

N-body Simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N^{2} steps.
- Barnes-Hut: $\mathrm{N} \log \mathrm{N}$ steps, enables new research.
(itime

> estimating running time

Scientific analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

[^0]Experimental algorithmics
Every time you run a program you are doing an experiment!

First step. Debug your program!
Second step. Choose input model for experiments.
Third step. Run and time the program for problems of increasing size.

3-sum. Given N integers, find all triples that sum to exactly zero.
Application. Deeply related to problems in computational geometry.

> | \% more 8ints.txt |
| :--- |
| $30-30-20$ |
| 0 | $\begin{aligned} & \text {-10 } 40 \quad 010 \quad 5 \\ & \begin{array}{l}\text { \% java ThreeSum < }\end{array} \\ & \begin{array}{lrr}4 \\ 30 & -30 & 0 \\ 30 & -20 & -10 \\ -30 & -10 & 40 \\ -10 & 0 & 10\end{array}\end{aligned}$

Measuring the running time

Q. How to time a program?

A. Manual.

```
public class ThreeSum
{
    public static int count(long[] a)
    {
        int N = a.length;
        int cnt = 0;
            for (int i = 0; i < N; i++)
                for (int j = i+1; j < N; j++)
                    for (int k = j+1; k < N; k++)
                f (a[i] + a[j] +a[k] == 0)
                                    cnt++;
        return cnt;
    }
    public static void main(String[] args)
    {
        int[] a = StdArrayIO.readLong1D();
        StdOut.println(count(a));
    }
```

\}

Measuring the running time

Q. How to time a program?

A. Automatic.

Stopwatch stopwatch $=$ new Stopwatch () ;

ThreeSum. count (a)

double time $=$ stopwatch.elapsedTime();
StdOut.println("Running time: " + time + " seconds");

client code

```
public class Stopwatch
{
    private final long start = System.currentTimeMillis();
    public double elapsedTime()
        long now = System.currentTimeMillis();
        return (now - start) / 1000.0;
    }
l
```


Data analysis. Observe and plot running time as a function of input size N .

N	time (seconds) t
1024	0.26
2048	2.16
4096	17.18
8192	137.76

\dagger Running Linux on Sun-Fire-X4100
time

Empirical analysis

Log-log plot. Plot running time vs. input size N on $\log -\log$ scale.

Regression. Fit straight line through data points: c N^{a} power law Hypothesis. Running time grows cubically with input size: $c N^{3}$.

Doubling hypothesis

Q. What is effect on the running time of doubling the size of the input?

N	time (seconds) \dagger	ratio	
512	0.03	-	
1024	0.26	7.88	
2048	2.16	8.43	
4096	17.18	7.96	
8192	137.76	7.96	

Bottom line. Quick way to formulate a power law hypothesis.

Many obvious factors affect running time:

- Machine.
- Compiler.
- Algorithm.
- Input data

More factors (not so obvious)

- Caching.
- Garbage collection.
- Just-in-time compilation.
- CPU use by other applications

Bad news. It is often difficult to get precise measurements.
Good news. Easier than other sciences.
e.g., can run huge number of experiments

p mathematical analysis

Mathematical models for running time

Total running time: sum of cost \times frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Cost of basic operations

operation	example	nanoseconds \dagger
integer add	$\mathrm{a}+\mathrm{b}$	2.1
integer multiply	$\mathrm{a} * \mathrm{~b}$	2.4
integer divide	a / b	5.4
floating point add	$\mathrm{a}+\mathrm{b}$	4.6
floating point multiply	$\mathrm{a} * \mathrm{~b}$	4.2
floating point divide	a / b	13.5
sine	Math. $\mathbf{\operatorname { s i n } \text { (theta) }}$	91.3
arctangent	Math. $\operatorname{atan} 2(\mathbf{y}, \mathbf{x})$	129.0
\ldots	\ldots	\ldots

operation	example	nanoseconds \dagger
variable declaration	int \mathbf{a}	c_{1}
assignment statement	$\mathbf{a}=\mathbf{b}$	c_{2}
integer compare	$\mathbf{a}<\mathbf{b}$	c_{3}
array element access	$\mathbf{a}[\mathbf{i}]$	c_{4}
array length	\mathbf{a}. length	c_{5}
1D array allocation	new int [N]	$c_{6} N$
2D array allocation	new int[N] [N]	$c_{7} N^{2}$
string length	$\mathbf{s . l e n g t h ()}$	c_{8}
substring extraction	$\mathbf{s . s u b s t r i n g (\mathbf { N } / \mathbf { 2 } , \mathbf { N })}$	c_{9}
string concatenation	$\mathbf{s}+\mathbf{t}$	$c_{10} N$

Novice mistake. Abusive string concatenation.

Example: 2-sum
Q. How many instructions as a function of N ?

```
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] + a[j] == 0) count++;
\(\left.\left.\begin{array}{cc|}\hline \text { operation } & \text { frequency } \\ \text { variable declaration } & N+2 \\ \text { assignment statement } & N+2 \\ \text { less than comparison } & 1 / 2(N+1)(N+2) \\ \text { equal to comparison } & 1 / 2 N(N-1) \\ \text { array access } & N(N-1) \\ \text { increment } & \leq N^{2} \\ \hline\end{array}\right\} \begin{array}{l}N \\ 2\end{array}\right)\)
```

Q. How many instructions as a function of N ?

```
int count = 0;
for (int i = 0; i < N; i++)
    if (a[i] == 0) count++;
```

operation	frequency		
variable declaration	2		
assignment statement	2		
less than comparison	$N+1$		
equal to comparison	N		
array access	N	\quad	between N (no zeros)
:---			
and $2 N$ (all zeros)			

Tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care
$\begin{array}{lll}\text { Ex 1. } & 6 N^{3}+20 N+16 & \sim 6 N^{3} \\ \text { Ex 2. } & 6 N^{3}+N^{100 N^{4 / 3}+56} & \sim 6 N^{3} \\ \text { Ex 3. } & 6 N^{3}+\underbrace{17 N^{2} \lg N+7 N}_{\begin{array}{l}\text { discard lower-order terms } \\ \text { (e.g. } N=10006 \text { trillion vs. } 169 \text { million) }\end{array}} & \sim 6 N^{3}\end{array}$

$$
\text { Technical definition. } f(N) \sim g(N) \text { means } \lim _{N \rightarrow \infty} \frac{f(N)}{g(N)}=1
$$

Q. How long will it take as a function of N ?

```
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] + a[j] == 0) count++; \longleftarrow « "inner loop"
\begin{tabular}{c|c|c|c|}
\hline operation & frequency & cost & total cost \\
\hline variable declaration & \(\sim N\) & \(c_{1}\) & \(\sim c_{1} N\) \\
assignment statement & \(\sim N\) & \(c_{2}\) & \(\sim c_{2} N\) \\
\hline less than comparison & \(\sim 1 / 2 N^{2}\) & & \\
\hline equal to comparison & \(\sim 1 / 2 N^{2}\) & \(c_{3}\) & \(\sim c_{3} N^{2}\) \\
array access & \(\sim N^{2}\) & \(c_{4}\) & \(\sim c_{4} N^{2}\) \\
\hline increment & \(\leq N^{2}\) & \(c_{5}\) & \(\leq c_{5} N^{2}\) \\
\hline total & & & \(\sim N^{2}\)
\end{tabular}
```

Q. How many instructions as a function of N ?

$\binom{N}{3}=\frac{N(N-1)(N-2)}{3!}$ $\sim \frac{1}{6} N^{3}$

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required
- Exact models best left for experts.

Bottom line. We use approximate models in this course: $T_{N} \sim c N^{3}$.

> order-of-growth hypotheses

To determine order-of-growth:

- Assume a power law $T_{N} \sim c N^{a}$.
- Estimate exponent a with doubling hypothesis.
- Validate with mathematical analysis.

Ex. ThreeSumDeluxe.java

Food for thought. How is it implemented?

N	time (seconds) \dagger
1,000	0.43
2,000	0.53
4,000	1.01
8,000	2.87
16,000	11.00
32,000	44.64
64,000	177.48

observations

Caveat. Can't identify logarithmic factors with doubling hypothesis.

Practical implications of order-of-growth
Q. How long to process millions of inputs?

Ex. Population of NYC was "millions" in 1970s; still is.

Q. How many inputs can be processed in minutes?

Ex. Customers lost patience waiting "minutes" in 1970s; they still do.

For back-of-envelope calculations, assume:

decade	processor speed	instructions per second
1970 s	1 MHz	10^{6}
1980 s	10 MHz	10^{7}
1990 s	100 MHz	10^{8}
2000 s	1 GHz	10^{9}

seconds	equivalent
1	1 second
10	10 seconds
10^{2}	1.7 minutes
10^{3}	17 minutes
10^{4}	2.8 hours
10^{5}	1.1 days
10^{6}	1.6 weeks
10^{7}	3.8 months
10^{8}	3.1 years
10^{9}	3.1 decades
10^{10}	3.1 centuries
\ldots	forever
10^{17}	age of universe

growth rate	name	typical code framework	description	example
1	constant	$\mathrm{a}=\mathrm{b}+\mathrm{c}$;	statement	add two numbers
$\log N$	logarithmic	$\left.\begin{array}{c} \begin{array}{c} \text { while }(N>1) \\ \mathrm{Nh}=\mathrm{N} \end{array} \mathrm{~N}_{2} ; \ldots \end{array}\right\}$	divide in half	binary search
N	linear	$\begin{gathered} \text { for }(\text { int } i=0 ; i<n ; i++) \\ 1 \quad \cdots \end{gathered}$	loop	find the maximum
$N \log N$	linearithmic	[see lecture 5]	divide and conquer	mergesort
N^{2}	quadratic		double loop	check all pairs
N^{3}	cubic	$\begin{aligned} & \text { for (int } i=0 ; i<N ; i++) \\ & \text { for (int } j=0 ; j<N ; j++) \\ & \text { for (int } k=0 ; k<N ; k++) \\ & \{\ldots \end{aligned}$	triple loop	check all triples
2^{N}	exponential	[see lecture 24]	exhaustive search	check all possibilities

Common order-of-growth hypotheses

Good news. the small set of functions
$1, \log N, N, N \log N, N^{2}, N^{3}$, and 2^{N}
suffices to describe order-of-growth of typical algorithms.

growth rate	name	$\mathrm{T}(2 \mathrm{~N}) / \mathrm{T}(\mathrm{N})$
1	constant	1
$\log \mathrm{~N}$	logarithmic	~ 1
N	linear	2
$\mathrm{~N} \log \mathrm{~N}$	linearithmic	~ 2
$\mathrm{~N}^{2}$	quadratic	4
$\mathrm{~N}^{3}$	cubic exponential	$\mathrm{T}(\mathrm{N})$
2^{N}		\uparrow
		factor for doubling hypothesis

30

Practical implications of order-of-growth

growth rate	problem size solvable in minutes				time to process millions of inputs			
	1970s	1980s	1990s	2000s	1970s	1980s	1990s	2000s
1	any	any	any	any	instant	instant	instant	instant
$\log N$	any	any	any	any	instant	instant	instant	instant
N	millions	tens of millions	hundreds of millions	billions	minutes	seconds	second	instant
$N \log N$	hundreds of thousands	millions	millions	hundreds of millions	hour	minutes	tens of seconds	seconds
N^{2}	hundreds	thousand	thousands	tens of thousands	decades	years	months	weeks
N^{3}	hundred	hundreds	thousand	thousands	never	never	never	millennia

33

Practical implications of order-of-growth

growth rate	name	description	effect on a program that runs for a few seconds	
			time for 100x more data	size for $100 x$ faster computer
1	constant	independent of input size	-	-
$\log N$	logarithmic	nearly independent of input size	-	-
N	linear	optimal for N inputs	a few minutes	100x
$N \log N$	linearithmic	nearly optimal for N inputs	a few minutes	100x
N^{2}	quadratic	not practical for large problems	several hours	$10 x$
N^{3}	cubic	not practical for medium problems	several weeks	$4-5 x$
2^{N}	exponential	useful only for tiny problems	forever	$1 \times$

Types of analyses

Best case. Running time determined by easiest inputs.
Ex. N-1 compares to insertion sort N elements in ascending order.

Worst case. Running time guarantee for all inputs.
Ex. No more than $\frac{1}{2} N^{2}$ compares to insertion sort any N elements.

Average case. Expected running time for "random" input.
Ex. $\sim \frac{1}{4} N^{2}$ compares on average to insertion sort N random elements.

notation	provides	example	shorthand for	used to
Tilde	leading term	$\sim 10{ }^{2}$	$\begin{gathered} 10 N^{2} \\ 10 N^{2}+22 N \log N \\ 10 N^{2}+2 N+37 \end{gathered}$	provide approximate model
Big Theta	asymptotic growth rate	$\Theta\left(N^{2}\right)$	$\begin{gathered} N^{2} \\ 9000 N^{2} \\ 5 N^{2}+22 N \log N+3 N \end{gathered}$	classify algorithms
Big Oh	$\Theta\left(N^{2}\right)$ and smaller	$\mathrm{O}\left(N^{2}\right)$	$\begin{gathered} N^{2} \\ 100 N \\ 22 N \log N+3 N \end{gathered}$	develop upper bounds
Big Omega	$\Theta\left(N^{2}\right)$ and larger	$\Omega\left(N^{2}\right)$	$\begin{gathered} 9000 N^{2} \\ N^{5} \\ N^{3}+22 N \log N+3 N \end{gathered}$	develop lower bounds

Ex 1. Our brute-force 3-sum algorithm takes $\Theta\left(N^{3}\right)$ time.

Ex 2. Conjecture: worst-case running time for any 3-sum algorithm is $\Omega\left(N^{2}\right)$.

Ex 3. Insertion sort uses $\mathrm{O}\left(N^{2}\right)$ compares to sort any array of N elements; it uses $\sim N$ compares in best case (already sorted) and $\sim \frac{1}{2} N^{2}$ compares in the worst case (reverse sorted).

Ex 4. The worst-case height of a tree created with union find with path compression is $\Theta(N)$.

Ex 5. The height of a tree created with weighted quick union is $\mathrm{O}(\log N)$.

$$
\begin{aligned}
& \text { base of logarithm absorbed by big-Oh } \\
& \log _{a} N=\frac{1}{\log _{b} a} \log _{b} N
\end{aligned}
$$

Predictions and guarantees

Experimental algorithmics. Given input model,average-case running time is $\sim c f(N)$.

Advantages.

- Can use to predict performance.
- Can use to compare algorithms.

Challenges.

- Need to develop accurate input model.
- May not provide guarantees.

Typical memory requirements for arrays in Java
Array overhead. 16 bytes on a typical machine.

Q. What's the biggest double [] array you can store on your computer? \uparrow
typical computer in 2008 has about 16B memory

Bit. 0 or 1.
Byte. 8 bits.
Megabyte (MB). 2^{10} bytes ~ 1 million bytes.
Gigabyte (GB). 2^{20} bytes ~ 1 billion bytes.

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

42

Typical memory requirements for objects in Java

Object overhead. 8 bytes on a typical machine.
Reference. 4 bytes on a typical machine.
Ex 1. Each complex object consumes 24 bytes of memory.

Typical memory requirements for objects in Java

Object overhead. 8 bytes on a typical machine.
Reference. 4 bytes on a typical machine.

Ex 2. A string of length N consumes $2 N+40$ bytes

public class String	8 bytes overhead for object
\{	
private int offset;	4 bytes
private int count;	4 bytes
private int hash;	4 bytes
private char[] value;	4 bytes for reference (plus $2 \mathrm{~N}+16$ bytes for array)
\}	

Example 2

Q. How much memory does this code fragment use as a function of N ?
int $\mathrm{N}=$ Integer. parseInt(args[0]);
for (int $i=0 ; i<N$; $i++$) $\{$
int[] a = new int[N];
\}

Example 1

Q. How much memory does this program use as a function of N ?

```
public class RandomWalk {
    public static void main(String[] args) {
        int N = Integer.parseInt(args[0]);
        int[][] count = new int[N][N];
        int x = N/2;
        int y = N/2;
        for (int i = 0; i < N; i++) {
        // no new variable declared in loop
            count[x][y]++;
        }
    }
}
```

Out of memory
Q. What if I run out of memory?

```
% java RandomWalk 10000
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
% java -Xmx 500m RandomWalk 10000
% java RandomWalk 30000
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
% java -Xmx 4500m RandomWalk 30000
Invalid maximum heap size: -Xmx4500m
The specified size exceeds the maximum representable size
Could not create the Java virtual machine.
```

Turning the crank: summary

In principle, accurate mathematical models are available.
In practice, approximate mathematical models are easily achieved.

Timing may be flawed?

- Limits on experiments insignificant compared to other sciences.
- Mathematics might be difficult?
- Only a few functions seem to turn up.
- Doubling hypothesis cancels complicated constants.

Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach 1: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.

[^0]: Universe = computer itself.

