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Balanced Trees

References:
    Algorithms in Java, Chapter 13
  http://www.cs.princeton.edu/algs4/43balanced

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees
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Symbol table review

Symbol table.  Key-value pair abstraction.

• Insert a value with specified key.

• Search for value given key.

• Delete value with given key.

Randomized BST.

• Probabilistic guarantee of ~ c lg N time per operation.

• Need subtree count in each node.

• Need random numbers for each insertion and deletion.

This lecture.  2-3-4 trees, left-leaning red-black trees, B-trees.

introduced to the world in
COS 226, Fall 2007

(sorry, no handouts currently available)
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‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

2-3-4 tree

Allow 1, 2, or 3 keys per node.

• 2-node:  one key, two children.

• 3-node:  two keys, three children.

• 4-node:  three keys, four children. 

Maintain perfect balance.  Every path from root to leaf has same length.
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W

smaller than K larger than R

between
K and R

K  R

C  E M  O

A D L N Q S  V Y  ZF  G  J

2-node 4-node 3-node



Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

Ex.  Search for L.

5

Search in a 2-3-4 tree

W
smaller than M

found L

between
K and R

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  R
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Insertion in a 2-3-4 tree

Search.

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

Ex.  Search for B.

W

smaller than K

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  R

smaller than C

B not found
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Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

Ex.  Insert B.

W

smaller than K

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  R

smaller than C

B not found 8

Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

Ex.  Insert B.

W

smaller than K

C  E M  O

D L N Q S  V Y  ZF  G  J

K  R

smaller than C

B fits here

A  B
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Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

Ex.  Insert X.

W

larger than R

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  R

larger
than W

X not found

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

• 3-node at bottom:  convert to 4-node.

Ex.  Insert X.
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Insertion in a 2-3-4 tree

W

larger than R

C  E M  O

A D L N Q S  VF  G  J

K  R

larger
than W

X fits here

X  Y  Z
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Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

• 3-node at bottom:  convert to 4-node.

Ex.  Insert H.

W

smaller than K

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  R

larger than E

H not found 12

Insertion in a 2-3-4 tree

Insert.

• Search to bottom for key.

• 2-node at bottom:  convert to 3-node.

• 3-node at bottom:  convert to 4-node.

• 4-node at bottom:  no room for new key!

Ex.  Insert H.

W

smaller than K

C  E M  O

A D L N Q S  V Y  ZF  G  J

K  R

larger than E

no room for H



Idea.  Split the 4-node to make room. 

Problem.  Doesn’t work if parent is a 4-node.
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Splitting a 4-node in a 2-3-4 tree

C  E

D F  G  J

H does not fit here

D

C  E  G

H does fit here !

F J

move middle
key to parent

split remainder
into two 2-nodes

D

C  E  G

F H  J

A
A

A
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Splitting 4-nodes in a 2-3-4 tree

Strategy.   Split 4-nodes on the way down the tree.
Invariant.  Current node is not a 4-node.

Consequences.

• 4-node below a 4-node case never happens.

• Insertion at bottom node is easy since it's not a 4-node.

c e

a

b d

a b

a c

b c d

c d e

a b d

transformations to split a 4-node
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Splitting a 4-node below a 2-node in a 2-3-4 tree

A local transformation that works anywhere in the tree.

could be huge  unchanged

D  Q

K  Q  W

D

K W
A-C

E-J L-P R-V X-Z

A-C

E-J L-P R-V X-Z
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Splitting a 4-node below a 3-node in a 2-3-4 tree

A local transformation that works anywhere in the tree.

could be huge  unchanged

K  Q  W K W
A-C

I-J L-P R-V X-Z I-J L-P R-V X-Z

E-G

D H

A-C E-G

D  H  Q



Growth of a 2-3-4 tree
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insert A

insert S

insert E

insert R
split 4-node to

and then insert

insert C

insert D

tree grows
up one level

insert I

A

A  S

A  E  S

E

A R  S

E

A S

E

R  SA  C

E

R  SA  C  D

E

A  C  D I  R  S

Growth of a 2-3-4 tree (cont)
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E

A  C  D I  R  S

insert N

insert B

insert X

split 4-node to

and then insert

E  R

I S

E  R

A  C  D I  N S

tree grows
up one level

split 4-node to

and then insert

E

C R

D I  NA  B S  X

C R

E

split 4-node to

and then insert

A D

C  E  R

C  E  R

SD I  NA  B
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Balance in a 2-3-4 tree

Key property.  All paths from root to leaf have same length.

Tree height.

• Worst case:

• Best case:
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Balance in a 2-3-4 tree

Key property.  All paths from root to leaf have same length.

Tree height.

• Worst case: lg N.    [all 2-nodes]

• Best case: log4 N = 1/2 lg N.   [all 4-nodes]

• Between 10 and 20 for a million nodes.

• Between 15 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.
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2-3-4 tree:  implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Need multiple compares to move down tree.

• Large number of cases for splitting.

Bottom line.  Could do it, but there's a better way.

fantasy code

 private void insert(Key key, Value val)
 {
    if (root.is4Node()) root.split4Node();
    Node x = root;
    while (x.getChild(key) != null)
    {
       x = x.getChild(key))
       if (x.is4Node()) x.split4Node();
    }
    if      (x.is2Node()) x.make3Node(key, val);
    else if (x.is3Node()) x.make4Node(key, val);
 }

ST implementations:  summary

22

implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert search hit insert

unordered array N N N/2 N no equals()

unordered list N N N/2 N no equals()

ordered array lg N N lg N N/2 yes compareTo()

ordered list N N N/2 N/2 yes compareTo()

BST N N 1.38 lg N 1.38 lg N yes compareTo()

randomized BST 3 lg N 3 lg N 1.38 lg N 1.38 lg N yes compareTo()

2-3-4 tree c lg N c lg N c lg N c lg N yes compareTo()

constants depend upon 
implementation
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‣ 2-3-4 trees
‣ red-black trees
‣ B-trees

1.  Represent 2–3–4 tree as a BST.
2.  Use "internal" left-leaning links as "glue" for 3– and 4–nodes.

Key property.  1–1 correspondence between 2–3–4 and LLRB.
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Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)

3-node 4-node

D

C E

F G JA B

2-node

A

B

C

D

E

F

G

J

4-node

red links "glue" nodes 
within a 2-, 3-, or 4-node

black links connect
2-, 3-, and 4-nodes



1.  Represent 2–3–4 tree as a BST.
2.  Use "internal" left-leaning links as "glue" for 3– and 4–nodes.

Disallowed.

• Right-leaning red link.

• Three red links in a row.
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Left-leaning red-black trees (Guibas-Sedgewick, 1979 and Sedgewick, 2007)

3-node 4-node2-node

right-leaning red

Search implementation for red-black trees

Observation.  Search is the same as for elementary BST (ignore color).

Remark.  Many other ops (e.g., iteration, kth largest, ceiling) are also the same.
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public Val get(Key key)
{
   Node x = root;
   while (x != null)
   {
      int cmp = key.compareTo(x.key);
      if      (cmp  < 0) x = x.left;
      else if (cmp  > 0) x = x.right;
      else if (cmp == 0) return x.val;
   }
   return null;
}

A

B

C

D

E

F

G

J

but runs faster because of better balance

Insertion in a LLRB tree:  overview

Basic strategy.  Maintain 1-1 correspondence with 2-3-4 trees.

• Inserting a node at the bottom.

• Splitting a 4-node.

Potential concern.  Lots of cases to consider.
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a b
a

b
a b c

a

b

c

a

b c d

b

c

d
a

a

c

b

d
a c

b d

[stay tuned]

[stay tuned]

Two fundamental operations to rearrange nodes in a BST.

• Maintain symmetric order.

• Local transformations (change just 3 pointers).
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Review:  rotation in a BST

private Node rotL(Node h)
{  /* as before */  }

A B

C

CB

A

u
h

h

v
u

v

h = rotL(u)

h = rotR(v)

private Node rotR(Node h)
{  /* as before */  }



Invariant.  Node at bottom is a 2-node or a 3-node. 

Case 1.  Node at bottom is a 2-node.

Insertion in a LLRB tree:  adding a node to the bottom

b a b
a

b

OK

b

a

b
a b

b

a
rotate

lefta a

Insertion in a LLRB tree:  adding a node to the bottom

Invariant.  Node at bottom is a 2-node or a 3-node. 

Case 2.  Node at bottom is 3-node.

a

b c b

c

OK

b

c
a b c

b

a

c

rotate
left

a

a c b

c

a

c
a b c

ca

b
rotate

left
a b

a

b

a

b

c

a b c

Insertion in a LLRB tree:  adding a node to the bottom

Key observation.  Same code for all cases!

• Add new node at bottom as usual, with red link to glue it to node above.

• Rotate left if node leans right.

or

or or

rotate
left

rotate
left

rotate
left

OK

OK
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Insertion in a LLRB tree:  splitting 4-nodes

Case 1.  Parent of 4-node is a 2-node.

d
b dc

d

a b c

a

b
b

d

ca ca
b

d

ca
rotate
right

flip to
black

a cd

a
a

b c d

b

c db
a

c

b

c

a

b d

rotate
left

d

rotate
right

flip to
black



Case 2.  Parent of 4-node is a 3-node.
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Insertion in a LLRB tree:  splitting 4-nodes

c

d

a b c

a

b ca
b

ca

d e b d e

e

d

e
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rightflip to

black

d
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b c d
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e
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right

flip to
black

ea

d a

e
c d e
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a b d
b

b

d

c

d
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a

b
rotate

left

c rotate
right

flip to
black
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Insertion in a LLRB tree:  splitting 4-nodes

Key observation.  Same code for all cases!

• Rotate right to balance the 4-node.

• Flip colors to pass red link up one level.

• Rotate left if necessary to make link lean left.

rotate
right

b
e

d

c

b

d

c e

if necessary,
rotate left d

b

c

e

flip to
black

red or
black

Insertion in a LLRB:  strategy revisited

Basic strategy.  Maintain 1-1 correspondence with 2-3-4 trees.

Search as usual.

• If key not found, insert a new node at the bottom.

• Might leave right-leaning link.

Split 4-nodes on the way down the tree.

• Right-rotate and flip color.

• Might leave right-leaning link.

New trick:  enforce left-leaning condition on the way up the tree.

• Left-rotate any right-leaning link on search path.

• Easy with recursion (do it after recursive calls).

• No other right-leaning links in tree.
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a

b

a

a

b

c

ca

b

a

b

b

a

public class RedBlackBST <Key extends Comparable<Key>, Value>
{
    private static final boolean RED   = true;
    private static final boolean BLACK = false;
    private Node root;

    private class Node
    {
        private Node left, right;  // left and right subtrees
        private boolean color;     // color of parent link
        private Key key;           // key
        private Value val;         // value
        public Node(Key key, Value val, boolean color)
        {
            this.key   = key;
            this.val   = val;
            this.color = color;
        }
    }

   private boolean isRed(Node x)
   {  
      if (x == null) return false;
      return (x.color == RED);
   }
}

Red-black tree implementation:  Java skeleton
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A

B

C

D

E

F

G

J



Red-black tree implementation:  basic operations

1.  Split a 4-node.

2.  Enforce left-leaning condition.
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a

b

c

ca

b

a

b

b

a

ac

b

a

b

right
rotate

fix color of
left node

could be
red or black

could be
right or left

left
rotate

flip
colors

private Node splitFourNode(Node h)
{  
   x = rotR(h);
   x.left.color = BLACK;
   return x;
}

private Node leanLeft(Node h)
{  
   x = rotL(h);
   x.color = x.left.color;                   
   x.left.color = RED;                     
   return x;
}
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Insertion in a LLRB tree:  Java implementation

Remark.  Only a few extra lines of code to standard BST insert.

private Node insert(Node h, Key key, Value val)
{ 
   if (h == null) 
      return new Node(key, val, RED);

   if (isRed(h.left) && isRed(h.left.left))
      h = splitFourNode(h);
   
   int cmp = key.compareTo(h.key);
   if      (cmp  < 0) h.left  = insert(h.left,  key, val); 
   else if (cmp  > 0) h.right = insert(h.right, key, val); 
   else if (cmp == 0) h.val = val;
   
   if (isRed(h.right))
      h = leanLeft(h);

   return h;
}

insert at bottom

standard insert

fix right-leaning
reds on the way up

split 4-nodes on
the way down
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Insertion in a LLRB tree:  visualization

511 insertions in ascending order
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Insertion in a LLRB tree:  visualization

511 insertions in descending order



Insertion in a LLRB tree:  visualization
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50 random insertions

Insertion in a LLRB tree:  visualization
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500 random insertions

Typical random LLRB trees
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average node depth

average node depth
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Balance in left-leaning red-black trees

Proposition A.  Every path from root to leaf has same number of black links.
Proposition B.  Never three red links in-a-row.
Proposition C.  Height of tree is less than 3 lg N + 2 in the worst case. 

Property D.  Height of tree is ~ lg N in typical applications.
Property E.  Nearly all 4-nodes are on the bottom in the typical applications.



Why left-leaning trees?
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private Node insert(Node x, Key key, Value val, boolean sw)
{ 
   if (x == null)
      return new Node(key, value, RED);
   int cmp = key.compareTo(x.key);

   if (isRed(x.left) && isRed(x.right))
   { 
      x.color = RED;
      x.left.color  = BLACK;
      x.right.color = BLACK;
   }
   if (cmp < 0)
   { 
     x.left = insert(x.left, key, val, false); 
     if (isRed(x) && isRed(x.left) && sw)
        x = rotR(x);
     if (isRed(x.left) && isRed(x.left.left))         
      {
         x = rotR(x);
         x.color = BLACK; x.right.color = RED;  
      }
   }
   else if (cmp > 0)
   { 
      x.right = insert(x.right, key, val, true);
      if (isRed(h) && isRed(x.right) && !sw)
         x = rotL(x);
      if (isRed(h.right) && isRed(h.right.right)) 
      {
         x = rotL(x);
         x.color = BLACK; x.left.color = RED;   
      }
   }
   else x.val = val;
   return x;
}

private Node insert(Node h, Key key, Value val)
{ 
   int cmp = key.compareTo(h.key); 
   if (h == null) 
      return new Node(key, val, RED);
   if (isRed(h.left) && isRed(h.left.left))
   {  
      h = rotR(h);
      h.left.color  = BLACK;
   }
   if (cmp < 0)
      h.left = insert(h.left, key, val); 
   else if (cmp > 0)
      h.right = insert(h.right, key, val);
   else
      x.val = val; 
   if (isRed(h.right))
   {  
      h = rotL(h);
      h.color = h.left.color;                   
      h.left.color = RED;                     
   }
   return h;
}

old code (that students had to learn in the past) new code (that you have to learn)

extremely tricky

straightforward
 (if you’ve paid attention)

Why left-leaning trees?
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Simplified code.

• Left-leaning restriction reduces number of cases. 

• Recursion gives two (easy) chances to fix each node.

• Short inner loop.

Same ideas simplify implementation of other operations.

• Delete min/max.

• Arbitrary delete.

Improves widely-used algorithms.

• AVL trees, 2-3 trees, 2-3-4 trees.

• Red-black trees.

Bottom line.   Left-leaning red-black trees are the simplest to implement
and fastest in practice.

new

1972

1978

2008

ST implementations:  summary
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implementation
guarantee average case

ordered
iteration?

operations
on keys

search insert delete search hit insert delete

unordered array N N N N/2 N N/2 no equals()

unordered list N N N N/2 N N/2 no equals()

ordered array lg N N N lg N N/2 N/2 yes compareTo()

ordered list N N N N/2 N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

randomized BST 3 lg N 3 lg N 3 lg N 1.38 lg N 1.38 lg N 1.38 lg N yes compareTo()

2-3-4 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

red-black tree 3 lg N 3 lg N 3 lg N lg N lg N lg N yes compareTo()

exact value of coefficient unknown
but extremely close to 1

48

‣ 2-3-4 trees
‣ red-black trees
‣ B-trees
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B-trees (Bayer-McCreight, 1972)

B-tree.  Generalizes 2-3-4 trees by allowing up to M links per node.

Main application:  file systems.

• Reading a page into memory from disk is expensive.

• Accessing info on a page in memory is free.

• Goal:  minimize # page accesses.

• Node size M = page size.

Space-time tradeoff.

• M large  ⇒   only a few levels in tree.

• M small  ⇒   less wasted space.

• Typical M = 1000,  N < 1 trillion.

Bottom line.  Number of page accesses is logMN per op in worst case.

3 or 4 in practice (!)
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B-Tree Example

M = 5

no room
for 275

no room
for 737

no room
for 773
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B-Tree Example (cont)

no room
for 526

M = 5
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Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

• Java:  java.util.TreeMap, java.util.TreeSet.

• C++ STL:  map, multimap, multiset.

• Linux kernel:  completely fair scheduler, linux/rbtree.h.

B-tree variants.  B+ tree, B*tree, B# tree, …

B-trees (and variants) are widely used for file systems and databases.

• Windows:  HPFS.

• Mac:  HFS, HFS+. 

• Linux:  ReiserFS, XFS, Ext3FS, JFS.

• Databases:  ORACLE, DB2, INGRES, SQL, PostgreSQL.
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Red-black trees in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

Red-black trees in the wild
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