
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · March 5, 2008 9:06:00 AM

Balanced Trees

References:
 Algorithms in Java, Chapter 13
 http://www.cs.princeton.edu/algs4/43balanced

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

2

Symbol table review

Symbol table. Key-value pair abstraction.

• Insert a value with specified key.

• Search for value given key.

• Delete value with given key.

Randomized BST.

• Probabilistic guarantee of ~ c lg N time per operation.

• Need subtree count in each node.

• Need random numbers for each insertion and deletion.

This lecture. 2-3-4 trees, left-leaning red-black trees, B-trees.

introduced to the world in
COS 226, Fall 2007

(sorry, no handouts currently available)

3

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

2-3-4 tree

Allow 1, 2, or 3 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

• 4-node: three keys, four children.

Maintain perfect balance. Every path from root to leaf has same length.

4

W

smaller than K larger than R

between
K and R

K R

C E M O

A D L N Q S V Y ZF G J

2-node 4-node 3-node

Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

Ex. Search for L.

5

Search in a 2-3-4 tree

W
smaller than M

found L

between
K and R

C E M O

A D L N Q S V Y ZF G J

K R

6

Insertion in a 2-3-4 tree

Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

Ex. Search for B.

W

smaller than K

C E M O

A D L N Q S V Y ZF G J

K R

smaller than C

B not found

7

Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

Ex. Insert B.

W

smaller than K

C E M O

A D L N Q S V Y ZF G J

K R

smaller than C

B not found 8

Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to 3-node.

Ex. Insert B.

W

smaller than K

C E M O

D L N Q S V Y ZF G J

K R

smaller than C

B fits here

A B

9

Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to 3-node.

Ex. Insert X.

W

larger than R

C E M O

A D L N Q S V Y ZF G J

K R

larger
than W

X not found

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to 3-node.

• 3-node at bottom: convert to 4-node.

Ex. Insert X.

10

Insertion in a 2-3-4 tree

W

larger than R

C E M O

A D L N Q S VF G J

K R

larger
than W

X fits here

X Y Z

11

Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to 3-node.

• 3-node at bottom: convert to 4-node.

Ex. Insert H.

W

smaller than K

C E M O

A D L N Q S V Y ZF G J

K R

larger than E

H not found 12

Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

• 2-node at bottom: convert to 3-node.

• 3-node at bottom: convert to 4-node.

• 4-node at bottom: no room for new key!

Ex. Insert H.

W

smaller than K

C E M O

A D L N Q S V Y ZF G J

K R

larger than E

no room for H

Idea. Split the 4-node to make room.

Problem. Doesn’t work if parent is a 4-node.
13

Splitting a 4-node in a 2-3-4 tree

C E

D F G J

H does not fit here

D

C E G

H does fit here !

F J

move middle
key to parent

split remainder
into two 2-nodes

D

C E G

F H J

A
A

A

14

Splitting 4-nodes in a 2-3-4 tree

Strategy. Split 4-nodes on the way down the tree.
Invariant. Current node is not a 4-node.

Consequences.

• 4-node below a 4-node case never happens.

• Insertion at bottom node is easy since it's not a 4-node.

c e

a

b d

a b

a c

b c d

c d e

a b d

transformations to split a 4-node

15

Splitting a 4-node below a 2-node in a 2-3-4 tree

A local transformation that works anywhere in the tree.

could be huge unchanged

D Q

K Q W

D

K W
A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z

16

Splitting a 4-node below a 3-node in a 2-3-4 tree

A local transformation that works anywhere in the tree.

could be huge unchanged

K Q W K W
A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

E-G

D H

A-C E-G

D H Q

Growth of a 2-3-4 tree

17

insert A

insert S

insert E

insert R
split 4-node to

and then insert

insert C

insert D

tree grows
up one level

insert I

A

A S

A E S

E

A R S

E

A S

E

R SA C

E

R SA C D

E

A C D I R S

Growth of a 2-3-4 tree (cont)

18

E

A C D I R S

insert N

insert B

insert X

split 4-node to

and then insert

E R

I S

E R

A C D I N S

tree grows
up one level

split 4-node to

and then insert

E

C R

D I NA B S X

C R

E

split 4-node to

and then insert

A D

C E R

C E R

SD I NA B

19

Balance in a 2-3-4 tree

Key property. All paths from root to leaf have same length.

Tree height.

• Worst case:

• Best case:

20

Balance in a 2-3-4 tree

Key property. All paths from root to leaf have same length.

Tree height.

• Worst case: lg N. [all 2-nodes]

• Best case: log4 N = 1/2 lg N. [all 4-nodes]

• Between 10 and 20 for a million nodes.

• Between 15 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

21

2-3-4 tree: implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Need multiple compares to move down tree.

• Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

fantasy code

 private void insert(Key key, Value val)
 {
 if (root.is4Node()) root.split4Node();
 Node x = root;
 while (x.getChild(key) != null)
 {
 x = x.getChild(key))
 if (x.is4Node()) x.split4Node();
 }
 if (x.is2Node()) x.make3Node(key, val);
 else if (x.is3Node()) x.make4Node(key, val);
 }

ST implementations: summary

22

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert search hit insert

unordered array N N N/2 N no equals()

unordered list N N N/2 N no equals()

ordered array lg N N lg N N/2 yes compareTo()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N yes compareTo()

randomized BST 3 lg N 3 lg N 1.38 lg N 1.38 lg N yes compareTo()

2-3-4 tree c lg N c lg N c lg N c lg N yes compareTo()

constants depend upon
implementation

23

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

1. Represent 2–3–4 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3– and 4–nodes.

Key property. 1–1 correspondence between 2–3–4 and LLRB.

24

Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)

3-node 4-node

D

C E

F G JA B

2-node

A

B

C

D

E

F

G

J

4-node

red links "glue" nodes
within a 2-, 3-, or 4-node

black links connect
2-, 3-, and 4-nodes

1. Represent 2–3–4 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3– and 4–nodes.

Disallowed.

• Right-leaning red link.

• Three red links in a row.

25

Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)

3-node 4-node2-node

right-leaning red

Search implementation for red-black trees

Observation. Search is the same as for elementary BST (ignore color).

Remark. Many other ops (e.g., iteration, kth largest, ceiling) are also the same.
26

public Val get(Key key)
{
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
}

A

B

C

D

E

F

G

J

but runs faster because of better balance

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3-4 trees.

• Inserting a node at the bottom.

• Splitting a 4-node.

Potential concern. Lots of cases to consider.
27

a b
a

b
a b c

a

b

c

a

b c d

b

c

d
a

a

c

b

d
a c

b d

[stay tuned]

[stay tuned]

Two fundamental operations to rearrange nodes in a BST.

• Maintain symmetric order.

• Local transformations (change just 3 pointers).

28

Review: rotation in a BST

private Node rotL(Node h)
{ /* as before */ }

A B

C

CB

A

u
h

h

v
u

v

h = rotL(u)

h = rotR(v)

private Node rotR(Node h)
{ /* as before */ }

Invariant. Node at bottom is a 2-node or a 3-node.

Case 1. Node at bottom is a 2-node.

Insertion in a LLRB tree: adding a node to the bottom

b a b
a

b

OK

b

a

b
a b

b

a
rotate

lefta a

Insertion in a LLRB tree: adding a node to the bottom

Invariant. Node at bottom is a 2-node or a 3-node.

Case 2. Node at bottom is 3-node.

a

b c b

c

OK

b

c
a b c

b

a

c

rotate
left

a

a c b

c

a

c
a b c

ca

b
rotate

left
a b

a

b

a

b

c

a b c

Insertion in a LLRB tree: adding a node to the bottom

Key observation. Same code for all cases!

• Add new node at bottom as usual, with red link to glue it to node above.

• Rotate left if node leans right.

or

or or

rotate
left

rotate
left

rotate
left

OK

OK

32

Insertion in a LLRB tree: splitting 4-nodes

Case 1. Parent of 4-node is a 2-node.

d
b dc

d

a b c

a

b
b

d

ca ca
b

d

ca
rotate
right

flip to
black

a cd

a
a

b c d

b

c db
a

c

b

c

a

b d

rotate
left

d

rotate
right

flip to
black

Case 2. Parent of 4-node is a 3-node.

33

Insertion in a LLRB tree: splitting 4-nodes

c

d

a b c

a

b ca
b

ca

d e b d e

e

d

e

rotate
rightflip to

black

d

a

b c d

b

c db
a

b

a e a c e

e

c

e

dc

db

a

e
rotate

left

rotate
right

flip to
black

ea

d a

e
c d e

a b

ec

a b d
b

b

d

c

d

ec

a

b
rotate

left

c rotate
right

flip to
black

34

Insertion in a LLRB tree: splitting 4-nodes

Key observation. Same code for all cases!

• Rotate right to balance the 4-node.

• Flip colors to pass red link up one level.

• Rotate left if necessary to make link lean left.

rotate
right

b
e

d

c

b

d

c e

if necessary,
rotate left d

b

c

e

flip to
black

red or
black

Insertion in a LLRB: strategy revisited

Basic strategy. Maintain 1-1 correspondence with 2-3-4 trees.

Search as usual.

• If key not found, insert a new node at the bottom.

• Might leave right-leaning link.

Split 4-nodes on the way down the tree.

• Right-rotate and flip color.

• Might leave right-leaning link.

New trick: enforce left-leaning condition on the way up the tree.

• Left-rotate any right-leaning link on search path.

• Easy with recursion (do it after recursive calls).

• No other right-leaning links in tree.

35

a

b

a

a

b

c

ca

b

a

b

b

a

public class RedBlackBST <Key extends Comparable<Key>, Value>
{
 private static final boolean RED = true;
 private static final boolean BLACK = false;
 private Node root;

 private class Node
 {
 private Node left, right; // left and right subtrees
 private boolean color; // color of parent link
 private Key key; // key
 private Value val; // value
 public Node(Key key, Value val, boolean color)
 {
 this.key = key;
 this.val = val;
 this.color = color;
 }
 }

 private boolean isRed(Node x)
 {
 if (x == null) return false;
 return (x.color == RED);
 }
}

Red-black tree implementation: Java skeleton

36

A

B

C

D

E

F

G

J

Red-black tree implementation: basic operations

1. Split a 4-node.

2. Enforce left-leaning condition.

37

a

b

c

ca

b

a

b

b

a

ac

b

a

b

right
rotate

fix color of
left node

could be
red or black

could be
right or left

left
rotate

flip
colors

private Node splitFourNode(Node h)
{
 x = rotR(h);
 x.left.color = BLACK;
 return x;
}

private Node leanLeft(Node h)
{
 x = rotL(h);
 x.color = x.left.color;
 x.left.color = RED;
 return x;
}

38

Insertion in a LLRB tree: Java implementation

Remark. Only a few extra lines of code to standard BST insert.

private Node insert(Node h, Key key, Value val)
{
 if (h == null)
 return new Node(key, val, RED);

 if (isRed(h.left) && isRed(h.left.left))
 h = splitFourNode(h);

 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = insert(h.left, key, val);
 else if (cmp > 0) h.right = insert(h.right, key, val);
 else if (cmp == 0) h.val = val;

 if (isRed(h.right))
 h = leanLeft(h);

 return h;
}

insert at bottom

standard insert

fix right-leaning
reds on the way up

split 4-nodes on
the way down

39

Insertion in a LLRB tree: visualization

511 insertions in ascending order

40

Insertion in a LLRB tree: visualization

511 insertions in descending order

Insertion in a LLRB tree: visualization

41

50 random insertions

Insertion in a LLRB tree: visualization

42

500 random insertions

Typical random LLRB trees

43

average node depth

average node depth

44

Balance in left-leaning red-black trees

Proposition A. Every path from root to leaf has same number of black links.
Proposition B. Never three red links in-a-row.
Proposition C. Height of tree is less than 3 lg N + 2 in the worst case.

Property D. Height of tree is ~ lg N in typical applications.
Property E. Nearly all 4-nodes are on the bottom in the typical applications.

Why left-leaning trees?

45

private Node insert(Node x, Key key, Value val, boolean sw)
{
 if (x == null)
 return new Node(key, value, RED);
 int cmp = key.compareTo(x.key);

 if (isRed(x.left) && isRed(x.right))
 {
 x.color = RED;
 x.left.color = BLACK;
 x.right.color = BLACK;
 }
 if (cmp < 0)
 {
 x.left = insert(x.left, key, val, false);
 if (isRed(x) && isRed(x.left) && sw)
 x = rotR(x);
 if (isRed(x.left) && isRed(x.left.left))
 {
 x = rotR(x);
 x.color = BLACK; x.right.color = RED;
 }
 }
 else if (cmp > 0)
 {
 x.right = insert(x.right, key, val, true);
 if (isRed(h) && isRed(x.right) && !sw)
 x = rotL(x);
 if (isRed(h.right) && isRed(h.right.right))
 {
 x = rotL(x);
 x.color = BLACK; x.left.color = RED;
 }
 }
 else x.val = val;
 return x;
}

private Node insert(Node h, Key key, Value val)
{
 int cmp = key.compareTo(h.key);
 if (h == null)
 return new Node(key, val, RED);
 if (isRed(h.left) && isRed(h.left.left))
 {
 h = rotR(h);
 h.left.color = BLACK;
 }
 if (cmp < 0)
 h.left = insert(h.left, key, val);
 else if (cmp > 0)
 h.right = insert(h.right, key, val);
 else
 x.val = val;
 if (isRed(h.right))
 {
 h = rotL(h);
 h.color = h.left.color;
 h.left.color = RED;
 }
 return h;
}

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)

Why left-leaning trees?

46

Simplified code.

• Left-leaning restriction reduces number of cases.

• Recursion gives two (easy) chances to fix each node.

• Short inner loop.

Same ideas simplify implementation of other operations.

• Delete min/max.

• Arbitrary delete.

Improves widely-used algorithms.

• AVL trees, 2-3 trees, 2-3-4 trees.

• Red-black trees.

Bottom line. Left-leaning red-black trees are the simplest to implement
and fastest in practice.

new

1972

1978

2008

ST implementations: summary

47

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert delete search hit insert delete

unordered array N N N N/2 N N/2 no equals()

unordered list N N N N/2 N N/2 no equals()

ordered array lg N N N lg N N/2 N/2 yes compareTo()

ordered list N N N N/2 N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

randomized BST 3 lg N 3 lg N 3 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes compareTo()

2-3-4 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes compareTo()

exact value of coefficient unknown
but extremely close to 1

48

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

49

B-trees (Bayer-McCreight, 1972)

B-tree. Generalizes 2-3-4 trees by allowing up to M links per node.

Main application: file systems.

• Reading a page into memory from disk is expensive.

• Accessing info on a page in memory is free.

• Goal: minimize # page accesses.

• Node size M = page size.

Space-time tradeoff.

• M large ⇒ only a few levels in tree.

• M small ⇒ less wasted space.

• Typical M = 1000, N < 1 trillion.

Bottom line. Number of page accesses is logMN per op in worst case.

3 or 4 in practice (!)

50

B-Tree Example

M = 5

no room
for 275

no room
for 737

no room
for 773

51

B-Tree Example (cont)

no room
for 526

M = 5

52

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

• Java: java.util.TreeMap, java.util.TreeSet.

• C++ STL: map, multimap, multiset.

• Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.

• Windows: HPFS.

• Mac: HFS, HFS+.

• Linux: ReiserFS, XFS, Ext3FS, JFS.

• Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

53

Red-black trees in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

Red-black trees in the wild

54

