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Shortest Paths

References:
    Algorithms in Java, Chapter 21
  http://www.cs.princeton.edu/algs4/54sp

‣ Dijkstra's algorithm
‣ implementation
‣ negative weights

Given a weighted digraph G, find the shortest directed path from s to t.
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Shortest paths in a weighted digraph

shortest path:  s→6→3→5→t

cost:  14 + 18 + 2 + 16 = 50
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Versions

• Source-target (s→t).

• Single source.

• All pairs.

• Nonnegative edge weights.

• Arbitrary weights.

• Euclidean weights.
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Google maps

4



• Maps.

• Robot navigation. 

• Texture mapping.

• Typesetting in TeX.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Subroutine in advanced algorithms.

• Telemarketer operator scheduling.

• Routing of telecommunications messages.

• Approximating piecewise linear functions.

• Network routing protocols (OSPF, BGP, RIP).

• Exploiting arbitrage opportunities in currency exchange.

• Optimal truck routing through given traffic congestion pattern.
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Reference:  Network Flows:  Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Applications
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Early history of shortest paths algorithms

Shimbel (1955).  Information networks.

Ford (1956).  RAND, economics of transportation.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957).
Combat Development Dept. of the Army Electronic Proving Ground.

Dantzig (1958).  Simplex method for linear programming.

Bellman (1958).  Dynamic programming.

Moore (1959).    Routing long-distance telephone calls for Bell Labs.  

Dijkstra (1959).  Simpler and faster version of Ford's algorithm.
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Edsger W. Dijkstra:  select quote

Edger Dijkstra
Turing award 1972

“ The question of whether computers can think is like the question
   of whether submarines can swim. ”

“ Do only what only you can do. ”

“ In their capacity as a tool, computers will be but a ripple on the
   surface of our culture.  In their capacity as intellectual challenge,
   they are without precedent in the cultural history of mankind. ”

“ The use of COBOL cripples the mind; its teaching should,
   therefore, be regarded as a criminal offence. ”

“ APL is a mistake, carried through to perfection. It is the
   language of the future for the programming techniques
   of the past:  it creates a new generation of coding bums. ”
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Single-source shortest-paths

Given. Weighted digraph G, source vertex s.
Goal.  Find shortest path from s to every other vertex.
Observation.  Use parent-link representation to store shortest path tree.
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     v    s   1   2   3   4   5   6   7
dist[v]   0  15   9  32  45  34  14  50
pred[v]   0   0   0   6   5   3   0   5
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 Edge relaxation

Relaxation along edge e from v to w.

• dist[v] is length of some path from s to v.
• dist[w] is length of some path from s to w.

• If v→w gives a shorter path to w through v, update dist[w] and pred[w].
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int v = e.from(), w = e.to();
if (dist[w] > dist[v] + e.weight())
{   
    dist[w] = dist[v] + e.weight());
    pred[w] = e;
}

s w

v
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• Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v.

• Repeat until S contains all vertices connected to s:
- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

- relax along edge e
- add w to S
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Dijkstra's algorithm
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• Initialize S to s, dist[s] to 0, dist[v] to ∞ for all other v.

• Repeat until S contains all vertices connected to s:
- find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

- relax along edge e
- add w to S
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Dijkstra's algorithm
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dist[w] = dist[v] + e.weight();
pred[w] = e;
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Dijkstra’s algorithm example

0→1  .41 

0→5  .29

1→2  .51 

1→4  .32 
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4→3  .36

5→1  .29 

5→4  .21
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0
1

5

3

edge in shortest path tree Invariant.  For v in S, dist[v] is the length of the shortest path from s to v.

Pf.  (by induction on |S|)

• Let w be next vertex added to S.

• Let P* be the s↝w path through v.

• Consider any other s↝w path P, and let x be first node on path outside S.

• P is already longer than P* as soon as it reaches x by greedy choice.

• Thus,  dist[w] is the length of the shortest path from s to w.
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Dijkstra's algorithm:  correctness proof
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Shortest path trees

50%

75% 100%

25%
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Weighted directed graph API

 public class DirectedEdge implements Comparable<Edge>

DirectedEdge(int v, int w, double weight) create a weighted edge v→w

int from() vertex v

int to() vertex w

double weight() the weight

String toString() string representation

           public class WeightedDigraph weighted digraph data type

WeightedDigraph(int V) create an empty digraph with V vertices

WeightedDigraph(In in) create a digraph from input stream

void insert(DirectedEdge e) add an edge from v to w

Iterable<DirectedEdge> adj(int v) return an iterator over edges leaving v

int V() return number of vertices

String toString() return a string representation
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public class WeightedDigraph
{
   private final int V; 
   private final SET<Edge>[] adj;

   public WeightedDigraph(int V)
   {
      this.V = V;
      adj = (SET<DirectedEdge>[]) new SET[V];
      for (int v = 0; v < V; v++)
         adj[v] = new SET<DirectedEdge>();
   }

   public void addEdge(DirectedEdge e)
   {
      int v = e.from();
      adj[v].add(e);
   }

   public Iterable<DirectedEdge> adj(int v)
   {  return adj[v];  }

}

Weighted digraph:  adjacency-set implementation

same as Edge, but
only add edge to v's
adjacency set
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public class DirectedEdge implements Comparable<DirectedEdge>
{
   private final int v, w;
   private final double weight;

   public DirectedEdge(int v, int w, double weight)
   {
      this.v = v;
      this.w = w;
      this.weight = weight;
   }

   public int from() {  return v;  }
   public int to()   {  return w;  }

   public int weight()
   {  return weight;  }

   public int compareTo(Edge that)
   {
      if (this.v < that.v) return -1;
      if (this.v > that.v) return +1;
      if (this.w < that.w) return -1;
      if (this.w > that.w) return +1;
      return 0;
    }
}

Weighted directed edge:  Java implementation

same as Edge, except
from() and to() replace
either() and other()
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Shortest path data type

Design pattern.

• Dijkstra class is a WeightedDigraph client.

• Client query methods return distance and path iterator.

  public class Dijkstra

     Dijkstra(WeightedDigraph G, int s) shortest path from s in graph G

                 double distance(int v) length of shortest path from s to v

Iterable <DirectedEdge> path(int v) shortest path from s to v
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Find edge e with v in S and w not in S that minimizes dist[v] + e.weight().

How difficult?

• Intractable.

• O(E) time.

• O(V) time.

• O(log V) time.

• O(log* V) time.

• Constant time.

Dijkstra implementation challenge

try all edges

Dijkstra with a binary heap

s

w

v

dist[v]

S

e

Dijkstra with an array priority queue

Q.  What goes onto the priority queue?
A.  Fringe vertices connected by a single edge to a vertex in S.

Starting to look familiar?

Dijkstra's algorithm implementation
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S

Maintain these invariants.

• For v in S, dist[v] is the length of the shortest path from s to v.

• For w not in S, dist[w] minimizes dist[v] + e.weight() among all edges e 
with w in S.

• PQ contains vertices not in S, with dist[w] as priority.

Implications.

• To find next vertex v to add to S, delete the vertex with min dist[].

• To maintain invariants, update dist[] by relaxing all edges leaving v.

Total running time.  Depends on PQ implementation.

• Exactly V delMin() operations.

• At most E insert() operations.
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Dijkstra's algorithm:  implementation approach
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Lazy implementation of Dijkstra's SPT algorithm

public class LazyDijkstra {
   private double[] dist = new double[G.V()];
   private Edge[] pred = new Edge[G.V()];
   public LazyDijkstra(WeightedDigraph G, int s) {
      boolean[] marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         dist[v] = Double.POSITIVE_INFINITY;
      MinPQplus<Double, Integer> pq;
      pq = new MinPQplus<Double, Integer>();
      dist[s] = 0.0;
      pq.put(dist[s], s);
      while (!pq.isEmpty())
      {
         int v = pq.delMin();
         if (marked[v]) continue;
         marked(v) = true;
         for (Edge e : G.adj(v)) {
            int w = e.to();
            if (dist[w] > dist[v] + e.weight()) {
                dist[w] = dist[v] + e.weight();
                pred[w] = e;
                pq.insert(dist[w], w);
            }
         }
      }
   }
}

code is the same as Prim’s (!!)
except weight is distance to s,
not to tree

relax edge e
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Lazy Dijkstra’s algorithm example
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priority queue
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Dijkstra's algorithm:  which priority queue?

Running time of Dijkstra depends on priority queue implementation.

Bottom line.

• Array implementation optimal for dense graphs.

• Binary heap far better for sparse graphs.

• d-way heap worth the trouble in performance-critical situations.

• Fibonacci heap best in theory, but not worth implementing.

PQ implementation insert delmin total

array 1 V V2

binary heap log V log V E log V

d-way heap (Johnson) logd V logd V E logd V

Fibonacci heap (Sleator-Tarjan) 1 V E + V log V
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Priority-first search

Insight.  All of our graph-search methods are the same algorithm!

• Maintain a set of explored vertices S.

• Grow S by exploring edges with exactly one endpoint leaving S.

DFS.         Take edge from vertex which was discovered most recently.
BFS.         Take from vertex which was discovered least recently.
Prim.         Take edge of minimum weight.
Dijkstra.   Take edge to vertex that is closest to s.

Challenge.  Express this insight in (re)usable Java code.

s
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dist[v]

S

e
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Given currencies and exchange rates, what is best way to convert
one ounce of gold to US dollars?

• 1 oz. gold  ⇒  $327.25.

• 1 oz. gold  ⇒  £208.10  ⇒  $327.00.

• 1 oz. gold  ⇒  455.2 Francs  ⇒ 304.39 Euros  ⇒  $327.28.

29

Currency conversion

[ 208.10 × 1.5714 ]

[ 455.2 × .6677 × 1.0752 ]

currency £ Euro ¥ Franc $ Gold

UK pound 1.0000 0.6853 0.005290 0.4569 0.6368 208.100

Euro 1.45999 1.0000 0.007721 0.6677 0.9303 304.028

Japanese Yen 189.50 129.520 1.0000 85.4694 120.400 39346.7

Swiss Franc 2.1904 1.4978 0.01574 1.0000 1.3941 455.200

US dollar 1.5714 1.0752 0.008309 0.7182 1.0000 327.250

Gold (oz.) 0.004816 0.003295 0.0000255 0.002201 0.003065 1.0000

Graph formulation.

• Vertex = currency.

• Edge = transaction, with weight equal to exchange rate.

• Find path that maximizes product of weights.
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Currency conversion

$G

£ EF

0.003065

1.3941208.100  455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

Reduce to shortest path problem by taking logs.

• Let weight of edge v→w be - lg (exchange rate from currency v to w).

• Multiplication turns to addition.

• Shortest path with given weights corresponds to best exchange sequence.

Challenge.  Solve shortest path problem with negative weights. 
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Currency conversion

-lg(455.2) = -8.8304

0.5827

-0.1046
¥

$G

£ EF

0.003065

1.3941208.100  455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

Dijkstra.  Doesn’t work with negative edge weights.

Re-weighting.  Add a constant to every edge weight also doesn’t work.

Bad news.  Need a different algorithm.
32

Shortest paths with negative weights:  failed attempts
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Dijkstra selects vertex 3 immediately after 0.

But shortest path from 0 to 3 is 0→1→2→3.

Adding 9 to each edge changes the shortest path

because it adds 9 to each edge;

wrong thing to do for paths with many edges.



33

Negative cycles

Def.  A negative cycle is a directed cycle whose sum of edge weights is negative.

Observations.  If negative cycle C is on a path from s to t, then shortest path
can be made arbitrarily negative by spinning around cycle.

Worse news.  Need a different problem.

s t

C
cost(C) < 0

-6

7

 -4
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Shortest paths with negative weights

Problem 1.  Does a given digraph contain a negative cycle?
Problem 2. Find the shortest simple path from s to t. 

Bad news.  Problem 2 is intractable.

Good news.  Can solve problem 1 in O(VE) steps; if no negative cycles, can solve 
problem 2 with same algorithm!

s t

C
cost(C) < 0
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 Edge relaxation (review)

Relaxation along edge e from v to w.

• dist[v] is length of some path from s to v.
• dist[w] is length of some path from s to w.

• If v→w gives a shorter path to w through v, update dist[w] and pred[w].

47
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if (dist[w] > dist[v] + e.weight())
{   
    dist[w] = dist[v] + e.weight());
    pred[w] = e;
}

s w

v

33

44
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Shortest paths with negative weights:  dynamic programming algorithm

A simple solution that works!

• Initialize dist[v] = ∞,  dist[s]= 0.

• Repeat V times:  relax each edge e.

for (int i = 1; i <= G.V(); i++)
   for (int v = 0; v < G.V(); v++)
      for (Edge e : G.adj(v))
      {
         int w = e.to();
         if (dist[w] > dist[v] + e.weight())
         {
             dist[w] = dist[v] + e.weight())
             pred[w] = e;
         }
      }

relax edge v-w

phase i
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Dynamic programming algorithm trace

0→1  .41 

0→5  .29

1→2  .51 

1→4  .32 

2→3  .50

3→0  .45

3→5  .38

4→2  .32

4→3  .36

5→1  .29 

5→4  .21
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4→3 (.86 = .50 + .36)
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0→1 (.41 = 0 + .41)
0→5 (.50 = 0 + .50)

relaxed edges that update dist[]
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00

.41

.82.86

.50

.29 can stop early since
no entries in dist[] updated
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Dynamic programming algorithm

Running time.  Proportional to E V.

Invariant.  At end of phase i, dist[v] ≤ length of any path from s to v
using at most i edges. 

Proposition.  If there are no negative cycles, upon termination dist[v] is the 
length of the shortest path from from s to v.

and pred[] gives the shortest paths
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Observation.  If dist[v] doesn't change during phase i,
no need to relax any edge leaving v in phase i+1.

FIFO implementation. Maintain queue of vertices whose distance changed.

Running time.  

• Proportional to EV in worst case.

• Much faster than that in practice.

Bellman-Ford-Moore algorithm

be careful to keep at most one copy of each vertex on queue
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Single source shortest paths implementation:  cost summary

Remark 1.  Negative weights makes the problem harder.
Remark 2.  Negative cycles makes the problem intractable.

algorithm worst case typical case

nonnegative
costs

Dijkstra (array heap) V 2 V 2

Dijkstra (binary heap) E lg V E

no negative
cycles

dynamic programming E V E V

Bellman-Ford E V E
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Shortest paths application:  arbitrage

Is there an arbitrage opportunity in currency graph?

• Ex:  $1  ⇒  1.3941 Francs ⇒  0.9308 Euros  ⇒  $1.00084.

• Is there a negative cost cycle?

Remark.  Fastest algorithm is valuable!

0.5827

-0.1046
¥

$G

£ EF

0.003065

1.3941208.100  455.2

2.1904 0.6677

1.0752
0.004816

327.25

¥

129.520

0.008309

-0.4793

0.5827 - 0.1046 - 0.4793 < 0
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Negative cycle detection

If there is a negative cycle reachable from s.
Bellman-Ford-Moore gets stuck in loop, updating vertices in cycle.

Finding a negative cycle.  If any vertex v is updated in phase V,
there exists a negative cycle, and we can trace back pred[v] to find it.

pred[v]

s 3

v

2 6

1

4

5

Goal.  Identify a negative cycle (reachable from any vertex).

Solution.  Initialize Bellman-Ford by setting dist[v] = 0 for all vertices v.
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Negative cycle detection

¥

$G

£ EF

8.3499

-0.4793-7.7011 -8.8303

-1.1311 0.5827

-0.1046
7.6979

-8.3542

¥

-7.0170

6.91111

Shortest paths summary

Dijkstra’s algorithm.

• Easy and optimal for dense digraphs.

• PQ yields near optimal for sparse graphs.

Priority-first search.

• Generalization of Dijkstra’s algorithm.

• Encompasses DFS, BFS, and Prim.

• Enables easy solution to many graph-processing problems.

Negative weights.

• Arise in applications.

• Make problem intractable in presence of negative cycles (!)

• Easy solution using old algorithms otherwise.

Shortest-paths is a broadly useful problem-solving model.
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