COSO26

Algorithms and Data Structures Princeton University Spring 2008

Kevin Wayne

COS 226 course overview

What is COS 226?

- Intermediate-level survey course.
- Programming and problem solving with applications.
- Algorithm: method for solving a problem.
- Data structure: method to store information.

topic	data structures and algorithms
data types	stack, queue, union-find, priority queue
sorting	quicksort, mergesort, heapsort, radix sorts
searching	hash table, BST, red-black tree
graphs	BFS, DFS, Prim, Kruskal, Dijkstra
strings	KMP, Regular expressions, TST, Huffman, LZW
geometry	Graham scan, k-d tree, Voronoi diagram

Why study algorithms?

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...
Biology. Human genome project, protein folding, ...
Computers. Circuit layout, file system, compilers, ...
Computer graphics. Movies, video games, virtual reality, ...
Security. Cell phones, e-commerce, voting machines,
Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV, .
Transportation. Airline crew scheduling, map routing, ...
Physics. N-body simulation, particle collision simulation, ...

Why study algorithms?

Old roots, new opportunities.

- Study of algorithms dates at least to Euclid
- Some important algorithms were
discovered by undergraduates!

Why study algorithms?

Why study algorithms?

To solve problems that could not otherwise be addressed.

Ex. Network connectivity. [stay tuned]

Why study algorithms?
They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific enquiry

$$
\begin{aligned}
& E=m c^{2} \\
& F=m a \\
& {\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)\right] \Psi(r)=E \Psi(r)}
\end{aligned}
$$

20th century science
(formula based)
(formula based)

```
for(double t = 0.0; true; t=t t + dt)
    bodies[i] resetForce().
        _ (%)
            |(i)!= j), addForce(bodies[j]);
    }) bodies[i] .addForce (bodies[j]);
```

21st century science

[^0]"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing. " - Francis Sullivan

[^1]
Why study algorithms?

For fun and profit.
 Nintendo

Google

MFrosoft

MorganStanley

- Their impact is broad and far-reaching.
- Old roots, new opportunities.
- To solve problems that could not otherwise be addressed.
- For intellectual stimulation.
- They may unlock the secrets of life and of the universe.
- For fun and profit.

```
Why study anything else?
```

Coursework and grading

8 programming assignments. 45\%

- Available via course website.
- Due 11:55pm, starting Tuesday 2/12.
- Electronic submission.

Exams.

- Closed-book with cheatsheet.
- Midterm. 20\%
- Final. 25%

Staff discretion. 10\%

- Participation in lecture and precepts.
- Everyone needs to meet me at office hours!

Lectures. Introduce new material, answer questions.

Precepts. Answer questions, solve problems, discuss programming assignment.

Resources (web)

Course content.

- Course info.
- Lecture slides.
- Programming assignments.

Course administration.

- Check grades.
- Submit assignments.

Booksites.

- Brief summary of content.
- Download code from lecture.

http://www.princeton.edu/~cos226

https://moodle.cs.princeton.edu/course/view.php?id=31
http://www.cs.princeton.edu/IntroProgramming
http://www.cs.princeton.edu/algs 4

Algorithms in Java, 3rd edition

- Parts 1-4. [sorting, searching]
- Part 5. [graph algorithms]

Introduction to Programming in Java

- Basic programming model.
- Elementary AofA and data structures.

Algorithms in Pascal(!)/C/C++, 2nd edition

- Strings.
- Geometric algorithms.

Algorithms in Java 4th edition [in preparation]

Not registered? You can't submit assignments until register in SCORE.

Change precept? Make the precept change in SCORE yourself; see Donna O'Leary (CS 410) for serious conflicts.

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

Network connectivity: larger example

Dynamic connectivity

Given a set of objects

- Union: connect two objects.
- Find: is there a path connecting the two objects?
union (3, 4)
union (8,0)
union (2, 3)
union (5, 6)
find (0,2)
no
find (2, 4)
union (5, 1)
union (7, 3)
union (1, 6)
union (4, 8)
find (0, 2)
find $(2,4)$
yes

Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

- Variable name aliases.
- Pixels in a digital photo
- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to $\mathrm{N}-1$.

- Use integers as array index.
- Suppress details not relevant to union-find.
- Could use symbol table to translate from object names to integers.

Modeling the connections

Transitivity. If p is connected to q and q is connected to r ,
then p is connected to r.

Connected components. Maximal subset of objects that are mutually connected.

Union-find data type

Goal. Design efficient data structure for union-find.

- Find queries and union commands may be intermixed.
- Number of operations M can be huge.
- Number of objects N can be huge.
public class UnionFind
UnionFind (int N)
boolean find(int p, int q)
void union(int p, int q)
Nobjects and no connections

- quick find

Data structure.

- Integer array id[] of size n.
- Interpretation: p and q are connected if they have the same id.

Quick-find example

Quick-find is too slow

Quick-find defect.

- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

algorithm	union	find
quick-find	N	1

Ex. May take N^{2} operations to process N union commands on N objects.

Quick-union [lazy approach]

Data structure

- Integer array id[] of size N .
- Interpretation: id[i] is parent of i. \qquad
- Root of i is id[id[id[...id[i]...]]].

Quadratic algorithms do not scale

Rough standard (for now).

- 10^{9} operations per second.
- 10^{9} words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10^{9} union commands on 10^{9} objects.
- Quick-find takes more than 10^{18} operations.
- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be $10 x$ as fast.
- But, has $10 x$ as much memory so problem may be $10 x$ bigger.
- With quadratic algorithm, takes $10 x$ as long!

3's root is 9; 5's root is 6

Data structure.

- Integer array id[] of size n.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]]
\qquad]

Find. Check if p and q have the same root.

Union. To merge subsets containing p and q ,
(0) (1) (6) (8)

3 's root is 9; 5's root is 6 3 and 5 are not connected set the id of q 's root to the id of p 's root.

i	0	1	2	3	4	5	6	7	8	9
id[i]	0	1	9	4	9	6	9	7	8	9

(0) 1

(7)
(1)

Quick-union: Java implementation
set id of each object to itself (Noperations)
chase parent parents untiil reach root (depth of i operations)
check if p and q have same root (depth of p and q operations)
change root of p to point to root of q (depth of p and q operations)
\}

Quick-union is also too slow

Quick-find defect.

- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect

- Trees can get tall.
- Find too expensive (could be N operations)

algorithm	union	find
quick-find	N	1
quick-union	N^{*}	N

* includes cost of finding roo

$3-4$	0	1	2	3	3	5	6	7	8	9
$4-9$	0	1	2	3	3	5	6	7	8	3
$8-0$	8	1	2	3	3	5	6	7	8	3
$2-3$	8	1	3	3	3	5	6	7	8	3
$5-6$	8	1	3	3	3	5	5	7	8	3
$5-9$	8	1	3	3	3	3	5	7	8	3
$7-3$	8	1	3	3	3	3	5	3	8	3
$4-8$	8	1	3	3	3	3	5	3	3	3

Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each subset
- Balance by linking small tree below large one.

Ex. Union of 3 and 5 .

- Quick union: link 9 to 6
- Weighted quick union: link 6 to 9 .

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i

Find. Identical to quick-union.

```
return root(p) == root(q)
```

Union. Modify quick-union to:

- Merge smaller tree into larger tree.
- Update the sz[] array.

```
int i = root(p), j = root(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else

Analysis.
- Find: takes time proportional to depth of \(p\) and \(q\).
- Union: takes constant time, given roots.
- Fact: depth is at most \(\lg \mathrm{N}\). [needs proof]
\begin{tabular}{|c|c|c|}
\hline algorithm & union & find \\
\hline quick-find & \(N\) & 1 \\
quick-union & \(N^{*}\) & \(N\) \\
\hline weighted QU & \(\lg N^{*}\) & \(\lg N\) \\
\hline
\end{tabular}
* includes cost of find
Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

Path compression: Java implementation

Standard implementation: add second loop to root() to set the id of each examined node to the root.

Simpler one-pass variant: make every other node in path point to its grandparent.
public int root(int i)
1
    while (i ! \(=\) id[i])
        id[i] = id[id[i]];
        i = id[i];
    \}
    return i;
\}

In practice. No reason not to! Keeps tree almost completely flat.

Quick union with path compression. Just after computing the root of \(p\), set the id of each examined node to \(\operatorname{root}(p)\).


28


Theorem. [Tarjan 1975] Starting from an empty data structure, any sequence of \(M\) union and find operations on \(N\) objects takes \(O\left(N+M \lg { }^{*} N\right)\) time.
- Proof is very difficult.
- But the algorithm is still simple!
\[
\text { actually } O(N+M \alpha(M, N))
\]
\[
\text { see } \cos 423
\]

Linear algorithm?
- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.
\[
\text { because } \lg ^{*} N \text { is a constant in this universe }
\]

Amazing fact. No linear-time linking strategy exists.
\[
\lg ^{\star} \text { function }
\]
number of times needed to take the \(\lg\) of a number until reaching 1

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.
\begin{tabular}{|c|c|}
\hline algorithm & worst-case time \\
\hline quick-find & \(M N\) \\
\hline quick-union & \(M N\) \\
\hline weighted QU & \(N+M \log N\) \\
QU + path compression & \(N+M \log N\) \\
weighted QU + path compression & \((M+N) \lg N\) \\
\hline
\end{tabular}
\(M\) union-find operations on a set of \(N\) objects

Ex. [10 \({ }^{9}\) unions and finds with \(10^{9}\) objects]
- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

\section*{Union-find applications}
- Percolation.
- Games (Go, Hex).
- Image processing.
\(\checkmark\) Network connectivity.
- Least common ancestor
- Equivalence of finite state automata.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.

A model for many physical systems:
- N -by- N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.


A model for many physical systems:
- N -by- N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.


Likelihood of percolation
Depends on site vacancy probability \(p\).


Theory guarantees a sharp threshold \(p^{*}\).
- \(p>p^{\star}\) : almost certainly percolates.
- \(p<p^{\star}\) : almost certainly does not percolate.
Q. What is the value of \(p^{*}\) ?


UF solution to find percolation threshold
How to check whether system percolates?
- Create object for each site (and virtual top and bottom objects).
- Sites are in same set if connected by vacant sites.
- Percolates if top and bottom row are in same set.

- Initialize whole grid to be blocked.
- Make random sites open until top connected to bottom.
- vacancy percentage estimates \(p^{\star}\).
full open site (connected to top) empty open site (not connected to top)
blocked site

\section*{UF solution to find percolation threshold}
Q. How to make declare a new site vacant?


\section*{UF solution to find percolation threshold}
Q. How to make declare a new site vacant?
A. Take union of site and all adjacent vacant sites.


\section*{Percolation threshold}
Q. What is percolation threshold \(p^{*}\) ?
A. About 0.592746 for large square lattices.
percolation constant known
only via simulation

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.
- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.```


[^0]:    " Algorithms: a common language for nature, human, and computer." - Avi Wigderson

[^1]:    " An algorithm must be seen to be believed." - D. E. Knuth

