}^{2}=0$

Geometric Method

$\mathrm{L}=\mathrm{O}-\mathrm{P}_{0}$
$\mathrm{t}_{\mathrm{ca}}=\mathrm{L} \cdot \mathrm{V}$
if $\left(\mathrm{t}_{\mathrm{ca}}<0\right)$ return 0
$\mathrm{d}^{2}=\mathrm{L} \cdot \mathrm{L}-\mathrm{t}_{\mathrm{ca}}{ }^{2}$
if $\left(d^{2}>r^{2}\right)$ return 0
$t_{h c}=\operatorname{sqrt}\left(r^{2}-d^{2}\right)$
$\mathrm{t}=\mathrm{t}_{\mathrm{ca}}-\mathrm{t}_{\mathrm{hc}}$ and $\mathrm{t}_{\mathrm{ca}}+\mathrm{t}_{\mathrm{hc}}$
$P=P_{0}+t V$

Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations

$$
N=(P-O) /\|P-O\|
$$

Ray Intersection

- Ray Intersection
- Sphere
$>$ Triangle
- Box
- Scene
- Ray Intersection Acceleration
- Bounding volumes
- Uniform grids
- Octrees
- BSP trees

Ray-Triangle Intersection

Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if intersection point is inside triangle

Ray-Plane Intersection

Ray: $\mathrm{P}=\mathrm{P}_{0}+\mathrm{tV}$
Plane: $P \cdot N+d=0$

Algebraic Method

Substituting for P , we get:

$$
\left(P_{0}+t V\right) \cdot N+d=0
$$

Solution:

$$
\begin{aligned}
& \mathrm{t}=-\left(\mathrm{P}_{0} \cdot \mathrm{~N}+\mathrm{d}\right) /(\mathrm{V} \cdot \mathrm{~N}) \\
& \mathrm{P}=\mathrm{P}_{0}+\mathrm{tV}
\end{aligned}
$$

Ray-Triangle Intersection I

- Check if point is inside triangle algebraically

For each side of triangle

$$
\begin{aligned}
& V_{1}=T_{1}-P_{0} \\
& V_{2}=T_{2}-P_{0} \\
& N_{1}=V_{2} \times V_{1}
\end{aligned}
$$

Normalize N_{1}
Plane $\mathrm{p}\left(\mathrm{P}_{0}, \mathrm{~N}_{1}\right)$
if (SignedDistance $(\mathrm{p}, \mathrm{P})<0$) return FALSE; end

Ray-Triangle Intersection II

- Check if point is inside triangle algebraically

For each side of triangle

$$
\begin{aligned}
& V_{1}=T_{1}-P \\
& V_{2}=T_{2}-P \\
& N_{1}=V_{2} \times V_{1}
\end{aligned}
$$

Normalize N_{1}
if $\left(\mathrm{V} \cdot \mathrm{N}_{1}<0\right)$ return FALSE;
end

Ray-Triangle Intersection II

- Check if point is inside triangle algebraically

For each side of triangle

$$
\begin{aligned}
& V_{1}=T_{1}-P \\
& V_{2}=T_{2}-P \\
& N_{1}=V_{2} \times V_{1}
\end{aligned}
$$

Normalize N_{1}
if $\left(V \cdot N_{1}<0\right)$ return FALSE;
end

Ray-Triangle Intersection III

- Check if point is inside triangle parametrically "Barycentric coordinates" α, β, γ :

$$
\mathrm{P}=\alpha \mathrm{T}_{3}+\beta \mathrm{T}_{2}+\gamma \mathrm{T}_{1}
$$

where $\alpha+\beta+\gamma=1$

$$
\begin{aligned}
\alpha & =\operatorname{Area}\left(\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{P}\right) / \operatorname{Area}\left(\mathrm{T}_{1} \mathrm{~T}_{2} T_{3}\right) \\
\beta & =\operatorname{Area}\left(\mathrm{T}_{1} \mathrm{P} \mathrm{~T}_{3}\right) / \operatorname{Area}\left(\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}\right) \\
\gamma & =\operatorname{Area}\left(\mathrm{PT} \mathrm{~T}_{3}\right) / \operatorname{Area}\left(\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}\right) \\
& =1-\alpha-\beta
\end{aligned}
$$

Ray-Triangle Intersection III

- Check if point is inside triangle parametrically

Compute "barycentric coordinates" α, β :

$$
\begin{aligned}
& \alpha=\operatorname{Area}\left(T_{1} T_{2} P\right) / \operatorname{Area}\left(T_{1} T_{2} T_{3}\right) \\
& \beta=\operatorname{Area}\left(\mathrm{T}_{1} P T_{3}\right) / \operatorname{Area}\left(\mathrm{T}_{1} \mathrm{~T}_{2} T_{3}\right)
\end{aligned}
$$

$\operatorname{Area}\left(\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}\right)=1 / 2\|(\mathrm{~T} 2-\mathrm{T} 1) \times(\mathrm{T} 3-\mathrm{T} 1)\|$ check if backfacing:

$$
((T 2-T 1) \times(T 3-T 1)) \cdot N<0
$$

Check if point inside triangle. $0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$ and $\alpha+\beta \leq 1$

Ray Intersection

- Ray Intersection
- Sphere
- Triangle
>Box
- Scene
- Ray Intersection Acceleration
- Bounding volumes
- Uniform grids
- Octrees
- BSP trees

Ray-Box Intersection

- Check front-facing sides for intersection with ray and return closest intersection (least t)

Ray-Box Intersection

- Check front-facing sides for intersection with ray and return closest intersection (least t)
- Find intersection with plane
- Check if point is inside rectangle

Ray-Box Intersection

- Check front-facing sides for intersection with ray and return closest intersection (least t)
- Find intersection with plane
- Check if point is inside rectangle

Other Ray-Primitive Intersections

- Cone, cylinder:
- Similar to sphere
- Must also check end caps
- Convex polygon
- Same as triangle (check point-in-polygon algebraically)
- Or, decompose into triangles, and check all of them
- Mesh
- Compute intersection for all polygons
- Return closest intersection (least t)

Ray Intersection

- Ray Intersection
- Sphere
- Triangle
- Box
> Scene
- Ray Intersection Acceleration
- Bounding volumes
- Uniform grids
- Octrees
- BSP trees

Ray-Scene Intersection

- Intuitive method
- Compute intersection for all nodes of scene graph
- Return closest intersection (least t)

Light

Camera

Ray-Scene Intersection

- Scene graph is a DAG
- Traverse with recursion

Camera

Ray-Scene Intersection I

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray) \{
// Check for intersection with shape
shape_intersection = Intersect node's shape with ray
if (shape_intersection is a hit) closest_intersection = shape_intersection else closest_intersection = infinitely far miss

// Check for intersection with children nodes

for each child node
// Check for intersection with child contents child_intersection = ComputeIntersection(scene, child, ray);
if (child_intersection is a hit and is closer than closest_intersection) closest_intersection = child_intersection;
// Return closest intersection in tree rooted at this node return closest_intersection

Ray-Scene Intersection

- Scene graph can have transformations

Ray-Scene Intersection

- Scene graph node can have transformations
- Transform ray (not primitives) by inverse of M
- Intersect in coordinate system of node
- Transform intersection by M

Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray) \{
// Transform ray by inverse of node's transformation
// Check for intersection with shape
// Check for intersection with children nodes
// Transform intersection by node's transformation
// Return closest intersection in tree rooted at this node

Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray) \{
// Transform ray by inverse of node's transformation
// Check for intersection with shape
// Check for intersection with children nodes
// Transform intersection by node's transformation
// Return closest intersection in tree rooted at this node \}

Recall: directions (including ray direction and surface normal N) must be transformed by inverse transpose of M (or M^{-1} for ray)

Ray Intersection

- Ray Intersection
- Sphere
- Triangle
- Box
- Scene
- Ray Intersection Acceleration
- Bounding volumes
- Uniform grids
- Octrees
- BSP trees

Ray Intersection Acceleration

- What if there are a lot of nodes?

http://www.3dm3.com

Bounding Volumes

- Check for intersection with simple bounding volume first

Bounding Volumes

- Check for intersection with bounding volume first

Bounding Volumes

- Check for intersection with bounding volume first
- If ray doesn't intersect bounding volume, then it can't intersect its contents

Bounding Volumes

- Check for intersection with bounding volume first
- If already found a primitive intersection closer than intersection with bounding box, then skip checking contents of bounding box

Bounding Volume Hierarchies

- Scene graph has hierarchy of bounding volumes
- Bounding volume of interior node contains all children

Bounding Volume Hierarchies

- Checking bounding volumes hierarchically (within each node) can greatly accelerate ray intersection

Bounding Volume Hierarchies

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray) \{
// Transform ray by inverse of node's transformation
// Check for intersection with shape
// Check for intersection with children nodes
for each child node
// Check for intersection with child bounding box first
bbox_intersection = Intersect child's bounding box with ray
if (bbox_intersection is a miss or further than closest_intersection) continue
// Check for intersection with child contents child_intersection = ComputeIntersection(scene, child, ray);
if (child_intersection is a hit and is closer than closest_intersection) closest_intersection = child_intersection;
// Transform intersection by node's transformation
// Return closest intersection in tree rooted at this node

Sort Bounding Volume Intersections

- Sort child bounding volume intersections and then visit child nodes in front-to-back order

Cache Node Intersections

- For each node, store closest child intersection from previous ray and check that node first

Ray Intersection

- Ray Intersection
- Sphere
- Triangle
- Box
- Scene
- Ray Intersection Acceleration
- Bounding volumes
> Uniform grids
- Octrees
- BSP trees

Uniform Grid

- Construct uniform grid over scene
- Index primitives according to overlaps with grid cells

Uniform Grid

- Trace rays through grid cells
- Fast
- Incremental

Only check primitives in intersected grid cells

Uniform Grid

- Potential problem:
- How choose suitable grid resolution?

Too little benefit if grid is too coarse

Too much cost if grid is too fine

Ray Intersection

- Ray Intersection
- Sphere
- Triangle
- Box
- Scene
- Ray Intersection Acceleration
- Bounding volumes
- Uniform grids
> Octrees
- BSP trees

Octree

- Construct adaptive grid over scene
- Recursively subdivide box-shaped cells into 8 octants
- Index primitives by overlaps with cells

Generally fewer cells

Octree

- Trace rays through neighbor cells
- Fewer cells

Trade-off fewer cells for more expensive traversal

Octree

- Or, check rays versus octree boxes hierarchically
- Computing octree boxes while descending tree
- Sort eight boxes front-to-back at each level
- Check primitives/children inside box

Ray Intersection

- Ray Intersection
- Sphere
- Triangle
- Box
- Scene
- Ray Intersection Acceleration
- Bounding volumes
- Uniform grids
- Octrees
>BSP trees

Binary Space Partition (BSP) Tree

- Recursively partition space by planes
- BSP tree nodes store partition plane and set of polygons lying on that partition plane
- Every part of every polygon lies on a partition plane

Binary Tree

Binary Space Partition (BSP) Tree

- Traverse nodes of BSP tree front-to-back
- Visit halfspace (child node) containing P_{0}
- Intersect polygons lying on partition plane
- Visit halfspace (other child node) not containing P_{0}

Binary Tree

Binary Space Partition (BSP) Tree

```
R3Intersection
ComputeBSPIntersection(R3Ray *ray, BspNode *node, double min_t, double max_t)
{
// Compute parametric value of ray-plane intersection
\(t=\) ray parameter for intersection with split plane of node if ( \(\mathrm{t}<\min \_\mathrm{t}\) ) \(\|\) ( t < max_t)) return no_intersection;
// Compute side of partition plane that contains ray start point int side \(=(\) SignedDistance \((\) node->plane, ray.Start()) < 0) ? \(0: 1\); intersection1 = ComputeBSPIntersection(ray, node->child[side], min_t, t); if (intersection1 is a hit) return intersection1; intersection2 = ComputePolygonsIntersection(ray, node->polygons); if (intersection2 is a hit) return intersection2;
intersection \(3=\) ComputeBSPIntersection(ray, node->child[1-side], t , max_t); return intersection 3;

\section*{Other Accelerations}
- Screen space coherence - check > 1 ray at once
- Beam tracing
- Pencil tracing
- Cone tracing
- Memory coherence
- Large scenes

- Parallelism
- Ray casting is "embarrassingly parallelizable"
- etc.

\section*{Acceleration}
- Intersection acceleration techniques are important
- Bounding volume hierarchies
- Spatial partitions
- General concepts
- Sort objects spatially
- Make trivial rejections quick
- Perform checks hierarchically
- Utilize coherence when possible

Expected time is sub-linear in number of primitives

\section*{Summary}
- Writing a simple ray casting renderer is easy
- Generate rays
- Intersection tests
- Lighting calculations
```

R2Image *RayCast(R3Scene *scene, int width, int height)
{
R2Image *image = new R2Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
R3Rgb radiance = ComputeRadiance(scene, \&ray);
image->SetPixel(i, j, radiance);
}
}
return image;
}

```

\section*{Heckbert's Business Card Ray Tracer}
- typedef struct\{double x,y,z\}vec;vec U,black,amb=\{.02,.02,.02\};struct sphere\{ vec cen,color; double rad,kd,ks,kt,kl,ir\}*s,*best,sph[]=\{0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1., \(.7, .3,0 ., .05,1.2,1 ., 8 .,-.5, .1, .8, .8,1 ., .3, .7,0 ., 0 ., 1.2,3 .,-6 ., 15 ., 1 ., .8,1 ., 7 ., 0 ., 0 ., 0 ., .6,1.5,-3 .,-3 ., 12 .\), .8,1., 1.,5.,0.,0., 0.,.5,1.5,\};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;\{return A.x *B. \(x+\) A. \(y^{*}\) B. \(\left.y+A . z^{*} B . z ;\right\} v e c ~ v c o m b(a, A, B)\) double \(a ;\) vec \(A, B ;\left\{B . x+=a^{*} A . x ; B . y+=a^{*} A . y ; B . z+=a^{*} A . z ;\right.\)
 (P,D)vec P,D;\{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)), \(u=b^{*} b-v d o t(U, U)+s->r a d * s ~->r a d, u=u>0\) ? sqrt(u): \(1 e 31, u=b-u>1 e-7 ? b-u: b+u, t m i n=u>=1 e-7 \& \&\) u<tmin?best=s,u: tmin;return best;\}vec trace(level,P,D)vec P,D;\{double d,eta,e;vec N,color; struct sphere*s, *l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta= s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen )));if(d<0)N=vcomb(-1.,N,black), eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl**vdot(N,U=vunit(vcomb(-1,,P,l->cen))))>0\&\& intersect(P,U)==I)color=vcomb(e ,I->color,color);U=s->color;color. \(\mathrm{x}^{*}=\mathrm{U} . x ; c o l o r . y^{*}=\mathrm{U} . \mathrm{y} ; \mathrm{color} . z\) *=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*dsqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb (s->kl,U,black)));;\}main()\{printf("\%d \%dln",32,32);while(yx<32*32) U.x=yx\%32-32/2,U.z=32/2\(y x++/ 32, \mathrm{U} . y=32 / 2 / \tan (25 / 114.5915590261), \mathrm{U}=\mathrm{vcomb}(255 .\), trace(3,black,vunit(U)),black),printf ("\%.Of \%.Of \%.Ofln",U);\}|*minray!*/

\section*{Next Time is Illumination!}


Without Illumination


With Illumination```

