
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · February 29, 2008 9:25:17 AM

Symbol Tables

‣ API
‣ sequential search
‣ binary search
‣ applications
‣ challenges

2

Symbol tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex. DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

3

Symbol table applications

application purpose of search key value

dictionary look up word word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name value and type

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk

4

Symbol table API

Associative array abstraction. Associate one value with each key.

 public class *ST<Key, Value>

*ST() create a symbol table

void put(Key key, Value val) put key-value pair into the table

Value get(Key key) return value paired with key

boolean contains(Key key) is there a value paired with key?

void remove(Key key) remove key-value pair from table

Iterator<Key> iterator() iterator through keys in table

a[key] = val;

a[key]

5

Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.

• Easy to implement contains().

• Can implement lazy version of remove().

 public boolean contains(Key key)
 { return get(key) != null; }

 public boolean remove(Key key)
 { put(key, null); }

6

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality
and hashCode() to scramble key.

Best practices. Use immutable types for symbol table keys.

• Immutable in Java: String, Integer, BigInteger, …

• Mutable in Java: Date, GregorianCalendar, StringBuilder, ...

ST test client

Build ST by associating value i with ith command-line argument.

7

public static void main(String[] args)
{
 ST<String, Integer> st = new ST<String, Integer>();
 for (int i = 0; i < args.length; i++)
 st.put(args[i], i);
 for (String s : st)
 StdOut.println(s + " " + st.get(s));
}

Keys, values, and output for test client

STunordered output
(one possibility)

ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

Keys, values, and output for test client

STunordered output
(one possibility)

ST output

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

A 8
C 4
E 12
H 5
L 9
M 11
P 10
R 3
S 0
X 7

Elementary ST implementations

• Sequential search.

• Binary search.

• Array vs. linked list.

Why study elementary implementations?

• Performance benchmarks.

• API details need to be worked out.

• Basis for advanced implementations.

• Method of choice can be one of these in many situations.

Remark. Always good practice to study elementary implementations.

8

9

‣ API
‣ sequential search
‣ binary search
‣ applications
‣ challenges

10

Java conventions for equals()

All Java objects implement a method equals().

Default implementation: (x == y)

Equivalence relation. For any references x, y and z:

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) is false.

Customized implementations. String, URL, Integer, ...
User-defined implementations. Some care needed.

do x and y refer to the same object?

Seems easy.

Implementing equals()

11

public class PhoneNumber
{
 private final int area, exch, ext;

 ...

 public boolean equals(PhoneNumber y)
 {

 PhoneNumber that = (PhoneNumber) y;
 return (this.area == that.area) &&
 (this.exch == that.exch) &&
 (this.ext == that.ext);
 }
}

Seems easy, but requires some care.

public final class PhoneNumber
{
 private final int area, exch, ext;

 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 PhoneNumber that = (PhoneNumber) y;
 return (this.area == that.area) &&
 (this.exch == that.exch) &&
 (this.ext == that.ext);
 }
}

Implementing equals()

12

if I’m executing this code,
I’m not null

optimize for true object equality

no safe way to use equals() with inheritance

must be Object.
Why? Experts still debate.

objects must be in the same class

Maintain a linked list with keys and values.

Inner Node class.

• Instance variable key holds the key.

• Instance variable val holds the value.

Instance variable(s):

• Node first refers to the first node in the list.

13

Unordered linked-list ST implementation

it

2

was

2

the

1

best

1

of

1

times

1

first

key

val next

Node data type

public class UnorderedLinkedST<Key, Value>
{
 private Node first;

 private class Node
 {
 private Key key;
 private Value val;
 private Node next;
 public Node(Key key, Value val, Node next)
 {
 this.key = key;
 this.val = val;
 this.next = next;
 }
 }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Val get(Key key)
 { /* see next slides */ }
}

14

Unordered linked-list ST implementation (skeleton)

inner class

15

Unordered linked-list ST implementation (search)

get("the")
returns 1

get("worst")
returns null

it

2

was

2

the

1

best

1

of

1

times

1

first

it

2

was

2

the

1

best

1

of

1

times

1

first

public Value get(Key key)
{
 for (Node x = first; x != null; x = x.next))
 if (key.equals(x.key))
 return x.val;
 return null;
}

16

Unordered linked-list ST implementation (insert)

put("the", 2)
overwrites the 1

it

2

was

2

the

1

best

1

of

1

times

1

first

it

2

was

2

the

1

best

1

of

1

times

1

public void put(Key key, Value val)
{
 for (Node x = first; x != null; x = x.next)
 if (key.equals(x.key))
 { x.val = val; return; }
 first = new Node(key, val, first);
}

put("worst", 1)
adds a new entry
after searching
the entire list

worst

1

first

17

Unordered linked-list ST: trace

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Maintain two parallel arrays with keys and values.

Instance variables.

• keys[i] holds the ith smallest key.
• vals[i] holds the value associated with the ith smallest key.

• N holds the number of entries.

18

Unordered array ST implementation

0 1 2 3 4 5 6 7

keys[]

vals[]

it was the best of times null null

2 2 1 1 1 1 null null

N = 6

19

ST implementations: summary

Challenge. Efficient implementations of search and insert.

ST implementation
worst case average case

operations
on keys

search insert search hit insert

unordered array N N N / 2 N equals()

unordered list N N N / 2 N equals()

Iterators

Goal. Allow client to iterate over the symbol table keys.

20

import java.util.Iterator;

public class UnorderedLinkedST<Key, Value> implements Iterable<Key>
{
 ...

 public Iterator<Key> iterator() { return new ListIterator(); }

 private class ListIterator implements Iterator<Key>
 {
 private Node current = first;

 public boolean hasNext() { return current != null; }

 public void remove() { }

 public Key next()
 {
 Key key = current.key;
 current = current.next;
 return key;
 }
 }
}

Iterable ST client: frequency counter

Goal. Read a sequence of strings from standard input and print out the
number of times each string appears.

21

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
2 age
1 best
1 foolishness
4 it
4 of
4 the
2 times
4 was
1 wisdom
1 worst

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
...

% java FrequencyCount < tale.txt
2941 a
1 aback
1 abandon
10 abandoned
1 abandoning
1 abandonment
1 abashed
1 abate
1 abated
5 abbaye
2 abed
1 abhorrence
1 abided
1 abiding
...

tiny example
24 words
10 distinct

real example
137177 words
9888 distinct

public class FrequencyCount
{
 public static void main(String[] args)
 {
 ST<String, Integer> st = new ST<String, Integer>();

 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (!st.contains(key)) st.put(key, 1);
 else st.put(key, st.get(key) + 1);
 }

 for (String s: st)
 StdOut.println(st.get(s) + " " + s);
 }
}

22

Iterable ST client: frequency counter

read string and
update frequency

print all strings

create ST

Iterable ST client: A problem?

Remark. No requirement that keys are iterated in natural order.

• Not in basic API.

• Not a requirement for some clients.

• Not a problem if postprocessing, e.g. with sort or grep.
23

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
2 age
1 best
1 foolishness
4 it
4 of
4 the
2 times
4 was
1 wisdom
1 worst

% more tiny.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness

% java FrequencyCount < tiny.txt
1 foolishness
1 wisdom
2 age
1 worst
2 times
4 of
1 best
4 the
4 was
4 it

with UnorderedLinkedListSTwith one ST implementation

24

ST implementations: summary

Challenge. Efficient implementations of search, insert, and ordered iteration.

ST implementation
worst case average case

ordered
iteration?

operations
on keys

search insert search hit insert

unordered array N N N / 2 N no equals()

unordered list N N N / 2 N no equals()

25

‣ API
‣ sequential search
‣ binary search
‣ applications
‣ challenges

26

Ordered array ST implementation

Assumption. Keys are Comparable.

Instance variables.

• keys[i] holds the ith smallest key.
• vals[i] holds the value associated with the ith smallest key.

• N holds the number of entries.

Main reasons to consider using ordered arrays.

• Provides ordered iteration (for free).

• Can use binary search to significantly speed up search.

0 1 2 3 4 5 6 7

keys[]

vals[]

best it of the times was null null

1 2 1 1 1 2 null null

N = 6

public class OrderedArrayST<Key extends Comparable<Key>, Value>
{
 private Value[] vals;
 private Key[] keys;
 private int N;

 public OrderedArrayST(int capacity)
 {
 keys = (Key[]) new Comparable[capacity];
 vals = (Value[]) new Object[capacity];
 }

 public boolean isEmpty()
 { return N == 0; }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Value get(Key key)
 { /* see next slides */ }
}

27

Unordered array ST implementation (skeleton)

standard ugly casts

array doubling code omitted

parallel arrays lead to cleaner code
than defining a type for entries

28

Binary search

Given a sorted array, determine index associated with a given key.

Ex. Dictionary, phone book, book index, …

Binary search algorithm.

• Examine the middle key.

• If it matches, return its index.

• Otherwise, search either the left or right half.

lo aback

mid macabre

hi-1 zygote

? query

the key
(known value)

is between
a[mid] and a[hi-1]

the index
(unknown value)

is between mid and hi-1

Binary search in a sorted array (one step)

29

Ordered array ST implementation (search)

 public Value get(Key key)
 {
 int i = bsearch(key);
 if (i == -1) return null;
 return vals[i];
 }

 private int bsearch(Key key)
 {
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int m = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[m]);
 if (cmp < 0) hi = m - 1;
 else if (cmp > 0) lo = m + 1;
 else if (cmp == 0) return m;
 }
 return -1;
 }

symbol table method

helper binary search method

not found

30

Binary search trace

Trace of binary search

loop exits with lo > hi

entries in black
are a[lo..hi]

entry in red is a[m]

successful search for Plo hi m

unsuccessful search for Qlo hi m

 keys[]
 0 1 2 3 4 5 6 7 8 9
 A C E H L M P R S X

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
6 6 6 A C E H L M P R S X

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
7 6 6 A C E H L M P R S X

31

Binary search: mathematical analysis

Proposition. Binary search uses ~ lg N compares to search any array of size N.

Def. T(N) ≡ number of compares to binary search in a sorted array of size N.
 = T(N / 2) + 1

Binary search recurrence. T(N) = T(N / 2) + 1 for N > 1, with T(1) = 0.

• Not quite right for odd N.

• Same recurrence holds for many algorithms.

Solution. T(N) ~ lg N.

• For simplicity, we'll prove when N is a power of 2.

• True for all N. [see COS 340]

left or right half

Binary search recurrence. T(N) = T(N / 2) + 1 for N > 1, with T(1) = 0.

Proposition. If N is a power of 2, then T(N) = lg N.
Pf.

32

Binary search recurrence

 T(N) = T(N / 2) + 1

 = T(N / 4) + 1 + 1

 = T(N / 8) + 1 + 1 + 1

 . . .

 = T(N / N) + 1 + 1 + … + 1

 = lg N

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(1) = 0

Binary search is little help for insert.

• Can find where to insert new key.

• But still need to move larger keys.

33

Ordered array ST implementation (insert)

put("foolish", 1)

0 1 2 3 4 5 6 7 8 9

keys[]

vals[]

age best it of the times was wisdom null null

2 1 4 4 4 2 4 1 null null

0 1 2 3 4 5 6 7 8 9

keys[]

vals[]

age best foolish it of the times was wisdom null

2 1 1 4 4 4 2 4 1 null

34

Ordered array ST implementation (insert)

 public Value put(Key key, Value val)
 {
 int index = bsearch(key);

 if (index >= 0)
 {
 vals[index] = val;
 return;
 }

 int i = N;
 while (i > 0 && less(key, keys[i]))
 {
 keys[i] = keys[i-1];
 vals[i] = vals[i-1];
 i--;
 }

 vals[i] = val;
 keys[i] = key;
 N++;
 }

overwrite old value with new value
(associative array)

move larger keys over

add the new key-value pair

Ordered array ST implementation: an important special case

Method of choice for some clients.

• Sort database by key.

• Insert N key-value pairs in order by key.

• Support searches that never use more than lg N compares.

• Support occasional (expensive) inserts.

Remark. Takes linear time to insert N keys that are in ascending order if we
add the following check to bsearch().

35

 int cmp = key.compareTo(keys[N-1]);
 if (cmp == 0) return N-1;
 if (cmp > 0) return -1;

Ordered linked-list ST implementation

Binary search depends on array indexing for efficiency.

Q. How to jump to the middle of a linked list?
A. You can't do it efficiently.

Ordered link-list ST advantages.

• Support ordered iterator (for free).

• Cuts search/insert time in half (on average) for random search/insert.

36

was

2

times

1

the

1

of

1

it

2

best

1

first

37

ST implementations: summary

Next 3 lectures. Efficient implementations of search and insert.

ST implementation
worst case average case ordered

iteration?
operations

on keyssearch insert search hit insert

unordered array N N N / 2 N no equals()

unordered list N N N / 2 N no equals()

ordered array log N N log N N / 2 yes compareTo()

ordered list N N N / 2 N / 2 yes compareTo()

38

‣ API
‣ sequential search
‣ binary search
‣ applications
‣ challenges

ST lookup client

Command line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 1. DNS lookup.

39

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java Lookup ip.csv 0 1
adobe.com
192.150.18.60

www.princeton.edu
128.112.128.15

ebay.edu
Not found

% java Lookup ip.csv 1 0
128.112.128.15
www.princeton.edu

999.999.999.99
Not found

URL is key IP is value

IP is key URL is value

public class Lookup
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt(args[2]);
 String[] database = in.readAll().split("\\n");

 ST<String, String> st = new ST<String, String>();
 for (int i = 0; i < database.length; i++)
 {
 String[] tokens = database[i].split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }

 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (!st.contains(s)) StdOut.println("Not found");
 else StdOut.println(st.get(s));
 }
 }
}

40

ST lookup client: Java implementation

process input file

build symbol table

process lookups
with standard I/O

ST lookup client

Command line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 2. Amino acids.

41

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
...

% java Lookup amino.csv 0 3
ACT
Threonine

TAG
Stop

CAT
Histidine

codon is key name is value

ST lookup client

Command line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 3. Class list.

42

% more classlist.csv
10,Bo Ling,P03,bling
10,Steven A Ross,P01,saross
10,Thomas Oliver Horton Conway,P03,oconway
08,Michael R. Corces Zimmerman,P01A,mcorces
09,Bruce David Halperin,P02,bhalperi
09,Glenn Charles Snyders Jr.,P03,gsnyders
09,Siyu Yang,P01A,siyuyang
08,Taofik O. Kolade,P01,tkolade
09,Katharine Paris Klosterman,P01A,kkloster
SP,Daniel Gopstein,P01,dgtwo
10,Sauhard Sahi,P01,ssahi
10,Eric Daniel Cohen,P01A,edcohen
09,Brian Anthony Geistwhite,P02,bgeistwh
09,Boris Pivtorak,P01A,pivtorak
09,Jonathan Patrick Zebrowski,P01A,jzebrows
09,Dexter James Doyle,P01A,ddoyle
09,Michael Weiyang Ye,P03,ye
08,Delwin Uy Olivan,P02,dolivan
08,Edward George Conbeer,P01A,econbeer
09,Mark Daniel Stefanski,P01,mstefans
09,Carter Adams Cleveland,P03,cclevela
10,Jacob Stephen Lewellen,P02,jlewelle
10,Ilya Trubov,P02,itrubov
09,Kenton William Murray,P03,kwmurray
07,Daniel Steven Marks,P02,dmarks
09,Vittal Kadapakkam,P01,vkadapak
10,Eric Ruben Domb,P01A,edomb
07,Jie Wu,P03,jiewu
08,Pritha Ghosh,P02,prithag
10,Minh Quang Anh Do,P01,mqdo
...

% java Lookup classlist.csv 3 1
jsh
Jeffrey Scott Harris

dgtwo
Daniel Gopstein

% java Lookup classlist.csv 3 2
jsh
P01A

login is key name is value

login is key
precept
is value

43

Set API

Mathematical set. A collection of distinct keys.

Q. How to implement?

 public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() return the number of keys in the set

Iterator<Key> iterator() iterator through keys in the set

• Read in a list of words from one file.

• Print out all words from standard input that are in the list.

44

Set client example: whitelist

public class Whitelist
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in whitelist

print strings in list

• Read in a list of words from one file.

• Print out all words from standard input that not are in the list.

45

Set client example: blacklist

public class Blacklist
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

read in blacklist

print strings not in list

create empty set of strings

46

Blacklist and whitelist applications

application purpose key in list

spell checker identify misspelled words word dictionary words

browser mark visited pages URL visited pages

parental controls block sites URL bad sites

chess detect draw board positions

spam filter eliminate spam IP address spam addresses

credit cards check for stolen cards number stolen cards

47

‣ API
‣ sequential search
‣ binary search
‣ challenges

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?
1) Unordered array.
2) Ordered linked list.
3) Ordered array with binary search.
4) Need better method, all too slow.
5) Doesn’t matter much, all fast enough.

48

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?
1) Unordered array.
2) Ordered linked list.
3) Ordered array with binary search.
4) Need better method, all too slow.
5) Doesn’t matter much, all fast enough.

49

Searching challenge 2A:

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
1) Unordered array.
2) Ordered linked list.
3) Ordered array with binary search.
4) Need better method, all too slow.
5) Doesn’t matter much, all fast enough.

50

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Unordered array.
2) Ordered linked list.
3) Ordered array with binary search.
4) Need better method, all too slow.
5) Doesn’t matter much, all fast enough.

51

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Unordered array.
2) Ordered linked list.
3) Ordered array with binary search.
4) Need better method, all too slow.
5) Doesn’t matter much, all fast enough.

52

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Unordered array.
2) Ordered linked list.
3) Ordered array with binary search.
4) Need better method, all too slow.
5) Doesn’t matter much, all fast enough.

53

