Balanced Trees

- 2-3-4 trees
- red-black trees
- B-trees

References:
Algorithms in Java, Chapter 13
http://www.cs.princeton.edu/algs $4 / 4$ 3balanced

Algorithms in Java, 4h Edition

Symbol table review

Symbol table. Key-value pair abstraction.

- Insert a value with specified key.
- Search for value given key.
- Delete value with given key.

Randomized BST.

- Probabilistic guarantee of $\sim c \lg N$ time per operation.
- Need subtree count in each node.
- Need random numbers for each insertion and deletion.

This lecture. 2-3-4 trees, left-leaning red-black trees, B-trees.

$$
\begin{gathered}
\uparrow \\
\text { introduced to the world in } \\
\text { cos 226, Fall } 2007 \\
\text { (sorry, no handouts currently available) }
\end{gathered}
$$

2-3-4 tree

Allow 1, 2, or 3 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.
- 4-node: three keys, four children.

Maintain perfect balance. Every path from root to leaf has same length.

Search in a 2-3-4 tree

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

Ex. Search for L.

Insertion in a 2-3-4 tree
Insert.

- Search to bottom for key.

Ex. Insert B.

Insertion in a 2-3-4 tree

Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

Ex. Search for B.

Insertion in a 2-3-4 tree

Insert

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.

Ex. Insert B.

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.

Ex. Insert X.

Insertion in a 2-3-4 tree

Insert

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.

Ex. Insert H.

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.

Ex. Insert X.

Insertion in a 2-3-4 tree

Insert

- Search to bottom for key.
- 2-node at bottom: convert to 3-node.
- 3-node at bottom: convert to 4-node.
- 4-node at bottom: no room for new key!

Ex. Insert H.

Splitting a 4-node in a 2-3-4 tree

Idea. Split the 4-node to make room.

Problem. Doesn't work if parent is a 4-node.

Splitting a 4-node below a 2-node in a 2-3-4 tree

A local transformation that works anywhere in the tree.

Splitting a 4-node below a 3-node in a 2-3-4 tree

A local transformation that works anywhere in the tree.

- 4-node below a 4-node case never happens.
- Insertion at bottom node is easy since it's not a 4-node.

Balance in a 2-3-4 tree

Key property. All paths from root to leaf have same length.

Tree height.

- Worst case:
- Best case:

Balance in a 2-3-4 tree

Key property. All paths from root to leaf have same length.

Tree height.

- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log _{4} N=1 / 2 \lg N$. [all 4-nodes]
- Between 10 and 20 for a million nodes.
- Between 15 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3-4 tree: implementation?

ST implementations: summary

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Large number of cases for splitting.

```
private void insert(Key key, Value val)
{
    f (root.is4Node()) root.split4Node();
    Node x = root;
    while (x.getChild(key) != null)
    }
        x = x.getChild(key))
        if (x.is4Node()) x.split4Node();
    }
    if (x.is2Node()) x.make3Node(key, val),
    else if (x.is3Node()) x.make4Node(key, val);
}
```

fantasy code

Bottom line. Could do it, but there's a better way.

- red-black trees

Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)

1. Represent 2-3-4 tree as a BST.

2. Use "internal" left-leaning links as "glue" for 3-and 4-nodes.

$$
R \leftrightarrow R
$$

Key property. 1-1 correspondence between 2-3-4 and LLRB.

1. Represent 2-3-4 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3-and 4-nodes.

$$
R \leftrightarrow R
$$

Disallowed

- Right-leaning red link.
- Three red links in a row.

Potential concern. Lots of cases to consider.

Remark. Many other ops (e.g., iteration, kth largest, ceiling) are also the same.

Review: rotation in a BST

Two fundamental operations to rearrange nodes in a BST.

- Maintain symmetric order.
- Local transformations (change just 3 pointers).

Search implementation for red-black trees

Observation. Search is the same as for elementary BST (ignore color)

$$
\uparrow_{\text {but runs faster because of better balance }}
$$

```
\{
Node \(\mathbf{x}=\) root
while (x != null)
1
int amp \(=\) key.compareTo (x .key) ; if (amp <0) \(x=x . l e f t\); else if (amp >0) \(x=x . r i g h t\); else if (amp \(=0\) ) return x.val
\}
return null;
\}
public Val get(Key key)
```

-

Invariant. Node at bottom is a 2-node or a 3-node.

Case 1. Node at bottom is a 2-node.

Insertion in a LLRB tree: adding a node to the bottom

Key observation. Same code for all cases!

- Add new node at bottom as usual, with red link to glue it to node above.
- Rotate left if node leans right.

$$
\begin{aligned}
& \mathrm{R} \longrightarrow \mathrm{SO}_{\text {oK }}^{\text {or }} \\
& \text { TLC }
\end{aligned}
$$

Insertion in a LLRB tree: adding a node to the bottom

Invariant. Node at bottom is a 2-node or a 3-node.

Case 2. Node at bottom is 3-node.

Insertion in a LLRB tree: splitting 4-nodes

Case 1. Parent of 4-node is a 2 -node.

Case 2. Parent of 4-node is a 3-node.

Key observation. Same code for all cases!

- Rotate right to balance the 4-node.
- Flip colors to pass red link up one level.
- Rotate left if necessary to make link lean left.

Basic strategy. Maintain 1-1 correspondence with 2-3-4 trees.

Search as usual.

- If key not found, insert a new node at the bottom.
- Might leave right-leaning link.

New trick: enforce left-leaning condition on the way up the tree.

- Left-rotate any right-leaning link on search path.
- Easy with recursion (do it after recursive calls).
- No other right-leaning links in tree.

Red-black tree implementation: Java skeleton

```
i
private static final boolean RED = true private static final boolean BLACK = false; private Node root;
private class Node
1
```

private Node left, right; // left and right subtree private boolean color; // color of parent link private Key key; // key
private Value val; \quad public Node (Key key, Value val, boolean color)
f

$$
\begin{aligned}
\text { this.key } & =\text { key; } \\
\text { this.val } & =\text { val; } \\
\text { this. color } & =\text { color }
\end{aligned}
$$

$$
\begin{aligned}
& \text { private boolean isRed (Node } \mathbf{x} \text {) } \\
& \{ \\
& \text { if (} \mathbf{x}==\text { null) return false; } \\
& \text { return (} \mathbf{x} \text {.color == RED); }
\end{aligned}
$$

1. Split a 4-node.
```
private Node splitFourNode (Node h)
    x = rotR(h);
    x.left.color = BLACK;
    return x;
}
```

2. Enforce left-leaning condition.
}
```
```

```
private Node leanLeft(Node h)
```

```
private Node leanLeft(Node h)
    x = rotL (h);
    x = rotL (h);
    x.color = x.left.color;
    x.color = x.left.color;
    x.left.color = RED;
    x.left.color = RED;
    return x;
```

 return x;
    ```
    could be
red or black


511 insertions in ascending order

Remark. Only a few extra lines of code to standard BST insert.


\section*{Insertion in a LLRB tree: visualization}


511 insertions in descending order


50 random insertions

Typical random LLRB trees

average node depth


\section*{Balance in left-leaning red-black trees}

Proposition A. Every path from root to leaf has same number of black links.
Proposition B. Never three red links in-a-row.
Proposition C. Height of tree is less than \(3 \lg N+2\) in the worst case.


Property D. Height of tree is \(\sim \lg N\) in typical applications.
Property E. Nearly all 4-nodes are on the bottom in the typical applications.

Why left-leaning trees?
old code (that students had to learn in the past)

x. color \(=\) RED;
x. 1eft. color \(=\) BLACK;
x. \(\mathbf{r i g h t . c o l o r ~}=\) BLACK;
\({ }^{1} \times\)
if (cmp < 0 )
x. left \(=\) insert \((x\). left, key, val, false)
if (isRed \((\mathbf{x}) \& \&\) isRed \((x\) left \()\)


\(\}_{x}=\operatorname{rotR}(x)\);
\(\mathbf{x}=\) rotr \((\mathbf{x}) ;\)
\(\mathbf{x}\). color \(=\) BLACK \(; \quad \mathbf{x}\). right. color \(=\) RED
\()^{1}\)
\({ }_{\text {else }}^{\text {elf }}\) (cmp \(\left.>0\right)\)
 \(\mathbf{x}=\operatorname{rotL}(\mathbf{x})\);

\(\mathbf{x}=\) rotl \((\mathbf{x}) ;\)
x
;
x.color = BLACK; \(\mathbf{x}\).left. color \(=\) RED;
\({ }^{\text {, }}{ }^{\text {b }}\),
else \(\mathrm{x} \cdot \mathrm{val}=\mathrm{val}\);
else \(\times . v a 1\)
return \(\mathbf{x}\);
new code (that you have to learn)
private Node insert (Node \(h\), Key key, value val)
int \(\mathrm{cmp}=\) key. compareTo (h. key );
if ( \(\mathrm{h}=\) null
if (isRed (h.left) \&\& isRed (h.left. left))
\(\gamma_{\mathrm{h}}=\operatorname{rotr}(\mathrm{h})\);
\(\begin{aligned} & \mathrm{h}=\mathrm{rotr}(\mathrm{h}) ; \\ & \mathrm{h} . \mathrm{left} \text { color }\end{aligned}=\) BLACK
if (cmp \(<0\) )
se if = insert(h.left, key, val):
else if (cmp \(>0\) )
h. right \(=\) insert (h.right, key, val)
else x .val \(=\) val

\(\mathrm{h}=\mathrm{rotL}(\mathrm{h}) ;\)
\(\mathrm{h} . \operatorname{color}=\mathrm{h}\). left. color,
h. color = h. left. colo
h. left.color = RED;
\({ }_{r}{ }_{\text {return }} \mathrm{h}\);

straightforward
(if you've paid attention)
extremely tricky

Why left-leaning trees?

Simplified code.
- Left-leaning restriction reduces number of cases.
- Recursion gives two (easy) chances to fix each node.
- Short inner loop.

Same ideas simplify implementation of other operations.
- Delete min/max.
- Arbitrary delete.

Improves widely-used algorithms.
- AVL trees, 2-3 trees, 2-3-4 trees.
- Red-black trees.

Bottom line. Left-leaning red-black trees are the simplest to implement and fastest in practice.

ST implementations: summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow{2}{*}{ordered iteration?} & \multirow[b]{2}{*}{operations on keys} \\
\hline & search & insert & delete & search hit & insert & delete & & \\
\hline unordered array & \(N\) & \(N\) & \(N\) & N/2 & \(N\) & N/2 & no & equals () \\
\hline unordered list & \(N\) & \(N\) & N & N/2 & \(N\) & N/2 & no & equals () \\
\hline ordered array & \(\lg N\) & \(N\) & \(N\) & \(\lg N\) & N/2 & N/2 & yes & compareto () \\
\hline ordered list & \(N\) & N & N & N/2 & N/2 & N/2 & yes & compareTo () \\
\hline BST & \(N\) & \(N\) & N & \(1.38 \lg N\) & \(1.38 \lg N\) & ? & yes & compareTo () \\
\hline randomized BST & \(3 \lg N\) & \(3 \lg N\) & \(3 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & \(1.38 \lg N\) & yes & compareTo () \\
\hline 2-3-4 tree & \(c \lg N\) & yes & compareTo () \\
\hline red-black tree & \(3 \lg N\) & \(3 \lg N\) & \(3 \lg N\) & \(\lg N\) & \(\lg N\) & \(\lg N\) & yes & compareTo () \\
\hline & & & & exact val but & of coeffic xtremely cl & t unknown to 1 & & \\
\hline
\end{tabular}

B-tree. Generalizes 2-3-4 trees by allowing up to \(M\) links per node.

\section*{Main application: file systems.}
- Reading a page into memory from disk is expensive.
- Accessing info on a page in memory is free.
- Goal: minimize \# page accesses.
- Node size \(M\) = page size.

Space-time tradeoff
- M large \(\Rightarrow\) only a few levels in tree.

- \(M\) small \(\Rightarrow\) less wasted space.
- Typical \(M=1000, N<1\) trillion.


Bottom line. Number of page accesses is \(\log _{M} N\) per op in worst case.


B-Tree Example (cont)


Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. \(\mathrm{B}+\) tree, \(\mathrm{B}^{\star}\) tree, \(\mathrm{B} \#\) tree, ...

B-trees (and variants) are widely used for file systems and databases.
- Windows: HPFS.
- Mac: HFS, HFS+
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.


Common sense. Sixth sense.
Together theyre the
Together they're the
FBI's newest team

\section*{fade in: \\ 48 tnt. fai mo - nichi}

Antonio is at THE COMPUUER as Jess explains herself to Nicole
and Poilock. The coNFPRETCE TABLE

It was the red door again.
I thought the riLock
container.
But it wasn't red anymore. It was
black.
So red turning to black means...
what?


Antonio refers to his computer scresn, which is filled with
mathematical equations.
It could be antonio
search tree. ald orithm from a binary
a red-black tree tracks
 of black nodes.
Does that help you with girls?
Nicole is tapping away at a computer keyboard. She finds
something.```

