Undirected Graphs

- graph API

- maze exploration
- depth-first search
- breadth-first search
- connected components

References
Algorith
Algorithms in Java Chapters 17 and 18
, challenges

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Protein interaction network

Reference: Adamic and Adar, 2004

The Internet as mapped by the Opte Project

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	street intersection, airport	highway, airway route
internet	class C network	board position
game	person, actor	legal move
social relationship	neuron	friendship, movie cast
neural network	protein	synapse
protein network	molecule	protein-protein interaction
chemical compound		bond

Some graph-processing problems

Path. Is there a path between s and t?
Shortest path. What is the shortest path between s and t ?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges? Graph isomorphism. Do two adjacency matrices represent the same graph?

First challenge. Which of these problems are easy? difficult? intractable?

Vertex representation.

- This lecture: use integers between 0 and V-1.
- Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

Set of edges representation

Store a list of the edges (linked list or array)

Maintain a two-dimensional V-by-V boolean array;

for each edge $v-w$ in graph: adj $[v][w]=\operatorname{adj}[w][v]=$ true.

Adjacency-list representation

Maintain vertex-indexed array of lists (implementation omitted).

Adjacency-set graph representation

Maintain vertex-indexed array of sets.


```
public class Graph
{ private final int v
    private final int V
    private final SET<Integer>[] adj;
    public Graph(int V)
    {
        this.v = v;
        adj = (SET<Integer>[]) new SET[V]
        for (int v = 0; v < v; v++)
            adj[v] = new SET<Integer>()
    }
```


Graph representations

Graphs are abstract mathematical objects, but:

- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

representation	space	edge between vand w?	iterate over edges incident to v?
list of edges	E	E	E
adjacency matrix	V 2	1	V
adjacency list	E + V	degree(v)	degree (v)
adjacency set	E + V	$\log (\operatorname{degree}(v))$	degree (v)

In practice. Use adjacency-set (or adjacency-list) representation.

- Algs all based on iterating over edges incident to v
- Real-world graphs tend to be "sparse." \longleftarrow huge number of vertices, small average vertex degre

Maze exploration

Maze graphs.

- Vertex $=$ intersection
- Edge = passage

Goal. Explore every passage in the maze.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection by turning on a light.
- Mark each visited passage by opening a door.

First use? Theseus entered labyrinth to kill the monstrous Minotaur: Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

depth-first search

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex s)
Marks as visited.
Recursively visit all unmarked vertices v adjacent to s.

Running time.

- $O(E)$ since each edge examined at most twice.
- Usually less than V to find paths in real graphs.
- Typical applications.
- Find all vertices connected to a given s.
- Find a path from s to t .

Design pattern for graph processing

Typical client program.

- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., DFSearcher.
- Query the graph-processing routine for information.

```
Client that prints all vertices connected to s
public static void main(String[] args)
{
    In in = new In(args[0]);
    Graph G = new Graph(in);
    int s = 0;
    DFSearcher dfs = new DFSearcher (G, s);
    for (int v = 0; v < G.V(); v++)
        if (dfs.isConnected(v))
        StdOut.println(v);
}
```

Design goal. Decouple graph from graph processing.

Photoshop "magic wand"

Connectivity application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

- Vertex: pixel.
- Edge: between two adjacent red pixels.
- Blob: all pixels connected to given pixel.

| \bullet | \bullet | \bullet | \bullet | \bullet | \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet | \bullet | \bullet | \bullet | \bullet | \bullet |
| \bullet | \bullet | \bullet | \bullet | \bullet | \bullet |
| \bullet | \bullet | \bullet | \bullet | \bullet | \bullet |
| \bullet | \bullet | \bullet | \bullet | \bullet | \bullet |

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

- Vertex: pixel.
- Edge: between two adjacent red pixels
- Blob: all pixels connected to given pixel.

Graph-processing challenge 3

Problem. Find a path from s to t ? Assumption. Any path will do.

How difficult?

- Any COS 126 student could do it.

- Need to be a typical diligent COS 226 student.
- Hire an expert.
- Intractable.
- No one knows.

Problem. Is there a path from s to \dagger ?

How difficult?

- Any COS 126 student could do it.

- Need to be a typical diligent COS 226 student.
- Hire an expert
- Intractable.
- No one knows.

Paths in graphs

Is there a path from s to t ?

method	preprocessing time	query time	space
union find	$V+E \log ^{\star} V$	$\log ^{\star} V+$	V
$D F S$	$E+V$	1	$E+V$

If so, find one.

- Union-find: not much help (run DFS on connected subgraph).
- DFS: easy (stay tuned)

UF advantage. Can intermix queries and edge insertions.
DFS advantage. Can recover path itself in time proportional to its length.

DFS tree. Upon visiting a vertex v for the first time, remember that you came from pred[v] (parent-link representation).

Retrace path. To find path between s and v, follow pred[] back from v

Depth-first-search (pathfinding iterator)

```
public Iterable<Integer> path(int v)
{
    Stack<Integer> path = new Stack<Integer>()
    while (v != -1 && marked[v])
    {
        list.push(v);
        v = pred[v];
    }
    return path;
}
```


DFS summary

Enables direct solution of simple graph problems.

- Find path from s to t.
- Connected components (stay tuned).
- Euler tour (see book)
- Cycle detection (simple exercise).
- Bipartiteness checking (see book)

Basis for solving more difficult graph problems.

- Biconnected components (see book).
- Planarity testing (beyond scope).

Depth-first search. Put unvisited vertices on a stack. Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)
Put s onto a FIFO queue.
Repeat until the queue is empty:

- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.

Property. BFS examines vertices in increasing distance from s.

```
private void bfs(Graph G, int s)
{
    Queue<Integer> q = new Queue<Integer>()
    q.enqueue(s);
    while (!q.isEmpty())
    {
        int v = q.dequeue();
        for (int w : G.adj(v))
        {
            if (dist[w] > G.V())
            {
                q. enqueue (w)
                dist[w] = dist[v] + 1;
            }
        }
    }
}
```

- Facebook.
- Kevin Bacon numbers
- Fewest number of hops in a communication network.

ARPANET

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.
Def. A connected component is a maximal set of connected vertices.

Goal. Preprocess graph to answer queries: is v connected to w? in constant time

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.
For each unmarked vertex v, run DFS and identify all vertices
discovered as part of the same connected component.

preprocess time	query time	extra space
$E+V$	1	V

Connected components application: image processing

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Input. Scanned image.
Output. Number of red and blue states.

Goal. Read in a 2D color image and find regions of connected pixels that have the same color.

Efficient algorithm.

- Create grid graph.
- Connect each pixel to neighboring pixel if same color.
- Find connected components in resulting graph.

Graph-processing challenge 4

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.
- Hire an expert.

- Intractable.
- No one knows.
- Impossible.

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value ≥ 70.
- Blob: connected component of 20-30 pixels. white $=255$

Particle tracking. Track moving particles over time.

> challenges

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

> " ... in Königsberg in Prussia, there is an island A, called the Kneiphof; the river which surrounds it is divided into two branches ... and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once."

Euler tour. Is there a cyclic path that uses each edge exactly once? Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see Algs in Java).
How difficult?

- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.

- Hire an expert.
- Intractable.
- No one knows.
- Impossible

Problem. Are two graphs identical except for vertex names?

How difficult?

- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.

- Hire an expert
- Intractable.
- No one knows.
- Impossible.

Graph-processing challenge 5

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

Graph-processing challenge 7

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.

- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

