
Algorithms in Java, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2008 · February 6, 2008 2:32:06 AM

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

Analysis of Algorithms

Updated from:
 Algorithms in Java, Chapter 2
 Intro to Programming in Java, Section 4.1

2

Running time

Charles Babbage (1864) Analytic Engine

how many times do
you have to turn the
crank?

“ As soon as an Analytic Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will arise - By what course of calculation can these results be arrived at by
 the machine in the shortest time? ” — Charles Babbage

Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

3

this course (COS 226)

theory of algorithms (COS 423)

client gets poor performance because programmer
did not understand performance characteristics

4

Some algorithmic successes

Discrete Fourier transform.

• Break down waveform of N samples into periodic components.

• Applications: DVD, JPEG, MRI, astrophysics, ….

• Brute force: N2 steps.

• FFT algorithm: N log N steps, enables new technology.
Freidrich Gauss
1805

Linear, linearithmic, and quadratic

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

5

Some algorithmic successes

N-body Simulation.

• Simulate gravitational interactions among N bodies.

• Brute force: N2 steps.

• Barnes-Hut: N log N steps, enables new research.
Andrew Appel
PU '81

Linear, linearithmic, and quadratic

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

6

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

7

Scientific analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

• Observe some feature of the universe.

• Hypothesize a model that is consistent with observation.

• Predict events using the hypothesis.

• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.

• Experiments must be reproducible.

• Hypotheses must be falsifiable.

Universe = computer itself.

Experimental algorithmics

Every time you run a program you are doing an experiment!

First step. Debug your program!
Second step. Choose input model for experiments.
Third step. Run and time the program for problems of increasing size.

8

Why is
my program so slow ?

9

Example: 3-sum

3-sum. Given N integers, find all triples that sum to exactly zero.
Application. Deeply related to problems in computational geometry.

% more 8ints.txt
30 -30 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt
 4
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

public class ThreeSum
{
 public static int count(long[] a)
 {
 int N = a.length;
 int cnt = 0;

 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 cnt++;
 return cnt;
 }

 public static void main(String[] args)
 {
 int[] a = StdArrayIO.readLong1D();
 StdOut.println(count(a));
 }
}

10

3-sum: brute-force algorithm

check each triple

Q. How to time a program?
A. Manual.

11

Measuring the running time

Q. How to time a program?
A. Automatic.

12

Measuring the running time

client code

implementation

Stopwatch stopwatch = new Stopwatch();

ThreeSum.count(a);

double time = stopwatch.elapsedTime();
StdOut.println("Running time: " + time + " seconds");

public class Stopwatch
{
 private final long start = System.currentTimeMillis();

 public double elapsedTime()
 {
 long now = System.currentTimeMillis();
 return (now - start) / 1000.0;
 }
}

Data analysis. Observe and plot running time as a function of input size N.

13

3-sum: initial observations

N time (seconds) †

1024 0.26

2048 2.16

4096 17.18

8192 137.76

† Running Linux on Sun-Fire-X4100

14

Log-log plot. Plot running time vs. input size N on log-log scale.

Regression. Fit straight line through data points: c N a.
Hypothesis. Running time grows cubically with input size: c N 3.

Empirical analysis

slope

power law

slope = 3

15

Prediction and verification

Hypothesis. 2.5 × 10 –10 × N 3 seconds for input of size N.

Prediction. 17.18 seconds for N = 4,096.

Observations.

Prediction. 1100 seconds for N = 16,384.

Observation.

agrees

agrees

N time (seconds)

4096 17.18

4096 17.15

4096 17.17

N time (seconds)

16384 1118.86

16

Doubling hypothesis

Q. What is effect on the running time of doubling the size of the input?

Bottom line. Quick way to formulate a power law hypothesis.

N time (seconds) † ratio

512 0.03 -

1024 0.26 7.88

2048 2.16 8.43

4096 17.18 7.96

8192 137.76 7.96

lg of ratio is
exponent in power law
(lg 7.96 ≈ 3)

numbers increases
by a factor of 2

running time increases
by a factor of 8

17

Experimental algorithmics

Many obvious factors affect running time:

• Machine.

• Compiler.

• Algorithm.

• Input data.

More factors (not so obvious):

• Caching.

• Garbage collection.

• Just-in-time compilation.

• CPU use by other applications.

Bad news. It is often difficult to get precise measurements.
Good news. Easier than other sciences.

e.g., can run huge number of experiments

18

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

19

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

• Need to analyze program to determine set of operations.

• Cost depends on machine, compiler.

• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Donald Knuth
1974 Turing Award

Cost of basic operations

operation example nanoseconds †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating point add a + b 4.6

floating point multiply a * b 4.2

floating point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129.0

...

20

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Novice mistake. Abusive string concatenation.

Cost of basic operations

21

operation example nanoseconds †

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6 N

2D array allocation new int[N][N] c7 N 2

string length s.length() c8

substring extraction s.substring(N/2, N) c9

string concatenation s + t c10 N

22

Example: 1-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0) count++;

operation frequency

variable declaration 2

assignment statement 2

less than comparison N + 1

equal to comparison N

array access N

increment ≤ 2 N

between N (no zeros)
and 2N (all zeros)

23

Example: 2-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0) count++;

operation frequency

variable declaration N + 2

assignment statement N + 2

less than comparison 1/2 (N + 1) (N + 2)

equal to comparison 1/2 N (N − 1)

array access N (N − 1)

increment ≤ N 2

tedious to count exactly

0 + 1 + 2 + . . . + (N − 1) =
1
2

N (N − 1)

=
(

N

2

)

• Estimate running time (or memory) as a function of input size N.

• Ignore lower order terms.
- when N is large, terms are negligible

- when N is small, we don't care

Ex 1. 6 N 3 + 20 N + 16 ~ 6 N 3

Ex 2. 6 N 3 + 100 N 4/3 + 56 ~ 6 N 3

Ex 3. 6 N 3 + 17 N 2 lg N + 7 N ~ 6 N 3

24

Tilde notation

discard lower-order terms
(e.g., N = 1000 6 trillion vs. 169 million)

Technical definition. f(N) ~ g(N) means

€

lim
N→ ∞

 f (N)
g(N)

 = 1

25

Example: 2-sum

Q. How long will it take as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0) count++;

operation frequency cost total cost

variable declaration ~ N c1 ~ c1 N

assignment statement ~ N c2 ~ c2 N

less than comparison ~ 1/2 N 2
c3 ~ c3 N 2

equal to comparison ~ 1/2 N 2

array access ~ N 2 c4 ~ c4 N 2

increment ≤ N 2 c5 ≤ c5 N 2

total ~ c N 2

"inner loop"

26

Example: 3-sum

Q. How many instructions as a function of N?

Remark. Focus on instructions in inner loop; ignore everything else!

478 Algorithms and Data Structures

the leading term of mathematical ex-
pressions by using a mathematical
device known as the tilde notation.
We write f (N) to represent any
quantity that, when divided by f (N),
approaches 1 as N grows. We also
write g (N) f (N) to indicate that
g (N) f (N) approaches 1 as N grows.
With this notation, we can ignore
complicated parts of an expression
that represent small values. For ex-
ample, the if statement in ThreeSum
is executed N 3/6 times because
N (N 1)(N 2)/6 N 3/6 N 2/2
N/3, which certainly, when divided by
N 3/6, approaches 1 as N grows. This
notation is useful when the terms af-
ter the leading term are relatively in-

significant (for example, when N = 1000, this assumption amounts to saying that
N 2/2 N/3 499,667 is relatively insignificant by comparison with N 3/6

166,666,667, which it is). Second, we focus on the instructions that are executed
most frequently, sometimes referred to as the inner loop of the program. In this
program it is reasonable to assume that the time devoted to the instructions outside
the inner loop is relatively insignificant.

The key point in analyzing the running time of a program is this: for a great
many programs, the running time satisfies the relationship

 T(N) c f(N)
where c is a constant and f (N) a function known
as the order of growth of the running time. For
typical programs, f (N) is a function such as log N,
N, N log N, N 2, or N 3, as you will soon see (cus-
tomarily, we express order-of-growth functions
without any constant coefficient). When f (N) is
a power of N, as is often the case, this assump-
tion is equivalent to saying that the running time
satisfies a power law. In the case of ThreeSum, it is Leading-term approximation

N 3/6

N (N 1)(N 2)/6

166,167,000

1,000

166,666,667

1

N
inner
loop ~N 2/ 2

~N 3/ 6

Anatomy of a program’s statement execution frequencies

depends on input data

public class ThreeSum
{
 public static int count(int[] a)
 {
 int N = a.length;
 int cnt = 0;

 for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)

 if (a[i] + a[j] + a[k] == 0)
 cnt++;

 return cnt;
 }

 public static void main(String[] args)
 {
 int[] a = StdArrayIO.readInt1D();
 int cnt = count(a);
 StdOut.println(cnt);
 }
}

(
N

3

)
=

N(N − 1)(N − 2)
3!

∼ 1
6
N3

In principle, accurate mathematical models are available.

In practice,

• Formulas can be complicated.

• Advanced mathematics might be required.

• Exact models best left for experts.

Bottom line. We use approximate models in this course: TN ~ c N3.

TN = c1 A + c2 B + c3 C + c4 D + c5 E
A = variable declarations
B = assignment statements
C = compare
D = array access
E = increment

Mathematical models for running time

27

frequencies
 (depend on algorithm, input)

costs (depend on machine, compiler)

28

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

Common order-of-growth hypotheses

To determine order-of-growth:

• Assume a power law TN ~ c N a.

• Estimate exponent a with doubling hypothesis.

• Validate with mathematical analysis.

Ex. ThreeSumDeluxe.java
Food for thought. How is it implemented?

Caveat. Can't identify logarithmic factors with doubling hypothesis.

29

N time (seconds) †

1,000 0.43

2,000 0.53

4,000 1.01

8,000 2.87

16,000 11.00

32,000 44.64

64,000 177.48

observations

Common order-of-growth hypotheses

Good news. the small set of functions
 1, log N, N, N log N, N2, N3, and 2N

suffices to describe order-of-growth of typical algorithms.

30

growth rate name T(2N) / T(N)

1 constant 1

log N logarithmic ~ 1

N linear 2

N log N linearithmic ~ 2

N2 quadratic 4

N3 cubic 8

2N exponential T(N)

482 Algorithms and Data Structures

Linearithmic. We use the term linearithmic to describe programs whose running
time for a problem of size N has order of growth N log N. Again, the base of the
logarithm is not relevant. For example, CouponCollector (PROGRAM 1.4.2) is lin-
earithmic. The prototypical example is mergesort (see PROGRAM 4.2.6). Several im-
portant problems have natural solutions that are quadratic but clever algorithms
that are linearithmic. Such algorithms (including mergesort) are critically impor-
tant in practice because they enable us to address problem sizes far larger than
could be addressed with quadratic solutions. In the next section, we consider a

general design technique for developing
linearithmic algorithms.

Quadratic. A typical program whose
running time has order of growth N 2
has two nested for loops, used for some
calculation involving all pairs of N ele-
ments. The force update double loop in
NBody (PROGRAM 3.4.2) is a prototype of
the programs in this classification, as is
the elementary sorting algorithm Inser-
tion (PROGRAM 4.2.4).

Cubic. Our example for this section,
ThreeSum, is cubic (its running time has
order of growth N 3) because it has three
nested for loops, to process all triples of
N elements. The running time of matrix
multiplication, as implemented in SEC-
TION 1.4 has order of growth M 3 to mul-

tiply two M-by-M matrices, so the basic matrix multiplication algorithm is often
considered to be cubic. However, the size of the input (the number of entries in the
matrices) is proportional to N = M 2, so the algorithm is best classified as N 3/2, not
cubic.

Exponential. As discussed in SECTION 2.3, both TowersOfHanoi (PROGRAM 2.3.2)
and GrayCode (PROGRAM 2.3.3) have running times proportional to 2N because they
process all subsets of N elements. Generally, we use the term “exponential” to refer

1K

T

2T

4T

8T

64T

512T

1024T

logarithmic

ex
po

ne
nt

ia
l

Orders of growth (log-log plot)

constant

size

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 1024K

time

introJava.indb 482 1/3/08 4:16:12 PM

factor for
doubling hypothesis

Common order-of-growth hypotheses

31

growth
rate name typical code framework description example

1 constant a = b + c; statement add two numbers

log N logarithmic while (N > 1)
{ N = N / 2; ... } divide in half binary search

N linear
for (int i = 0; i < N; i++)

{ ... } loop find the maximum

N log N linearithmic [see lecture 5] divide
and conquer

mergesort

N2 quadratic
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 { ... }

double loop check all pairs

N3 cubic

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)
 { ... }

triple loop check all triples

2N exponential [see lecture 24]
exhaustive

search
check all

possibilities

Practical implications of order-of-growth

Q. How long to process millions of inputs?
Ex. Population of NYC was "millions" in 1970s; still is.

Q. How many inputs can be processed in minutes?
Ex. Customers lost patience waiting "minutes" in 1970s;
they still do.

For back-of-envelope calculations, assume:

32

decade processor
speed

instructions
per second

1970s 1 MHz 106

1980s 10 MHz 107

1990s 100 MHz 108

2000s 1 GHz 109

seconds equivalent

1 1 second

10 10 seconds

102 1.7 minutes

103 17 minutes

104 2.8 hours

105 1.1 days

106 1.6 weeks

107 3.8 months

108 3.1 years

109 3.1 decades

1010 3.1 centuries

… forever

1017 age of universe

Practical implications of order-of-growth

33

growth
rate

problem size solvable in minutes time to process millions of inputs

1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

1 any any any any instant instant instant instant

log N any any any any instant instant instant instant

N millions
tens of
millions

hundreds of
millions billions minutes seconds second instant

N log N
hundreds of
thousands millions millions

hundreds of
millions hour minutes

tens of
seconds seconds

N2 hundreds thousand thousands
tens of

thousands decades years months weeks

N3 hundred hundreds thousand thousands never never never millennia

Practical implications of order-of-growth

34

growth
rate

name description

effect on a program that
runs for a few seconds

time for 100x
more data

size for 100x
faster computer

1 constant independent of input size - -

log N logarithmic nearly independent of input size - -

N linear optimal for N inputs a few minutes 100x

N log N linearithmic nearly optimal for N inputs a few minutes 100x

N2 quadratic not practical for large problems several hours 10x

N3 cubic not practical for medium problems several weeks 4-5x

2N exponential useful only for tiny problems forever 1x

35

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

Types of analyses

Best case. Running time determined by easiest inputs.
Ex. N-1 compares to insertion sort N elements in ascending order.

Worst case. Running time guarantee for all inputs.
Ex. No more than ½N2 compares to insertion sort any N elements.

Average case. Expected running time for "random" input.
Ex. ~ ¼ N2 compares on average to insertion sort N random elements.

36

37

Commonly-used notations

notation provides example shorthand for used to

Tilde leading term ~ 10 N 2
10 N 2

10 N 2 + 22 N log N
10 N 2 + 2 N +37

provide
approximate model

Big Theta
asymptotic
growth rate

Θ(N 2)
N 2

9000 N 2

 5 N 2 + 22 N log N + 3N

classify
algorithms

Big Oh Θ(N 2) and smaller O(N 2)
N 2

100 N
 22 N log N + 3 N

develop
upper bounds

Big Omega Θ(N 2) and larger Ω(N 2)
9000 N 2

N 5

 N 3 + 22 N log N + 3 N

develop
lower bounds

Commonly-used notations

Ex 1. Our brute-force 3-sum algorithm takes Θ(N 3) time.

Ex 2. Conjecture: worst-case running time for any 3-sum algorithm is Ω(N 2).

Ex 3. Insertion sort uses O(N 2) compares to sort any array of N elements;
it uses ~ N compares in best case (already sorted) and ~ ½N 2 compares in the
worst case (reverse sorted).

Ex 4. The worst-case height of a tree created with union find with path
compression is Θ(N).

Ex 5. The height of a tree created with weighted quick union is O(log N).

38

base of logarithm absorbed by big-Oh

loga N =
1

logb a
logb N

Predictions and guarantees

Theory of algorithms. Worst-case running time of an algorithm is O(f(N)).

Advantages

• describes guaranteed performance.

• O-notation absorbs input model.

Challenges

• Cannot use to predict performance.

• Cannot use to compare algorithms.

39

time/memory

input size

f(N)

values represented
by O(f(N))

Predictions and guarantees

Experimental algorithmics. Given input model,average-case
running time is ~ c f(N).

Advantages.

• Can use to predict performance.

• Can use to compare algorithms.

Challenges.

• Need to develop accurate input model.

• May not provide guarantees.

40

input size

c f(N)

values represented
by ~ c f(N)

time/memory

41

‣ estimating running time
‣ mathematical analysis
‣ order-of-growth hypotheses
‣ input models
‣ measuring space

42

Typical memory requirements for primitive types in Java

Bit. 0 or 1.
Byte. 8 bits.
Megabyte (MB). 210 bytes ~ 1 million bytes.
Gigabyte (GB). 220 bytes ~ 1 billion bytes.

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

43

Typical memory requirements for arrays in Java

Array overhead. 16 bytes on a typical machine.

Q. What's the biggest double[] array you can store on your computer?

typical computer in 2008 has about 1GB memory

type bytes

char[] 2N + 16

int[] 4N + 16

double[] 8N + 16

type bytes

char[][] 2N2 + 20N + 16

int[][] 4N2 + 20N + 16

double[][] 8N2 + 20N + 16

one-dimensional arrays two-dimensional arrays

44

Typical memory requirements for objects in Java

Object overhead. 8 bytes on a typical machine.
Reference. 4 bytes on a typical machine.

Ex 1. Each Complex object consumes 24 bytes of memory.

8 bytes

public class Complex
{
 private double re;
 private double im;
 ...
}

8 bytes

8 bytes overhead for object

24 bytes

4914.1 Performance

object, typically 8 bytes. For example, a Charge (PROGRAM 3.2.1) object uses 32
bytes (8 bytes of overhead and 8 bytes for each of its three double instance vari-
ables). Similarly, a Complex object uses 24 bytes. Since many programs create mil-
lions of Color objects, typical Java implementations pack the information needed
for them into 32 bits (three bytes for RGB values and one for transparency). A refer-
ence to an object typically uses 4 bytes of memory. When a data type contains a
reference to an object, we have to account separately for the 4 bytes for the reference
and the 8 bytes overhead for each object plus the memory needed for the object’s
instance variables. In particular, a Document
(PROGRAM 3.3.4) object uses 16 bytes (8 bytes of
overhead and 4 bytes each for the references to
the String and Vector objects) plus the mem-
ory needed for the String and Vector objects
themselves (which we consider next).

String objects. We account for memory in a
String object in the same way as for any other
object. Java's implementation of a String ob-
ject consumes 24 bytes: a reference to a char-
acter array (4 bytes), three int values (4 bytes
each), and the object overhead (8 bytes). The
first int value is an offset into the character ar-
ray; the second is a count (the string length). In
terms of the instance variable names in the fig-
ure at right, the string that is represented con-
sists of the characters val[offset] through
val[offset + count - 1]. The third int value
in String objects is a hash code that saves re-
computation in certain circumstances that
need not concern us now. In addition to the 24
bytes for the String object, we must account
for the memory needed for the characters
themselves, which are in the array. We account
for this space next.

 rx

public class Charge
{
 private double rx;
 private double ry;
 private double q;
...
}

 ry
 q

Typical object memory requirements

object
overhead

 r g b a

public class Color
{
 private byte r;
 private byte g;
 private byte b;
 private byte a;
...
}

object
overhead

 re

public class Complex
{
 private double re;
 private double im;
...
}

 im

object
overhead

 id

public class Document
{
 private String id;
 private Vector profile;
...
}

 profile

object
overhead

32 bytesCharge object (Program 3.2.1)

 value

public class String
{
 private char[] val;
 private int offset;
 private int count;
 private int hash;
...
}

 offset
 count
 hash

object
overhead

24 bytes + char arrayString object (Java library)

Complex object (Program 3.2.6)

Color object (Java library)

Document object (Program 3.3.4)

24 bytes

12 bytes

16 bytes + string + vector

references

reference

double
values

double
values

int
values

byte
values

45

Typical memory requirements for objects in Java

Object overhead. 8 bytes on a typical machine.
Reference. 4 bytes on a typical machine.

Ex 2. A String of length N consumes 2N + 40 bytes.

4 bytes

public class String
{
 private int offset;
 private int count;
 private int hash;
 private char[] value;
 ...
}

4 bytes

4 bytes

4 bytes for reference
(plus 2N + 16 bytes for array)

8 bytes overhead for object

2N + 40 bytes

4914.1 Performance

object, typically 8 bytes. For example, a Charge (PROGRAM 3.2.1) object uses 32
bytes (8 bytes of overhead and 8 bytes for each of its three double instance vari-
ables). Similarly, a Complex object uses 24 bytes. Since many programs create mil-
lions of Color objects, typical Java implementations pack the information needed
for them into 32 bits (three bytes for RGB values and one for transparency). A refer-
ence to an object typically uses 4 bytes of memory. When a data type contains a
reference to an object, we have to account separately for the 4 bytes for the reference
and the 8 bytes overhead for each object plus the memory needed for the object’s
instance variables. In particular, a Document
(PROGRAM 3.3.4) object uses 16 bytes (8 bytes of
overhead and 4 bytes each for the references to
the String and Vector objects) plus the mem-
ory needed for the String and Vector objects
themselves (which we consider next).

String objects. We account for memory in a
String object in the same way as for any other
object. Java's implementation of a String ob-
ject consumes 24 bytes: a reference to a char-
acter array (4 bytes), three int values (4 bytes
each), and the object overhead (8 bytes). The
first int value is an offset into the character ar-
ray; the second is a count (the string length). In
terms of the instance variable names in the fig-
ure at right, the string that is represented con-
sists of the characters val[offset] through
val[offset + count - 1]. The third int value
in String objects is a hash code that saves re-
computation in certain circumstances that
need not concern us now. In addition to the 24
bytes for the String object, we must account
for the memory needed for the characters
themselves, which are in the array. We account
for this space next.

 rx

public class Charge
{
 private double rx;
 private double ry;
 private double q;
...
}

 ry
 q

Typical object memory requirements

object
overhead

 r g b a

public class Color
{
 private byte r;
 private byte g;
 private byte b;
 private byte a;
...
}

object
overhead

 re

public class Complex
{
 private double re;
 private double im;
...
}

 im

object
overhead

 id

public class Document
{
 private String id;
 private Vector profile;
...
}

 profile

object
overhead

32 bytesCharge object (Program 3.2.1)

 value

public class String
{
 private char[] val;
 private int offset;
 private int count;
 private int hash;
...
}

 offset
 count
 hash

object
overhead

24 bytes + char arrayString object (Java library)

Complex object (Program 3.2.6)

Color object (Java library)

Document object (Program 3.3.4)

24 bytes

12 bytes

16 bytes + string + vector

references

reference

double
values

double
values

int
values

byte
values

46

Example 1

Q. How much memory does this program use as a function of N ?

public class RandomWalk {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int[][] count = new int[N][N];
 int x = N/2;
 int y = N/2;

 for (int i = 0; i < N; i++) {
 // no new variable declared in loop
 ...
 count[x][y]++;
 }
 }
}

47

Example 2

Q. How much memory does this code fragment use as a function of N ?

Remark. Java automatically reclaims memory when it is no longer in use.

...
int N = Integer.parseInt(args[0]);
for (int i = 0; i < N; i++) {

 int[] a = new int[N];
 ...
}

Q. What if I run out of memory?

48

Out of memory

% java RandomWalk 10000
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

% java -Xmx 500m RandomWalk 10000
...

% java RandomWalk 30000
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

% java -Xmx 4500m RandomWalk 30000
Invalid maximum heap size: -Xmx4500m
The specified size exceeds the maximum representable size.
Could not create the Java virtual machine.

Turning the crank: summary

In principle, accurate mathematical models are available.
In practice, approximate mathematical models are easily achieved.

Timing may be flawed?

• Limits on experiments insignificant compared to
other sciences.

• Mathematics might be difficult?

• Only a few functions seem to turn up.

• Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

• Need to understand input to effectively process it.

• Approach 1: design for the worst case.

• Approach 2: randomize, depend on probabilistic guarantee.

49

