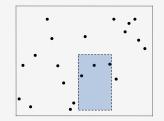
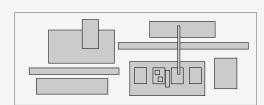
Overview

Types of data. Points, lines, circles, rectangles, planes, polygons, ... This lecture. Intersection among N objects.

Example problems.

- 1d range searching.
- 2d range searching.
- Finding intersections among h-v line segments.
- Find intersections among axis-aligned rectangles.





1D range search

Extension of ordered symbol table.

- Insert key-value pair.
- Search for key k.
- Rank: how many keys less than k?
- Range count: how many keys between k1 and k2?
- Range search: find over all keys between k_1 and k_2 .

Application. Database queries.

Geometric interpretation.

- Keys are point on a line.
- How many points in a given interval?

..

insert D	в	D					
insert A	A	в	D				
insert I	A	в	D	I			
insert H	A	в	D	н	I		
insert F	A	в	D	F	н	I	
insert P	A	в	D	F	н	I	₽
count G to K	2						
search G to K	н	I					

insert B

. .

Geometric Search

- ▶ range search
- space partitioning trees
- ▶ intersection search

References:

Algorithms in C (2nd edition), Chapters 26-27 http://www.cs.princeton.edu/algs4/73range http://www.cs.princeton.edu/algs4/74intersection

Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · April 23, 2008 10:28:07 AM

▶ range search

space partitioning tree

Intersection search

3

1D range search: implementations

Ordered array. Slow insert, binary search for 10 and hi to find range. Hash table. No reasonable algorithm (key order lost in hash).

data structure	insert	rank	range count	range search
ordered array	N	log N	log N	R + log N
hash table	1	Ν	Ν	N
BST	log N	log N	log N	R + log N

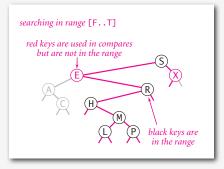
N = # keys R = # keys that match

Goal. Modify standard BST to support efficient range queries.

BST: range search

Range search. Find all keys between 10 and hi?

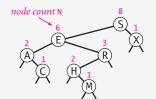
- Recursively find all keys in left subtree (if any could fall in range).
- Check key in current node.
- Recursively find all keys in right subtree (if any could fall in range).



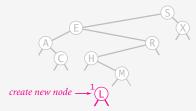
Worst-case running time. R + log N (assuming BST is balanced).

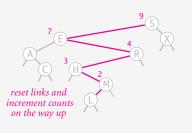
BST: maintaining node counts

BST. In each node x, maintain number of nodes in tree rooted at x.



Updating node counts after insertion.

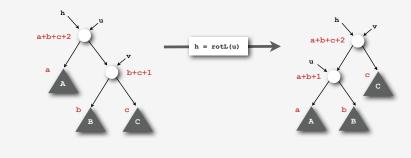


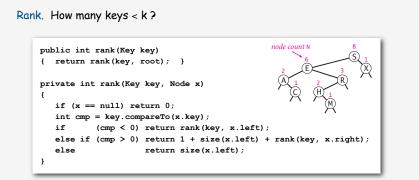


BST: maintaining node counts

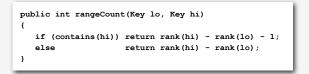
BST. In each node x, maintain number of nodes in tree rooted at x.

Updating node counts after rotation.





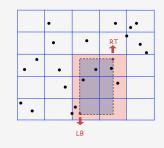
Range count. How many keys between 10 and hi?



2D orthogonal range search: grid implementation

Grid implementation. [Sedgewick 3.18]

- Divide space into M-by-M grid of squares.
- Create list of points contained in each square.
- Use 2D array to directly index relevant square.
- Insert: insert (x, y) into corresponding square.
- Range search: examine only those squares that intersect 2D range query.



2D orthogonal range search

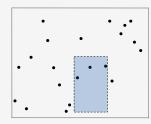
Extension of ordered symbol-table to 2D keys.

- Insert a 2D key.
- Search for a 2D key.
- Range count: how many keys lie in a 2D range?
- Range search: find all keys that lie in a 2D range?

Applications. Networking, circuit design, databases.

Geometric interpretation.

- Keys are point in the plane.
- How many points in a given h-v rectangle.



2D orthogonal range search: grid implementation costs

Space-time tradeoff.

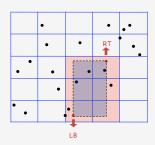
- Space: M² + N.
- Time: 1 + N / M² per square examined, on average.

Choose grid square size to tune performance.

- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: JN-by-JN grid.

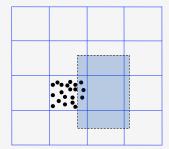
Running time. [if points are evenly distributed]

- Initialize: O(N).
- Insert: 0(1).
- Range: O(1) per point in range.

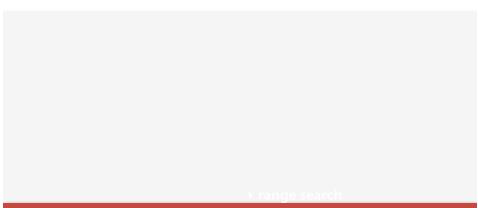


Clustering

Grid implementation. Fast, simple solution for well-distributed points. Problem. Clustering a well-known phenomenon in geometric data.



Lists are too long, even though average length is short. Need data structure that gracefully adapts to data.

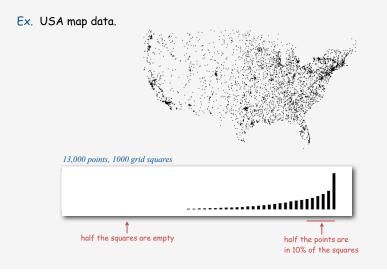


space partitioning trees

intersection search

Clustering

Grid implementation. Fast, simple solution for well-distributed points. Problem. Clustering a well-known phenomenon in geometric data.



Space-partitioning trees

Use a tree to represent a recursive subdivision of k-dimensional space.

Quadtree. Recursively divide plane into four quadrants. kD tree. Recursively divide k-dimensional space into two half-spaces. BSP tree. Recursively divide space into two regions.

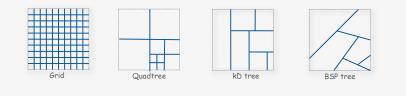
Quadtree

13

Space-partitioning trees: applications

Applications.

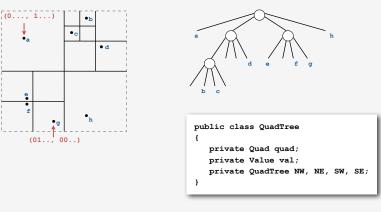
- Ray tracing.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Adaptive mesh generation.
- Accelerate rendering in Doom.
- Hidden surface removal and shadow casting.



17

Quadtree

Idea. Recursively divide plane into 4 quadrants. Implementation. 4-way tree (actually a trie).

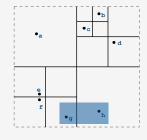


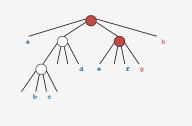
Benefit. Good performance in the presence of clustering. Drawback. Arbitrary depth!

Quadtree: 2D range search

Range search. Find all keys in a given 2D range.

- Recursively find all keys in NE quad (if any could fall in range).
- Recursively find all keys in NW quad (if any could fall in range).
- Recursively find all keys in SE quad (if any could fall in range).
- Recursively find all keys in SW quad (if any could fall in range).

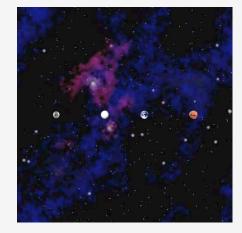




Typical running time. R + log N.

N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.



Brute force. For each pair of particles, compute force.

 $F = \frac{G m_1 m_2}{r^2}$

Subquadratic N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.

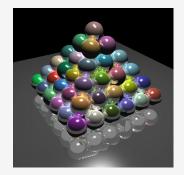
- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate particle.

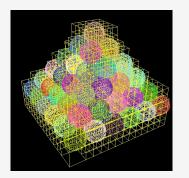


Curse of dimensionality

Range search / nearest neighbor in k dimensions? Main application. Multi-dimensional databases.

3D space. Octrees: recursively divide 3D space into 8 octants. 100D space. Centrees: recursively divide into 2¹⁰⁰ centrants???



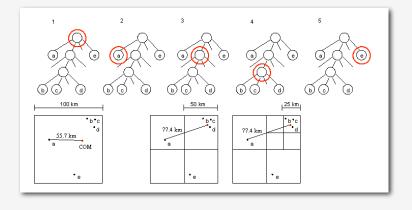


Raytracing with octrees http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.html

Barnes-Hut algorithm

Algorithm.

- Build quadtree with N particles as external nodes.
- Store center-of-mass of subtree in each internal node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to quad is sufficiently large.

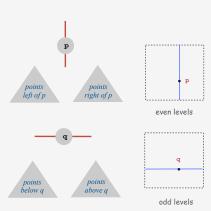


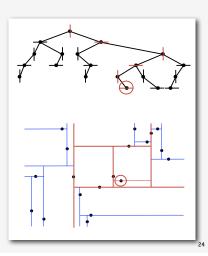
2D trees

Recursively partition plane into two halfplanes.

Implementation. BST, but alternate using x- and y-coordinates as key.

- Search gives rectangle containing point.
- Insert further subdivides the plane.





2D tree: 2D range search

Range search. Find all keys in a given 2D range.

- Check if point in node lies in given range.
- Recursively find all keys in left/top subdivision (if any could fall in range).
- Recursively find all keys in left/top subdivision (if any could fall in range).

Worst case (assuming tree is balanced). R + $\int N$. Typical case. R + log N

25

kD Trees

kD tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2D trees.

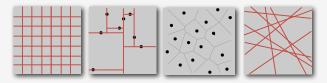
Efficient, simple data structure for processing k-dimensional data.

- Widely used.
- Discovered by an undergrad in an algorithms class!
- Adapts well to high-dimensional and clustered data.

Summary

Basis of many geometric algorithms. Search in a planar subdivision.

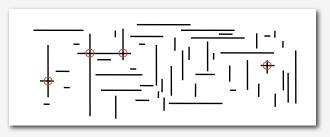
	grid	2D tree	Voronoi diagram	intersecting lines
basis	√N h-v lines	N points	N points	√N lines
representation	2D array of N lists	N-node BST	N-node multilist	~N-node BST
cells	~N squares	N rectangles	N polygons	~N triangles
search cost	1	log N	log N	log N
extend to KD?	too many cells	easy	cells too complicated	use (k-1)D hyperplane



Search for intersections

Problem. Find all intersecting pairs among set of N geometric objects. Applications. CAD, games, movies, virtual reality.

Simple version. 2D, all objects are horizontal or vertical line segments.



Brute force. Test all $\Theta(N^2)$ pairs of line segments for intersection. Sweep line. Efficient solution extends to 3D and general objects.

Orthogonal segment intersection search: sweep-line algorithm

Reduces 2D orthogonal segment intersection search to 1D range search!

Running time of sweep line algorithm.

- Put x-coordinates on a PQ (or sort).
- Insert y-coordinate into ST.
- Delete y-coordinate from ST.
- Range search.

O(N log N) O(N log N) O(R + N log N)

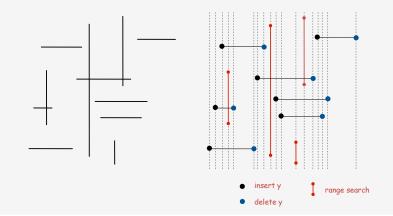
 $O(N \log N)$

N = # line segments R = # intersections

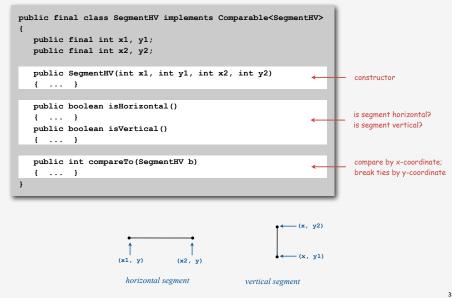
Efficiency relies on judicious use of data structures.

Sweep vertical line from left to right.

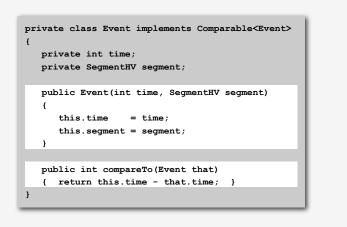
- x-coordinates define events.
- Left endpoint of h-segment: insert y coordinate into ST.
- Right endpoint of h-segment: remove y coordinate from ST.
- v-segment: range search for interval of y endpoints.

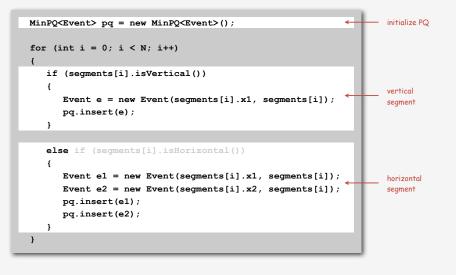


Immutable H-V segment ADT



Sweep-line algorithm: initialize events



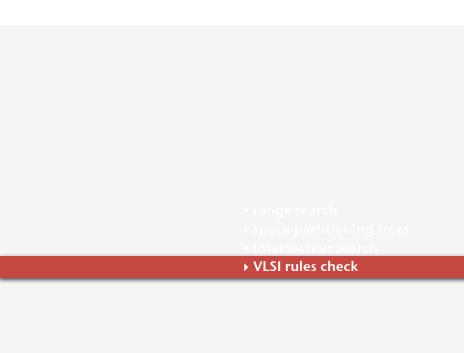


33

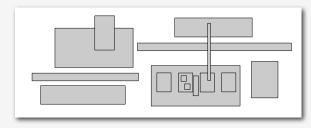
Sweep-line algorithm: simulate the sweep line

}

```
int INF = Integer.MAX_VALUE;
SET<SegmentHV> set = new SET<SegmentHV>();
while (!pq.isEmpty())
{
   Event event = pq.delMin();
   int sweep = event.time;
   SegmentHV segment = event.segment;
   if (segment.isVertical())
   {
      SegmentHV seg1, seg2;
      seg1 = new SegmentHV(-INF, segment.y1, -INF, segment.y1);
      seg2 = new SegmentHV(+INF, segment.y2, +INF, segment.y2);
      for (SegmentHV seg : set.range(seg1, seg2))
          StdOut.println(segment + " intersects " + seg);
  }
   else if (sweep == segment.x1) set.add(segment);
   else if (sweep == segment.x2) set.remove(segment);
```



Goal. Find all intersections among h-v rectangles.



Application. Design-rule checking in VLSI circuits.

3

Algorithms and Moore's law

"Moore's law." Processing power doubles every 18 months.

- 197x: need to check N rectangles.
- 197(x+1.5): need to check 2N rectangles on a 2x-faster computer.

Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:

- 197x: takes M days.
- 197(x+1.5): takes (4M)/2 = 2M days. (!)

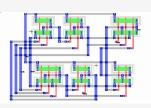
Microprocessors and geometry

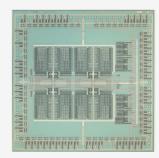
Early 1970s. microprocessor design became a geometric problem.

- Very Large Scale Integration (VLSI).
- Computer-Aided Design (CAD).

Design-rule checking.

- Certain wires cannot intersect.
- Certain spacing needed between different types of wires.
- Debugging = rectangle intersection search.

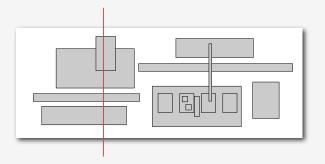




Rectangle intersection search

Move a vertical "sweep line" from left to right.

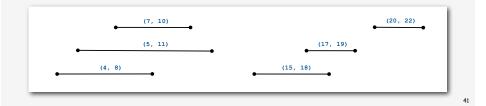
- Sweep line: sort rectangles by x-coordinate and process in this order, stopping on left and right endpoints.
- Maintain set of intervals intersecting sweep line.
- Key operation: given a new interval, does it intersect one in the set?



Bottom line. Linearithmic CAD algorithm is necessary to sustain Moore's Law.

Interval search trees

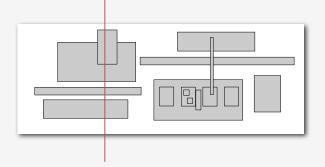
<pre>public class IntervalST<value></value></pre>				
IntervalST()	create interval search tree			
void put(int lo, int hi, Value val)	put interval-value pair into ST			
Value get(int lo, int hi)	return value paired with given interval			
boolean remove(int lo, int hi)	remove the given interval			
Iterable <interval> searchAll(int lo, int hi)</interval>	return all intervals that intersect the given interval			



Rectangle intersection sweep-line algorithm: Review

Move a vertical "sweep line" from left to right.

- Sweep line: sort rectangles by x-coordinates and process in this order, stopping on left and right endpoints.
- Maintain set of rectangles that intersect the sweep line in an interval search tree (using y-interval of rectangle).
- Left side: interval search for y-interval of rectangle, insert y-interval.
- Right side: delete y-interval.



Interval search trees

Create BST, where each node stores an interval.

<complex-block><text>

VLSI rules checking: sweep-line algorithm (summary)

Reduces 2D orthogonal rectangle intersection search to 1D interval search!

Running time of sweep line algorithm.

- Put x-coordinates on a PQ (or sort). O(N log N)
- Insert y-interval into ST.
- Delete y-interval from ST.

• Interval search.

 $O(R + N \log N)$

 $O(N \log N)$

 $O(N \log N)$

N = # rectangles R = # intersections

44

Efficiency relies on judicious use of data structures.

Geometric search summary: algorithms of the day

1D range search	 BST
kD range search	kD tree
1D interval intersection search	 interval tree
2D orthogonal line intersection search	sweep line reduces to 1D range search
2D orthogonal rectangle intersection search	sweep line reduces to 1D interval intersection search