# More on Transformations 

COS 426

## Agenda

Grab-bag of topics related to transformations:

- General rotations
- Euler angles
- Rodrigues's rotation formula
- Maintaining camera transformations
- First-person
- Trackball
- How to transform normals


## 3D Coordinate Systems

- Right-handed vs. left-handed



## 3D Coordinate Systems

- Right-handed vs. left-handed
- Right-hand rule for rotations: positive rotation = counterclockwise rotation about axis



## General Rotations

- Recall: set of rotations in 3-D is 3-dimensional
- Rotation group SO(3)
- Non-commutative
- Corresponds to orthonormal $3 \times 3$ matrices with determinant $=+1$
- Need 3 parameters to represent a general rotation (Euler's rotation theorem)


## Euler Angles

- Specify rotation by giving angles of rotation about 3 coordinate axes
- 12 possible conventions for order of axes, but one standard is $\mathrm{Z}-\mathrm{X}-\mathrm{Z}$




## Euler Angles

- Another popular convention: X-Y-Z
- Can be interpreted as yaw, pitch, roll of airplane



## Rodrigues's Formula

- Even more useful: rotate by an arbitrary angle ( 1 number) about an arbitrary axis (3 numbers, but only 2 degrees of freedom since unit-length)



## Rodrigues's Formula

- An arbitrary point $p$ may be decomposed into its components along and perpendicular to a

$$
p=a(p \cdot a)+[p-a(p \cdot a)]
$$



## Rodrigues's Formula

- Rotating component along a leaves it unchanged
- Rotating component perpendicular to a (call it $\mathbf{p}_{\perp}$ ) moves it to $\mathbf{p}_{\perp} \cos \theta+\left(\mathbf{a} \times \mathbf{p}_{\perp}\right) \sin \theta$


## Rodrigues's Formula

- Putting it all together:

$$
\begin{aligned}
\mathbf{R p} & =\mathbf{a}(\mathbf{p} \cdot \mathbf{a})+\mathbf{p}_{\perp} \cos \theta+\left(\mathbf{a} \times \mathbf{p}_{\perp}\right) \sin \theta \\
& =\mathbf{a a}^{\top} \mathbf{p}+\left(\mathbf{p}-\mathbf{a a}^{\top} \mathbf{p}\right) \cos \theta+(\mathbf{a} \times \mathbf{p}) \sin \theta
\end{aligned}
$$

- So,

$$
\mathbf{R}=\mathbf{a} \mathbf{a}^{\top}+\left(\mathbf{I}-\mathbf{a} \mathbf{a}^{\top}\right) \cos \theta+[\mathbf{a}]_{\mathrm{x}} \sin \theta
$$

where $[a]_{x}$ is the "cross product matrix"

$$
[\mathbf{a}]_{x}=\left(\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right)
$$

## Rotating One Direction into Another

- Given two directions $\mathbf{d}_{1}, \mathbf{d}_{2}$ (unit length), how to find transformation that rotates $\mathbf{d}_{1}$ into $\mathbf{d}_{2}$ ?
- There are many such rotations!
- Choose rotation with minimum angle
- Axis $=\mathbf{d}_{1} \times \mathbf{d}_{2}$
- Angle $=\operatorname{acos}\left(\mathbf{d}_{1} \cdot \mathbf{d}_{2}\right)$
- More stable numerically: $\operatorname{atan} 2\left(\left|\mathbf{d}_{1} \times \mathbf{d}_{2}\right|, \mathbf{d}_{1} \cdot \mathbf{d}_{2}\right)$


## Agenda

Grab-bag of topics related to transformations:

- General rotations
- Euler angles
- Rodrigues's rotation formula
- Maintaining camera transformations
- First-person
- Trackball
- How to transform normals


## Camera Coordinates

Canonical camera coordinate system

- Convention is right-handed (looking down -z axis)
- Convenient for projection, clipping, etc.

Camera up vector
$y \uparrow$ maps to $Y$ axis

Camera back vector maps to Z axis


Camera right vector maps to X axis

## Viewing Transformation

- Mapping from world to camera coordinates
- Eye position maps to origin
- Right vector maps to +X axis
- Up vector maps to +Y axis
- Back vector maps to $+Z$ axis



Camera

World

## Finding the viewing transformation

- We have the camera (in world coordinates)
- We want $T$ taking objects from world to camera

$$
p^{c}=T p^{w}
$$

- Trick: find $T^{-1}$ taking objects in camera to world

$$
\begin{gathered}
p^{w}=T^{-1} p^{c} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]} \\
\widehat{? ?}
\end{gathered}
$$

## Finding the Viewing Transformation

- Trick: map from camera coordinates to world
- Origin maps to eye position
- Z axis maps to Back vector
- Y axis maps to Up vector
- X axis maps to Right vector

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
R_{x} & U_{x} & B_{x} & E_{x} \\
R_{y} & U_{y} & B_{y} & E_{y} \\
R_{z} & U_{z} & B_{z} & E_{z} \\
R_{w} & U_{w} & B_{w} & E_{w}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

- This matrix is $T^{-1}$ so we invert it to get $T \ldots$ easy!


## Maintaining Viewing Transformation

For first-person camera control, need 2 operations:

- Turn: rotate $(\theta, 0,1,0)$ in local coordinates
- Advance: translate( $0,0,-v^{*} \Delta t$ ) in local coordinates
- Key: transformations act on local, not global coords
- To accomplish: right-multiply by translation, rotation

$$
\mathbf{M}_{\text {new }} \leftarrow \mathbf{M}_{\text {old }} \mathbf{T}_{-v^{*} \Delta t, z} \mathbf{R}_{\theta, y}
$$

## Maintaining Viewing Transformation

Object manipulation: "trackball" or "arcball" interface

- Map mouse positions to surface of a sphere

- Compute rotation axis, angle
- Apply rotation to global coords: left-multiply

$$
\mathbf{M}_{\text {new }} \leftarrow \mathbf{R}_{\theta, \mathrm{a}} \mathbf{M}_{\text {old }}
$$

## Agenda

Grab-bag of topics related to transformations:

- General rotations
- Euler angles
- Rodrigues's rotation formula
- Maintaining camera transformations
- First-person
- Trackball
- How to transform normals


## Transforming Normals

Normals do not transform the same way as points!

- Not affected by translation
- Not affected by shear perpendicular to the normal



## Transforming Normals

- Key insight: normal remains perpendicular to surface tangent
- Let $\mathbf{t}$ be a tangent vector and $\mathbf{n}$ be the normal

$$
\mathbf{t} \cdot \mathbf{n}=0 \quad \text { or } \quad \mathbf{t}^{\top} \mathbf{n}=0
$$

- If matrix $\mathbf{M}$ represents an affine transformation, it transforms $t$ as

$$
\mathbf{t} \rightarrow \mathbf{M}_{\mathbf{L}} \mathbf{t}
$$

where $\mathbf{M}_{\mathbf{L}}$ is the linear part (upper-left $3 \times 3$ ) of $\mathbf{M}$

## Transforming Normals

- So, after transformation, want

$$
\left(\mathbf{M}_{\mathbf{L}} \mathbf{t}\right)^{\top} \mathbf{n}_{\text {transformed }}=0
$$

- But we know that

$$
\begin{aligned}
& \mathbf{t}^{\top} \mathbf{n}=0 \\
& \mathbf{t}^{\top} \mathbf{M}_{\mathbf{L}}^{\top}\left(\mathbf{M}_{\mathbf{L}}^{\top}\right)^{-1} \mathbf{n}=0 \\
& \left(\mathbf{M}_{\mathbf{L}} \mathbf{t}\right)^{\top}\left(\mathbf{M}_{\mathbf{L}}^{\top}\right)^{-1} \mathbf{n}=0
\end{aligned}
$$

- So,

$$
\mathbf{n}_{\text {transformed }}=\left(\mathbf{M}_{\mathbf{L}}^{\top}\right)^{-1} \mathbf{n}
$$

## Transforming Normals

- Conclusion: normals transformed by inverse transpose of linear part of transformation
- Note that for rotations, inverse = transpose, so inverse transpose = identity
- normals just rotated


## COS 426 Midterm exam

- Thursday, 3/16
- Regular time/place: 3:00-4:20, CS105
- Covers color, image processing, shape representations, but not transformations
- Also responsible for knowing all required parts of first two programming assignments
- Closed book, no electronics, one page of notes / formulas

