Hashing

" More computing sins are committed in the name of efficiency (without necessarily achieving it) than for any other single reasonincluding blind stupidity. " - William A. Wulf
" We should forget about small efficiencies, say about 97\% of the time: premature optimization is the root of all evil." - Donald E. Knuth
" We follow two rules in the matter of optimization:
Rule 1: Don't do it.
Rule 2 (for experts only). Don't do it yet - that is, not until
you have a perfectly clear and unoptimized solution. "

- M. A. Jackson

Reference: Effective Java by Joshua Bloch

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing table index from key.

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing table index from key.

$$
\text { hash("it") = } 3
$$

Issues

- Computing the hash function.
- Equality test: Method for checking whether two keys are equal.
- Collision resolution: Algorithm and data structure to handle two keys that hash to the same table index.

Classic space-time tradeoff.

- No space limitation: trivial hash function with key as address.
- No time limitation: trivial collision resolution with sequential search.
- Limitations on both time and space: hashing (the real world).

Computing the hash function

Idealistic goal: scramble the keys uniformly.

- Efficiently computable.
- Each table index equally likely for each key.

still problematic in practical applications

Practical challenge. Need different approach for each Key type.

Ex: Social Security numbers.

- Bad: first three digits.
$573=$ California, $574=$ Alaska
- Better: last three digits.
(assigned in chronological order within a given geographic region)

Ex: phone numbers.

- Bad: first three digits.
- Better: last three digits.

Hash codes and hash functions

Hash code. All Java classes have a method hashCode (), which returns an int.

$$
\uparrow_{\text {between }-2^{32} \text { and } 2^{31}-1}
$$

Hash function. An int between 0 and $\mathrm{m}-1$ (for use as an array index).

First attempt.

Bug. Don't use (code \% m) as array index.
1-in-a billion bug. Don' \dagger use (Math.abs (code) \% m) as array index.
OK. Safe to use ((code \& 0x7fffffff) \% M) as array index.

The method hashCode() is inherited from object.

- Ensures hashing can be used for every object type.
- Enables expert implementations for each type.

Available implementations.

- Default implementation: memory address of \mathbf{x}.
- Customized implementations: string, URL, Integer, Date,
- User-defined types: users are on their own.

Ex. Phone numbers: (609) 867-5309.

```
public final class PhoneNumber
qu
    private final int area, exch, ext;
```

 public PhoneNumber (int area, int exch, int ext)
 pub
 this.area = area;
 this.exch \(=\) exch;
 \}
 public boolean equals (Object y)
 \{/* as before */ \}
 public int hashCode()
public int hashCode ()
\{ return 10007 * (area +1009 * exch) + ext; \}
\}

A poor hash code design

Ex. Strings (in Java 1.1).

- For long strings: only examine 8-9 evenly spaced characters.
- Benefit: saves time in performing arithmetic.

```
public int hashCode()
{
    int hash = 0;
    int skip = Math.max(1, length() / 8);
    for (int i = 0; i < length(); i += skip)
        hash = (37 * hash) + s[i];
    return hash;
}
```

- Downside: great potential for bad collision patterns.

> http://www.cs.princeton. edu/introcs/131oop/Hello.java http://www.cs.princeton.edu/introcs/131oop/Hello.clas http://www.cs.princeton.edu/introcs/131oop/Hello.html http://www.cs.princeton.edu/introcs/131oop/index.html http://www.cs.princeton.edu/introcs/12type/index.html

Requirements.

- If x. equals (y), then we must also have (x.hashCode() $==\mathrm{y}$. hashCode()).
- Repeated calls to x.hashCode() must return the same value (provided no info used in equals () is changed).

Highly desirable. If !x.equals (y), then we want (x.hashCode() != y.hashCode()).

Basic rule. Need to use the whole key to compute hash code.

Fundamental problem. Need a theorem for each type to ensure reliability.

Digression: using a hash function for data mining

Approach.

- Fix order k and dimension d.
- Compute (hashCode() \% d) for all k-grams in the document.
- Result is d-dimensional vector profile of each document.

To compare documents: Consider angle θ separating vectors

- $\cos \theta$ close to 0 : not similar.
- $\cos \theta$ close to 1: similar.

$\cos \theta=a \cdot b /|a||b|$

Digression: using a hash function for data mining

Use content to characterize documents.

Applications.

- Search documents on the web for documents similar to a given one.
- Determine whether a new document belongs in one set or another.
tue he 2eople

Context. Effective for literature, genomes, Java code, art, music, data, video.

Digression: using a hash function for data mining

```
% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of
foolishness
\% more genome.txt CTTTCGGTTTGGAACC GAAGCCGCGCGTCT GTCTGCTG
```

```
public class Document
qub
    private String name
    private double[] profile;
    public Document(String name, int k, int d)
    pub
        this.name = name;
        String doc = (new In(name)).readAll();
        int N = doc.length();
        profile = new double[d];
        for (int i = 0; i < N-k; i++)
        {
            int h = doc.substring(i, i+k).hashCode();
            profile[Math.abs (h % d)] += 1;
        }
    }
    public double simTo(Document that)
    { /* compute dot product and divide by magnitudes */ }
}
```

Digression: using a hash function for data mining

file	description
Cons	US Constitution
Toms	Tom Sawyer
Huck	Huckleberry Finn
Prej	Pride and Prejudice
Pict	a photograph
DJIA	financial data
Amaz	amazon.com website .html source
ACTG	genome

Helpful results from probability theory
Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after $\sim \sqrt{\pi M / 2}$ tosses.

Coupon collector. Expect every bin has ≥ 1 ball after $\sim M \ln M$ tosses.

Load balancing. After M tosses, expect most loaded bin has $\Theta(\log M / \log \log M)$ balls.

Collisions

Collision. Two distinct keys hashing to same index

- Birthday problem \Rightarrow can'† avoid collisions unless you have a ridiculous amount (quadratic) of memory.
- Coupon collector + load balancing \Rightarrow collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

approach 1: accept multiple collisions

approach 2: minimize collisions

Collision resolution approach 1: separate chaining

Use an array of $M<N$ linked lists

- Hash: map key to integer i between 0 and $M-1$.
- Insert: put at front of $i^{\text {th }}$ chain (if not already there).
- Search: only need to search $i^{\text {th }}$ chain.

key	hash
"call"	7121
"me"	3480
"ishmael"	5017
"seriously"	0
"untravelled"	3
"suburban"	3
\ldots	\ldots

separate chaining ($M=8191, N=15000$)

Collision resolution: two approaches

Separate chaining. [H. P. Luhn, IBM 1953]
Put keys that collide in a list associated with index.

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953] When a new key collides, find next empty slot, and put it there.

$\mathbf{s t}[0]$	jocular1y
st[1]	null
st[2]	1isten
st[3]	suburban
\vdots	
st[30001]	null

linear probing ($M=30001, N=15000$)

Separate chaining ST: Java implementation (skeleton)

Analysis of separate chaining

Separate chaining performance

- Cost is proportional to length of chain.
- Average length of chain $\alpha=N / M$.
- Worst case: all keys hash to same chain.

Proposition. Let $\alpha>1$. For any $\dagger>1$, probability that chain length $>\dagger \alpha$ is exponentially small in \dagger
depends on hash map being random map
Parameters.

- M too large \Rightarrow too many empty chains.
- M too small \Rightarrow chains too long.
- Typical choice: $M \sim N / 10 \Rightarrow$ constant-time ops.

```
public class ArrayHashST<Key, Value>
    private int M = 30001;
    private va
    private Value[] vals = (Value[]) new Object[maxN]
    private Key[] keys = (Key[]) new Object[maxN];
    privat int hash(Key key) { /* as before */ }
    public void put(Key key, Value val)
    i
        for (i = hash(key); keys[i] != null; i = (i+1) % M)
        if (key.equals(keys[i]))
            break;
        vals[i] = val;
        keys[i] = key;
    }
    public Value get(Key key)
        for (int i = hash(key); keys[i] != null; i = (i+1) % M)
            if (key.equals(keys[i]))
            (key.equals(keys;
        return null;
    }
}
```


Clustering

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.

Analysis of linear probing

Linear probing performance.

- Insert and search cost depend on length of cluster.
- Average length of cluster $\alpha=N / M$. \qquad but keys more likely to
- Worst case: all keys hash to same cluster.
hash to big clusters

Proposition. [Knuth 1962] Let $\alpha<1$ be the load factor.

$$
\begin{aligned}
& \text { average probes for insert/search miss } \\
& \left.\qquad \begin{array}{rl}
\frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right.
\end{array}\right)=\left(1+\alpha+2 \alpha^{2}+3 \alpha^{3}+4 \alpha^{4}+\ldots\right) / 2 \\
& \text { average probes for search hit } \\
& \frac{1}{2}\left(1+\frac{1}{(1-\alpha)}\right)
\end{aligned}
$$

Parameters.

- Load factor too small \Rightarrow too many empty array entries.
- Load factor too large \Rightarrow clusters coalesce.
- Typical choice: $M \sim 2 N \Rightarrow$ constant-time ops.

Model. Cars arrive at one-way street with M parking spaces. Each desires a random space i : if space i is taken, try $i+1, i+2, \ldots$
Q. What is mean displacement of a car?

Empty. With $M / 2$ cars, mean displacement is $\sim 3 / 2$.
Full. With M cars, mean displacement is $\sim \sqrt{\pi M / 8}$

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate chaining variant)

- Hash to two positions, put key in shorter of the two chains.
- Reduces average length of the longest chain to $\log \log N$.

Double hashing. (linear probing variant)

- Use linear probing, but skip a variable amount, not just 1 each time.
- Effectively eliminates clustering.
- Can allow table to become nearly full.

Double hashing

Double hashing performance

Theorem. [Guibas-Szemerédi] Let $\alpha=N / M<1$ be average length of cluster.

$$
\begin{aligned}
& \text { Average probes for insert/search miss } \\
& \qquad \frac{1}{(1-\alpha)}=1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}+
\end{aligned}
$$

Average probes for search hit

$$
\frac{1}{\alpha} \ln \frac{1}{(1-\alpha)}=1+\alpha / 2+\alpha^{2} / 3+\alpha^{3} / 4+\alpha^{4} / 5+\ldots
$$

Parameters. Typical choice: $\alpha \sim 1.2 \Rightarrow$ constant-time ops.

Disadvantage. Deletion is cumbersome to implement.

Summary of symbol-table implementations

implementation	guarantee			average case			ordered iteration?	operations on keys
	search	insert	delete	search hit	insert	delete		
unordered list	N	N	N	N/2	N	N/2	no	equals()
ordered array	$\lg N$	N	N	$\lg N$	N/2	N/2	yes	compareTo ()
BST	N	N	N	$1.38 \lg N$	$1.38 \lg N$?	yes	compareTo ()
randomized BST	$3 \lg N$	$3 \lg N$	$3 \lg N$	$1.38 \lg N$	$1.38 \lg N$	$1.38 \lg N$	yes	compareTo ()
red-black tree	$3 \lg N$	$3 \lg N$	$3 \lg N$	$\lg N$	$\lg N$	$\lg N$	yes	compareTo ()
hashing	1 *	1*	1*	1*	1*	1*	no	equals() hashCode ()

* assumes random hash function

Hashing

- Simpler to code.
- No effective alternative for unordered keys.
- Faster for simple keys (a few arithmetic ops versus $\log N$ compares).
- Better system support in Java for strings (e.g., cached hash code).
- Does your hash function produce random values for your key type??

Balanced trees.

- Stronger performance guarantee.
- Can support many more ST operations for ordered keys.
- Easier to implement compareтo() correctly than equals() and hashcode ().

Java system includes both.

- Red-black trees: java.util.TreeMap, java.util.TreeSet.
- Hashing: java.util.HashMap, java.util.IdentityHashMap.

public class	*ST<Key extends Comparabl	, Value> implements Iterable<Key>
	*ST()	create an empty symbol table
void	put(Key key, Value val)	put key-value pair into the table
value	get (Key key)	return value paired with key; null if no such value
boolean	contains (Key key)	is there a value paired with key?
Key	$\min ()$	return smallest key
Key	max ()	return largest key
Key	ceil (Key key)	return smallest key in table \geq query key
Key	floor (Key key)	return largest key in table \leq query key
void	remove (Key key)	remove key-value pair from table
Iterator<Key>	iterator()	iterator through keys in table

Hashing is not suitable for implementing such an API (no order). BSTs are easy to extend to support such an API (basic tree ops).

Searching challenge
Problem. Index for a PC or the web. Assumptions. 1 billion++ words to index.

Which searching method to use?

- Hashing implementation of st.
- Hashing implementation of SET.
- Red-black-tree implementation of sт.
- Red-black-tree implementation of SET.
- Doesn't matter much.


```
ST<String, SET<File>> st = new ST<String, SET<File>>()
for (File f : filesystem)
{
    In in = new In(f);
    String[] words = in.readAll().split("\\s+");
    for (int i = 0; i < words.length; i++)
    {
        String s = words[i]
        f (!st.contains(s)
            st.put(s, new SET<File>());
            SET<File> files = st.get(s);
            files.add(f);
}
}
SET<File> files \(=\) st.get(s);
for (File \(\mathrm{f}:\) files) \(\ldots\)
```


Index for a book

```
public class Index
pub
    public static void main(String[] args)
    i
        String[] words = StdIn.readAll().split("\\s+");
        T<String, SET<Integer>> st;
        st = new ST<String, SET<Integer>>();
        for (int i = 0; i < words.length; i++)
        {
        String s = words[i];
        if (!st.contains(s))
            st.put(s, new SET<Integer>());
            SET<Integer> pages = st.get(s);
            pages.add(page(i));
        }
        for (String s : st)
            StdOut println(s + ": " + st.get(s));
    }
}
```

Searching challenge 5

Problem. Sparse matrix-vector multiplication.
Assumptions. Matrix dimension is 10,000 ; average nonzeros per row ~ 10.

Which searching method to use?

1) Unordered array.
2) Ordered linked list.
3) Ordered array with binary search.
4) Need better method, all too slow.

5) Doesn't matter much, all fast enough.

Sparse vectors and matrices

Vector. Ordered sequence of N real numbers

Matrix. N -by- N table of real numbers.
vector operations

$$
\left.\begin{array}{l}
a=\left[\begin{array}{lll}
0 & 3 & 15
\end{array}\right], \quad b=\left[\begin{array}{lll}
-1 & 2 & 2
\end{array}\right] \\
a+b=\left[\begin{array}{ll}
-1 & 5
\end{array} 17\right.
\end{array}\right] \quad \begin{aligned}
& a \circ b=(0 \cdot-1)+(3 \cdot 2)+(15 \cdot 2)=36 \\
& |a|=\sqrt{a \circ a}=\sqrt{0^{2}+3^{2}+15^{2}}=3 \sqrt{26}
\end{aligned}
$$

matrix-vector multiplication

$$
\left[\begin{array}{rrr}
0 & 1 & 1 \\
2 & 4 & -2 \\
0 & 3 & 15
\end{array}\right] \times\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{r}
4 \\
2 \\
36
\end{array}\right]
$$

Sparse vector data type

```
public class SparseVector
{
    private int N; // length
    private ST<Integer, Double> st; // the elements
```


public class SparseVector

```
1
private ST<Integer, Double> st; // the elements
```

 public SparseVector (int N)
 1
 this. \(\mathrm{N}=\mathrm{N} ;\)
 this.st $=$ new ST<Integer, Double>();
\}
public void put(int i, double value)
if (value $=0.0$) st.remove(i);
else st.put(i, value)

```
    public double get(int i)
        f (st.contains(i)) return st.get(i)
        else return 0.0;
}
```

public double get(int i)
f (st.contains(i)) return
\}
public SparseVector(int N)
this. $\mathrm{N}=\mathrm{N}$;
this.st $=$ new ST<Integer, Double>();
public void put(int i, double value)
if (value $==0.0$) st.remove (i);
\}

Sparse vectors and matrices

An N -by- N matrix is sparse if it contains $\mathrm{O}(\mathrm{N})$ nonzeros.

Property. Large matrices that arise in practice are sparse.

2D array matrix representation.

- Constant time access to elements.
- Space proportional to N^{2}

Goal

- Efficient access to elements.
- Space proportional to number of nonzeros.

Sparse vector data type (cont)

public double dot(SparseVector that
public double dot(SparseVector that
double sum $=0.0$;
double sum $=0.0$;
for (int i : this.st)
for (int i : this.st)
if (that.st.contains(i))
if (that.st.contains(i))
sum += this.get(i) * that.get(i)
sum += this.get(i) * that.get(i)
return sum;
return sum;
\}
\}
public double norm()
$\{$ return Math.sqrt(this.dot(this)); \} $\quad ~$
public double norm()
$\{$ return Math.sqrt(this.dot(this)); \} $\quad ~$
public SparseVector plus(SparseVector that)
public SparseVector plus(SparseVector that)
SparseVector c = new SparseVector (N)
SparseVector c = new SparseVector (N)
for (int i : this.st)
for (int i : this.st)
c.put(i, this.get(i));
c.put(i, this.get(i));
or (int i : that.st)
or (int i : that.st)
c.put(i, that.get(i) + c.get(i));
c.put(i, that.get(i) + c.get(i));
return c ;
return c ;
\}

Sparse matrix data type

```
public class SparseMatrix
qu
    private final int N; // length
    private SparseVector[] rows; // the elements
```

 public SparseMatrix(int N)
 1
 this. \(\mathrm{N}=\mathrm{N}\);
 this. rows \(=\) new SparseVector [N ;
 for (int \(i=0 ; i<N ; i++\))
 this.rows[i] = new SparseVector (N);
 \}
 public void put(int \(i\), int \(j\), double value)
 \{ rows[i].put(j, value); \}
 public double get(int \(i\), int \(j\))
 public double get(int \(i\), int \(j)\)
 $\{$ return rows[i].get(j; ;
\}
public SparseVector times (SparseVector \mathbf{x})
1
public SparseVector times (SparseVector \mathbf{x})
SparseVector $b=$ new SparseVector (N);
for (int $i=0$; $i<N$; $i++$)
b.put(i, rows[i]. $\operatorname{dot}(x)$)
b.put(i
return b;
\}
\}
return a[i][j]
\longleftarrow
- $a[i][j]=$ value
1 rowsid.put
\}

Hashing in the wild: algorithmic complexity attacks

Is the random hash map assumption important in practice?

- Obvious situations: aircraft control, nuclear reactor, pacemaker.
- Surprising situations: denial-of-service attacks.

$$
\begin{aligned}
& \text { malicious adversary learns your hash function } \\
& \text { (e.g., by reading Java API) and causes a big pile-up } \\
& \text { in single slot that grinds performance to a halt }
\end{aligned}
$$

Real-world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.

One-way hash functions

One-way hash function. Hard to find a key that will hash to a desired value, or to find two keys that hash to same value.

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160.
known to be insecure

```
String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);
/* prints bytes as hex string */
```

Applications. Digital fingerprint, message digest, storing passwords. Caveat. Too expensive for use in ST implementations.

[^0]
[^0]: Q. Does your hash function produce random values for your key type?

