LU and Cholesky Factorizations

COS 302, Fall 2020

UNIVERSITY

Operation Count for Gauss-Jordan

- For one R.H.S., how many operations?
- For each of n rows:
- Do n times:
- For each of $\mathrm{n}+1$ columns:
- One add, one multiply
- Total $=n^{3}+n^{2}$ multiplies, same \# of adds
- Asymptotic behavior: when n is large, dominated by n^{3}

Faster Algorithms

- Our goal is an algorithm that does this in $1 / 3 n^{3}$ operations, and does not require all R.H.S. to be known at beginning
- Before we see that, let's look at a few special cases that are even faster

Tridiagonal Systems

- Common special case:

$$
\left[\begin{array}{ccccc|c}
a_{11} & a_{12} & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & a_{23} & 0 & \cdots & b_{2} \\
0 & a_{32} & a_{33} & a_{34} & \cdots & b_{3} \\
0 & 0 & a_{43} & a_{44} & \cdots & b_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]
$$

- Only main diagonal + 1 above and 1 below

Solving Tridiagonal Systems

- When solving using Gaussian elimination:
- Constant \# of multiplies/adds in each row
- Each row only affects 2 others

$$
\left[\begin{array}{ccccc|c}
a_{11} & a_{12} & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & a_{23} & 0 & \cdots & b_{2} \\
0 & a_{32} & a_{33} & a_{34} & \cdots & b_{3} \\
0 & 0 & a_{43} & a_{44} & \cdots & b_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]
$$

Running Time

- 2 n loops, 4 multiply/adds per loop (assuming correct bookkeeping)
- This running time has a fundamentally different dependence on n : linear instead of cubic
- Can say that tridiagonal algorithm is $\mathrm{O}(\mathrm{n})$ while Gauss-Jordan is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- In general, a banded system of bandwidth w requires
$\mathrm{O}(\mathrm{wn})$ storage and $\mathrm{O}\left(\mathrm{w}^{2} \mathrm{n}\right)$ computations.

Big-O Notation

- Informally, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ means that the dominant term for large n is cubic
- More precisely, there exist a c and n_{0} such that

$$
\text { running time } \leq \mathrm{c} \mathrm{n}^{3}
$$

if

$$
n>n_{0}
$$

- This type of asymptotic analysis is often used to characterize different algorithms

Triangular Systems are nice!

- Another special case: lower-triangular

$$
\left[\begin{array}{ccccc|c}
a_{11} & 0 & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & 0 & 0 & \cdots & b_{2} \\
a_{31} & a_{32} & a_{33} & 0 & \cdots & b_{3} \\
a_{41} & a_{42} & a_{43} & a_{44} & \ldots & b_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]
$$

Triangular Systems

- Solve by forward substitution

$$
\left[\begin{array}{ccccc|c}
a_{11} & 0 & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & 0 & 0 & \cdots & b_{2} \\
a_{31} & a_{32} & a_{33} & 0 & \cdots & b_{3} \\
a_{41} & a_{42} & a_{43} & a_{44} & \ldots & b_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]
$$

Triangular Systems

- Solve by forward substitution

\[

\]

Triangular Systems

- Solve by forward substitution

$$
\begin{array}{ccccc|c}
{\left[\begin{array}{cccccc}
a_{11} & 0 & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & 0 & 0 & \ldots & b_{2} \\
a_{31} & a_{32} & a_{33} & 0 & \cdots & b_{3} \\
a_{41} & a_{42} & a_{43} & a_{44} & \ldots & b_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]} \\
& x_{3}=\frac{b_{3}-a_{31} x_{1}-a_{32} x_{2}}{a_{33}}
\end{array}
$$

Triangular Systems

- If A is upper triangular, solve by backsubstitution

$$
\left[\begin{array}{ccccc|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_{1} \\
0 & a_{22} & a_{23} & a_{24} & a_{25} & b_{2} \\
0 & 0 & a_{33} & a_{34} & a_{35} & b_{3} \\
0 & 0 & 0 & a_{44} & a_{45} & b_{4} \\
0 & 0 & 0 & 0 & a_{55} & b_{5}
\end{array}\right]
$$

Triangular Systems

- If A is upper triangular, solve by backsubstitution

$$
\left[\begin{array}{ccccc|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_{1} \\
0 & a_{22} & a_{23} & a_{24} & a_{25} & b_{2} \\
0 & 0 & a_{33} & a_{34} & a_{35} & b_{3} \\
0 & 0 & 0 & a_{44} & a_{45} & b_{4} \\
0 & 0 & 0 & 0 & a_{55} & b_{5}
\end{array}\right]
$$

Triangular Systems

- Both of these special cases can be solved in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- This motivates a factorization approach to solving arbitrary systems:
- Find a way of writing A as LU , where L and U are both triangular
$-\mathrm{Ax}=\mathrm{b} \quad \Rightarrow \quad \mathrm{LUx}=\mathrm{b} \quad \Rightarrow \quad \mathrm{Ld}=\mathrm{b} \quad \Rightarrow \quad U \mathrm{x}=\mathrm{d}$
- Time for factoring matrix dominates computation

Solving Ax = b with LU Decomposition of A

Symmetric Matrices: Cholesky Decomposition

- For symmetric matrices, choose $U=L^{\top}$

$$
\left(\mathrm{A}=\mathrm{LL}^{\mathrm{T}}\right)
$$

- Perform decomposition

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right]
$$

- $\mathrm{Ax}=\mathrm{b} \quad \Rightarrow \quad \mathrm{LL}^{\top} \mathrm{x}=\mathrm{b} \quad \Rightarrow \quad \mathrm{Ld}=\mathrm{b} \quad \Rightarrow \quad \mathrm{L}^{\top} \mathrm{x}=\mathrm{d}$

Cholesky Decomposition

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right] } & \Rightarrow\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right] \\
l_{11}^{2}=a_{11} & \Rightarrow l_{11}=\sqrt{a_{11}} \\
l_{11} l_{21} & =a_{12}
\end{aligned} \Rightarrow l_{21}=\frac{a_{12}}{l_{11}} .
$$

Cholesky Decomposition

$$
\begin{gathered}
{\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]} \\
\Rightarrow\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right] \\
l_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} l_{i k}^{2}} \\
l_{j i}=\frac{a_{i j}-\sum_{k=1}^{i-1} l_{i k} l_{j k}}{l_{i i}}
\end{gathered}
$$

Cholesky Decomposition

- This fails if it requires taking square root of a negative number
- Need another condition on A: positive definite
i.e., For any $v, v^{\top} A v>0$
(Equivalently, all positive eigenvalues)

Cholesky Decomposition

- Running time turns out to be $1 / 6 n^{3}$ multiplications $+1 / 6 n^{3}$ additions
- Still cubic, but lower constant
- Half as much computation \& storage as LU
- Result: this is preferred method for solving symmetric positive definite systems

LU Decomposition

- For more general matrices, factor A into LU , where
L is lower triangular and U is upper triangular

$$
\begin{gathered}
\mathrm{Ax}=\mathrm{b} \\
\mathrm{LUx}=\mathrm{b} \\
\mathrm{Ly}=\mathrm{b} \\
U x=y
\end{gathered}
$$

- Last 2 steps in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time, so total time dominated by decomposition

A = LU

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- More unknowns than equations!
- Let all $\mathrm{l}_{\mathrm{ii}}=1$ (Doolittle's method)
- Or, could have chosen to let all $\mathrm{u}_{\mathrm{ii}}=1$ (Crout's method)

Doolittle Factorization for LU Decomposition

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right] } \\
& u_{11}=a_{11} \\
& l_{21} u_{11}=a_{21}
\end{aligned} \Rightarrow l_{21}=\frac{a_{21}}{u_{11}} .
$$

Doolittle Factorization

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- For $\mathrm{i}=1$..n
- For j = 1..i

$$
u_{j i}=a_{j i}-\sum_{k=1}^{j-1} l_{j k} u_{k i}
$$

- For $\mathrm{j}=\mathrm{i}+1 . . \mathrm{n}$

$$
l_{j i}=\frac{a_{j i}-\sum_{k=1}^{i-1} l_{j k} u_{k i}}{u_{i i}}
$$

Doolittle Factorization

- Interesting note: \# of outputs = \# of inputs, algorithm only refers to elements of A, not b
- Can do this in-place!
- Algorithm replaces A with matrix of I and u values, 1 s are implied
$\left[\begin{array}{lll}u_{11} & u_{12} & u_{13} \\ l_{21} & u_{22} & u_{23} \\ l_{31} & l_{32} & u_{33}\end{array}\right]$
- Resulting matrix must be interpreted in a special way: not a regular matrix
- Can rewrite forward/backsubstitution routines to use this "packed" I-u matrix

LU Decomposition

- Running time is about $1 / 3 n^{3}$ multiplies, same number of adds
- Independent of RHS, each of which requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$ back/forward substitution
- This is the preferred general method for solving linear equations
- Pivoting very important
- Partial pivoting is sufficient, and widely implemented
- LU with pivoting can succeed even if matrix is singular (!) (but back/forward substitution fails...)

Matrix Inversion using LU

- LU depend only on A, not on b
- Re-use L \& U for multiple values of b
- i.e., repeat back-substitution
- How to compute A^{-1} ?
$A A^{-1}=\mathbf{I}(\mathbf{n} \times \mathbf{n}$ identity matrix), e.g.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
\rightarrow Use LU decomposition with

$$
b_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad b_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad b_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

