Shortest paths in a weighted digraph

Given a weighted digraph ${\tt g},$ find the shortest directed path from ${\tt s}$ to ${\tt t}.$

32

45

50

Shortest Paths • Dijkstra's algorithm • Dijkstra's algorithm • mplementation • negative weights • define four Chaper 21 * former: * Martine in Java, 4P Edition • Ander Sedgevick und Kevin Ware • Copright 92008 • April 2008 99:322 PM

Versions

- Source-target (s→t).
- Single source.
- All pairs.
- Nonnegative edge weights.
- Arbitrary weights.
- Euclidean weights.

Google maps

Applications

• Maps.

- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Subroutine in advanced algorithms.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Approximating piecewise linear functions.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Dijkstra's algorithm

Early history of shortest paths algorithms

Shimbel (1955). Information networks.

Ford (1956). RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957). Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958). Simplex method for linear programming.

Bellman (1958). Dynamic programming.

Moore (1959). Routing long-distance telephone calls for Bell Labs.

Dijkstra (1959). Simpler and faster version of Ford's algorithm.

Edsger W. Dijkstra: select quote

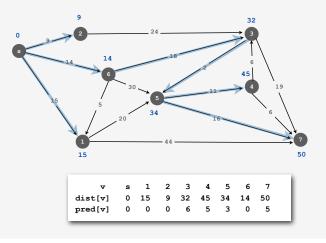
- " The question of whether computers can think is like the question of whether submarines can swim."
- " Do only what only you can do."
- " In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."
- " The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- " APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Edger Dijkstra Turing award 1972

Single-source shortest-paths

- Given. Weighted digraph G, source vertex s.
- Goal. Find shortest path from s to every other vertex.

Observation. Use parent-link representation to store shortest path tree.



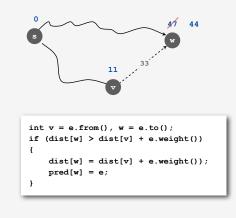
Dijkstra's algorithm

- Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v.
- Repeat until S contains all vertices connected to s:
- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().
- relax along edge e
- add w to S

Edge relaxation

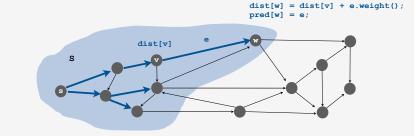
Relaxation along edge e from v to w.

- dist[v] is length of some path from s to v.
- dist[w] is length of some path from s to w.
- If $v \rightarrow w$ gives a shorter path to w through v, update dist[w] and pred[w].

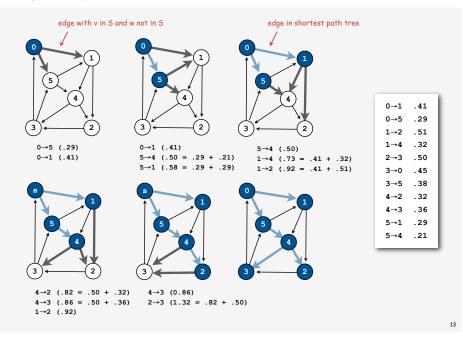


Dijkstra's algorithm

- Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v.
- Repeat until S contains all vertices connected to s:
- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().
- relax along edge e
- add w to S



Dijkstra's algorithm example

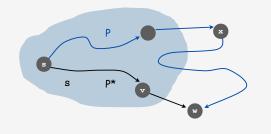


Dijkstra's algorithm: correctness proof

Invariant. For v in S, dist[v] is the length of the shortest path from s to v.

Pf. (by induction on |S|)

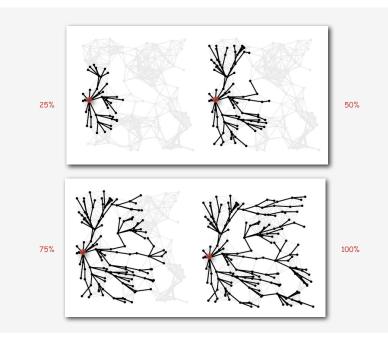
- Let w be next vertex added to S.
- Let P* be the $s \rightarrow w$ path through v.
- Consider any other $s \rightarrow w$ path P, and let x be first node on path outside S.
- P is already longer than P* as soon as it reaches x by greedy choice.
- Thus, dist[w] is the length of the shortest path from s to w.



14

16

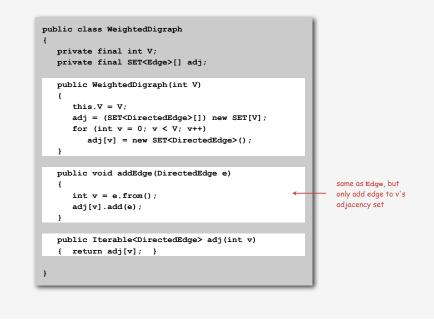
Shortest path trees



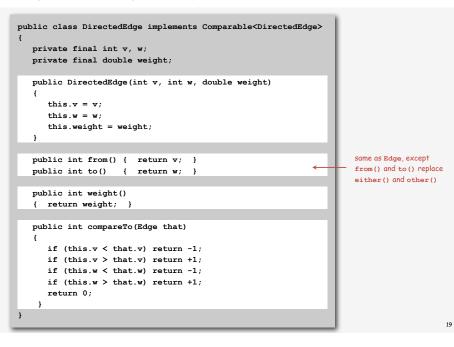
Weighted directed graph API



Weighted digraph: adjacency-set implementation



Weighted directed edge: Java implementation



Shortest path data type

Design pattern.

- Dijkstra Class is a WeightedDigraph client.
- Client guery methods return distance and path iterator.

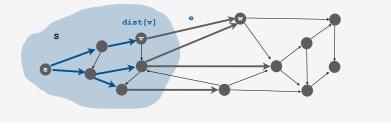
public class Dijkstra	
Dijkstra(WeightedDigraph G, int s)	shortest path from s in graph G
<pre>double distance(int v)</pre>	length of shortest path from s to v
<pre>Iterable <directededge> path(int v)</directededge></pre>	shortest path from s to v

Dijkstra implementation challenge

Find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

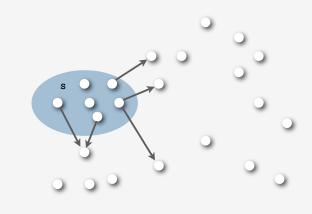
How difficult?

- Intractable.
- O(E) time. try all edges
- O(V) time. Dijkstra with an array priority queue
- O(log V) time. Dijkstra with a binary heap
- O(log* V) time.
- Constant time.



Dijkstra's algorithm implementation

- Q. What goes onto the priority queue?
- A. Fringe vertices connected by a single edge to a vertex in S.



Starting to look familiar?

Dijkstra's algorithm: implementation approach

Maintain these invariants.

- For v in S, dist[v] is the length of the shortest path from s to v.
- For w not in S, dist[w] minimizes dist[v] + e.weight() among all edges e with win S.
- PQ contains vertices not in S, with dist[w] as priority.

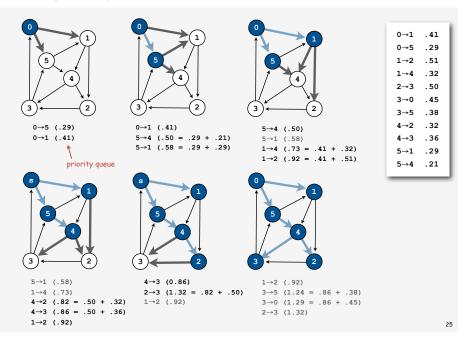
Implications.

- To find next vertex v to add to S, delete the vertex with min dist[].
- To maintain invariants, update dist[] by relaxing all edges leaving v.

Total running time. Depends on PQ implementation.

- Exactly V delMin() operations.
- At most E insert() operations.

Lazy implementation of Dijkstra's SPT algorithm



Dijkstra's algorithm: which priority queue?

Running time of Dijkstra depends on priority queue implementation.

PQ implementation	insert	delmin	total
array	1	V	V ²
binary heap	log V	log V	E log V
d-way heap (Johnson)	log _d V	log _d V	E log _d V
Fibonacci heap (Sleator-Tarjan)	1	v	E + V log V

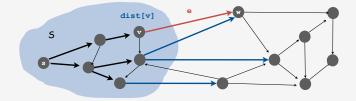
Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap far better for sparse graphs.
- d-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Insight. All of our graph-search methods are the same algorithm!

- Maintain a set of explored vertices S.
- Grow S by exploring edges with exactly one endpoint leaving S.
- DFS. Take edge from vertex which was discovered most recently.
- BFS. Take from vertex which was discovered least recently.
- Prim. Take edge of minimum weight.
- Dijkstra. Take edge to vertex that is closest to s.



Challenge. Express this insight in (re)usable Java code.

Currency conversion

Given currencies and exchange rates, what is best way to convert

- one ounce of gold to US dollars?
- 1 oz. gold \Rightarrow \$327.25.
- 1 oz. gold \Rightarrow £208.10 \Rightarrow \$327.00.
- 1 oz. gold \Rightarrow 455.2 Francs \Rightarrow 304.39 Euros \Rightarrow \$327.28. [455.2 × .6677 × 1.0752]

currency	£	Euro	¥	Franc	\$	Gold
UK pound	1.0000	0.6853	0.005290	0.4569	0.6368	208.100
Euro	1.45999	1.0000	0.007721	0.6677	0.9303	304.028
Japanese Yen	189.50	129.520	1.0000	85.4694	120.400	39346.7
Swiss Franc	2.1904	1.4978	0.01574	1.0000	1.3941	455.200
US dollar	1.5714	1.0752	0.008309	0.7182	1.0000	327.250
Gold (oz.)	0.004816	0.003295	0.0000255	0.002201	0.003065	1.0000

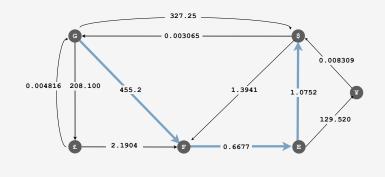
29

[208.10 × 1.5714]

Currency conversion

Graph formulation.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find path that maximizes product of weights.

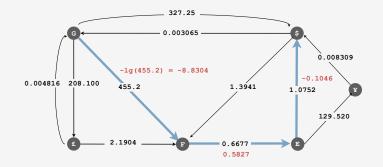


30

Currency conversion

Reduce to shortest path problem by taking logs.

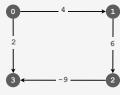
- Let weight of edge $v \rightarrow w$ be lg (exchange rate from currency v to w).
- Multiplication turns to addition.
- Shortest path with given weights corresponds to best exchange sequence.



Challenge. Solve shortest path problem with negative weights.

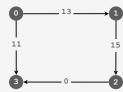
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.



Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0\rightarrow 1\rightarrow 2\rightarrow 3$.

Re-weighting. Add a constant to every edge weight also doesn't work.

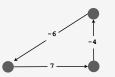


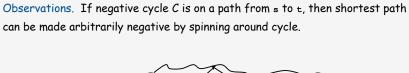
Adding 9 to each edge changes the shortest path because it adds 9 to each edge; wrong thing to do for paths with many edges.

Bad news. Need a different algorithm.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

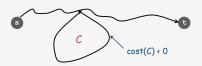




Worse news. Need a different problem.

Shortest paths with negative weights

Problem 1. Does a given digraph contain a negative cycle? Problem 2. Find the shortest simple path from s to t.



Bad news. Problem 2 is intractable.

Good news. Can solve problem 1 in O(VE) steps; if no negative cycles, can solve problem 2 with same algorithm!

Edge relaxation (review)

Relaxation along edge e from v to w.

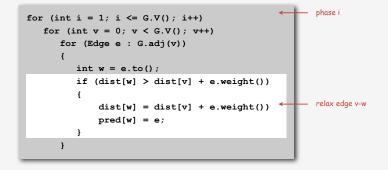
- dist[v] is length of some path from s to v.
- dist[w] is length of some path from s to w.
- If v-w gives a shorter path to w through v, update dist[w] and pred[w].

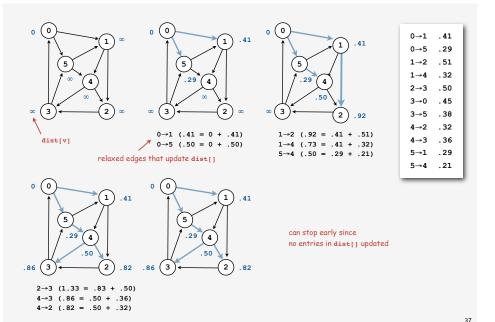
if	(dist[w]	<pre>> dist[v] + e.weight</pre>	())
{			
	dist[w]	<pre>= dist[v] + e.weight</pre>	());
	pred[w]	= e;	
}			

Shortest paths with negative weights: dynamic programming algorithm

A simple solution that works!

- Initialize dist[v] = ∞ , dist[s]= 0.
- Repeat v times: relax each edge e.





Dynamic programming algorithm

Running time. Proportional to E V.

Invariant. At end of phase i, dist[v] \leq length of any path from s to v using at most i edges.

Proposition. If there are no negative cycles, upon termination dist[v] is the length of the shortest path from from s to v.

and pred[] gives the shortest paths

Bellman-Ford-Moore algorithm

Observation. If dist[v] doesn't change during phase i, no need to relax any edge leaving v in phase i+1.

FIFO implementation. Maintain queue of vertices whose distance changed.

be careful to keep at most one copy of each vertex on queue

Running time.

- Proportional to EV in worst case.
- Much faster than that in practice.

Single source shortest paths implementation: cost summary

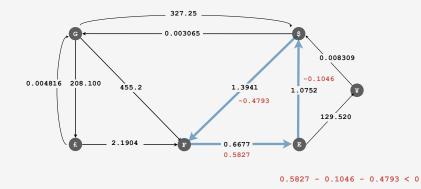
	algorithm	worst case	typical case
nonnegative	Dijkstra (array heap)	V^2	V^2
costs	Dijkstra (binary heap)	$E \lg V$	Ε
no negative	dynamic programming	E V	E V
cycles	Bellman-Ford	E V	Ε

Remark 1. Negative weights makes the problem harder. Remark 2. Negative cycles makes the problem intractable.

Shortest paths application: arbitrage

Is there an arbitrage opportunity in currency graph?

- Ex: $1 \Rightarrow 1.3941$ Francs $\Rightarrow 0.9308$ Euros $\Rightarrow 1.00084$.
- Is there a negative cost cycle?



Remark. Fastest algorithm is valuable!

Negative cycle detection

Goal. Identify a negative cycle (reachable from any vertex).

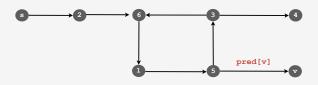


Solution. Initialize Bellman-Ford by setting dist[v] = 0 for all vertices v.

Negative cycle detection

If there is a negative cycle reachable from s.

Bellman-Ford-Moore gets stuck in loop, updating vertices in cycle.



Finding a negative cycle. If any vertex v is updated in phase v, there exists a negative cycle, and we can trace back pred[v] to find it.

Shortest paths summary

Dijkstra's algorithm.

- · Easy and optimal for dense digraphs.
- PQ yields near optimal for sparse graphs.

Priority-first search.

- Generalization of Dijkstra's algorithm.
- Encompasses DFS, BFS, and Prim.
- Enables easy solution to many graph-processing problems.

Negative weights.

- Arise in applications.
- Make problem intractable in presence of negative cycles (!)
- Easy solution using old algorithms otherwise.

Shortest-paths is a broadly useful problem-solving model.