

Image Compositing & Morphing

COS 426

Digital Image Processing

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values
 Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering

Types of Transparency

Refraction

- Light is bent as it goes through an object
- Can focus light: caustics
- Can be color-dependent: dispersion

Types of Transparency

- Refraction
- Subsurface scattering
 - Translucent materials
 - Light leaves at different position than it entered

Types of Transparency

- Refraction
- Subsurface scattering
- Today: compositing
 - Separate image into layers with known order
 - Can generate layers independently
 - Pixelwise combination:
 each pixel in each layer
 can be transparent, opaque,
 or somewhere in between

Example

Jurassic Park

Image Composition

Issues:

- Segmenting image into regions
- Blending into single image seamlessly

Image Composition

- Issues:
 - > Segmenting image into regions
 - Blending into single image seamlessly

Image Segmentation

- Chroma keying (blue- or green-screen)
 - Photograph object in front of screen with known color

Image Segmentation

- Specify segmentation by hand
 - Purely manual: rotoscoping (draw matte, every frame)
 - Semi-automatic: graph-cut (draw a few strokes)
 Separate image regions along minimal cuts (where edges measure differences between adjacent pixels)

Image Segmentation

Novel methods, e.g. flash matting

Image Composition

- Issues:
 - Segmenting image into regions
 - ➤ Blending into single image seamlessly

Image Blending

- Ingredients
 - Background image
 - Foreground image with blue background
- Method
 - Non-blue foreground pixels overwrite background

Blending with Alpha Channel

Per-pixel "alpha" channel: controls the linear interpolation between foreground and background pixels when elements are composited.

Alpha Channel

Encodes pixel coverage information

 \circ α = 0: no coverage (or transparent)

 \circ α = 1: full coverage (or opaque)

 \circ 0 < α < 1: partial coverage (or semi-transparent)

• Example: α = 0.3

Alpha Blending: "Over" Operator

$$C = \alpha_A A + (1-\alpha_A) B$$

This assumes an image with "non-pre-multiplied" alpha.

Will (rarely) encounter images with "pre-multiplied" alpha: store (αR , αG , αB , α) instead of (R, G, B, α)

$$0 < \alpha < 1$$

Compositing Algebra

Suppose we put A over B over background G

How much of B is blocked by A?

$$\alpha_{\mathsf{A}}$$

How much of B shows through A

$$(1-\alpha_A)$$

• How much of G shows through both A and B? $(1-\alpha_{\Delta})(1-\alpha_{B})$

Compositing Algebra

Suppose we put A over B over background G

• Final result?

$$\alpha_A A + (1-\alpha_A)\alpha_B B + (1-\alpha_A)(1-\alpha_B)G$$

$$= \alpha_A A + (1-\alpha_A) \left[\alpha_B B + (1-\alpha_B)G \right]$$

Must perform "over" back-to-front: right associative!

Other Compositing Operations

- How can we combine 2 partially covered pixels?
 - 3 possible colors (0, A, B)
 - 4 regions (0, A, B, AB)

Blending with Alpha

Composition algebra – 12 combinations

C' =
$$F_A \alpha_A A + F_B \alpha_B B$$

Operation	F _A	F _B
Clear	0	0
Α	1	0
В	0	1
A over B	1	1- α,
B over A	1- α _в	1
A in B	$lpha_{\scriptscriptstyle B}$	0
B in A	0	α_{A}
A out B	1- α _в	0
B out A	0	1- α,
A atop B	$lpha_{\scriptscriptstyle B}$	1- α,
B atop A	1- α _в	α_{A}
A xor B	1- α _в	1- α,

Porter & Duff '84

Stars

Planet

[Porter&Duff Computer Graphics 18:3 1984]

BFire

FFire

[Porter&Duff Computer Graphics 18:3 1984]

Composite

[Porter&Duff Computer Graphics 18:3 1984]

"Genesis" sequence from Star Trek II: The Wrath of Khan

COS426 Examples

Darin Sleiter

Kenrick Kin

Poisson Image Blending

Beyond simple compositing

 Solve for image samples that follow gradients of source subject to boundary conditions imposed by dest

$$\begin{cases} \nabla^2 f = \nabla \cdot \mathbf{v} \\ f|_{\partial\Omega} = f^*|_{\partial\Omega} \end{cases}$$

Poisson Image Blending

sources

destinations

cloning

seamless cloning

Poisson Image Blending

source/destination

cloning

seamless cloning

Digital Image Processing

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values
 Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering

Image Morphing

Animate transition between two images

Figure 16-9
Transformation of an STP oil ca
into an engine block. (Courtesy of
Silicon Graphics, Inc.)

Cross-Dissolving

- Blend images with "over" operator
 - alpha of bottom image is 1.0
 - alpha of top image varies from 0.0 to 1.0

blend(i,j) = (1-t)
$$src(i,j) + t dst(i,j)$$
 $(0 \le t \le 1)$

Image Morphing

Combines warping and cross-dissolving

Beier & Neeley Example

Image₀

Warp₀

Image₁

Warp₁

Beier & Neeley Example

Result

Warp₀

Image₁

Warp₁

Beier & Neeley Example

Black or White, Michael Jackson

Warping Pseudocode


```
WarpImage(Image, L_{src}[...], L_{dst}[...])
begin
    foreach destination pixel p<sub>dst</sub> do
        psum = (0,0)
        wsum = 0
        foreach line L<sub>dst</sub>[i] do
             p_{src}[i] = p_{dst} transformed by (L_{dst}[i], L_{src}[i])
             psum = psum + p<sub>src</sub>[i] * weight[i]
             wsum += weight[i]
        end
        p_{src} = psum / wsum
        Result(p_{dst}) = Resample(p_{src})
    end
end
```

Morphing Pseudocode


```
GenerateAnimation(Image<sub>0</sub>, L_0[...], Image<sub>1</sub>, L_1[...])
begin
    foreach intermediate frame time t do
        for i = 1 to number of line pairs do
            L[i] = line t^{th} of the way from <math>L_0[i] to L_1[i]
        end
        Warp_0 = WarpImage(Image_0, L_0, L)
        Warp_1 = WarpImage(Image_1, L_1, L)
        foreach pixel p in FinalImage do
            Result(p) = (1-t) Warp<sub>0</sub> + t Warp<sub>1</sub>
    end
end
```

COS426 Example

Amy Ousterhout

COS426 Examples

ckctwo

Jon Beyer

COS426 Examples

Sam Payne

Matt Matl

COS426 Examples

atran

- "Computational photography": enable new photographic effects that inherently use multiple images + computation
- Example: stitching images into a panorama

Flash / No flash

Photo montage

[Michael Cohen]

Photo montage

[Michael Cohen]

Stoboscopic images

Extended depth-of-field

[Michael Cohen]

Removing people

Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros SIGGRAPH 2007

Slides by J. Hays and A. Efros

Image Completion

Image Completion

2.3 Million unique images from Flickr

Scene Completion Result

Image Completion Algorithm

Hays et al. SIGGRAPH 07

Hays et al. SIGGRAPH 07

Summary

- Image compositing
 - Alpha channel
 - Porter-Duff compositing algebra
- Image morphing
 - Warping
 - Compositing
- Computational photography

Next Time: 3D Modeling

Hoppe