COS 302 Precept 2

Princeton University

Fall 2020

Table of Contents

(1) Groups and Vector Spaces
(2) Row-Echelon Form
(3) Reduced Row-Echelon Form
(4) Elementary Transformations
(5) Gaussian Elimination

Table of Contents

(1) Groups and Vector Spaces
(2) Row-Echelon Form
(3) Reduced Row-Echelon Form
(4) Elementary Transformations
(5) Gaussian Elimination

Groups and Vector Spaces

Definition of a Group

Definition 2.7 (Group). Consider a set \mathcal{G} and an operation $\otimes: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ defined on \mathcal{G}. Then $G:=(\mathcal{G}, \otimes)$ is called a group if the following hold:

1. Closure of \mathcal{G} under $\otimes: \forall x, y \in \mathcal{G}: x \otimes y \in \mathcal{G}$
2. Associativity: $\forall x, y, z \in \mathcal{G}:(x \otimes y) \otimes z=x \otimes(y \otimes z)$
3. Neutral element: $\exists e \in \mathcal{G} \forall x \in \mathcal{G}: x \otimes e=x$ and $e \otimes x=x$
4. Inverse element: $\forall x \in \mathcal{G} \exists y \in \mathcal{G}: x \otimes y=e$ and $y \otimes x=e$, where e is the neutral element. We often write x^{-1} to denote the inverse element of x.

If additionally $\forall x, y \in \mathcal{G}: x \otimes y=y \otimes x$, then $G=(\mathcal{G}, \otimes)$ is an Abelian group (commutative).

Groups and Vector Spaces

Example: Vectors in \mathbb{R}^{n} under addition

1. Closure: $\vec{a}, \vec{b} \in \mathbb{R}^{n} \Rightarrow \vec{a}+\vec{b} \in \mathbb{R}^{n}$
2. Associativity: $\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
3. Neutral element: $\vec{a}+\overrightarrow{0}=\vec{a}$
4. Inverse element: $\vec{a}+-\vec{a}=0$
5. (abelian) Commutativity: $\vec{a}+\vec{b}=\vec{b}+\vec{a}$

Groups and Vector Spaces

Definition 2.9 (Vector Space). A real-valued vector space $V=(\mathcal{V},+, \cdot)$ is a set \mathcal{V} with two operations

```
"Inner Operation"-+: \mathcal{V}\times\mathcal{V}}
"Outer Operation" . : \mathbb{R}\times\mathcal{V}}
    "Scaling"
```

where

1. $(\mathcal{V},+)$ is an Abelian group
2. Distributivity:
3. $\forall \lambda \in \mathbb{R}, \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}: \lambda \cdot(\boldsymbol{x}+\boldsymbol{y})=\lambda \cdot \boldsymbol{x}+\lambda \cdot \boldsymbol{y}$
4. $\forall \lambda, \psi \in \mathbb{R}, \boldsymbol{x} \in \mathcal{V}:(\lambda+\psi) \cdot \boldsymbol{x}=\lambda \cdot \boldsymbol{x}+\psi \cdot \boldsymbol{x}$
5. Associativity (outer operation): $\forall \lambda, \psi \in \mathbb{R}, \boldsymbol{x} \in \mathcal{V}: \lambda \cdot(\psi \cdot \boldsymbol{x})=(\lambda \psi) \cdot \boldsymbol{x}$
6. Neutral element with respect to the outer operation: $\forall \boldsymbol{x} \in \mathcal{V}: 1 \cdot \boldsymbol{x}=\boldsymbol{x}$

Table of Contents

(1) Groups and Vector Spaces

(2) Row-Echelon Form
(3) Reduced Row-Echelon Form
(4) Elementary Transformations
(5) Gaussian Elimination

Row-Echelon Form

Definition

A matrix is in row-echelon form if:

- All rows that contain only zeros are at the bottom of the matrix. ${ }^{\text {a }}$
- Looking at nonzero rows only, the pivot ${ }^{b}$ is always strictly to the right of the pivot of the row above it.
${ }^{a}$ Correspondingly, all rows that contain at least one nonzero element are on top of rows that contain only zeros.
${ }^{b}$ the first nonzero value from the left, also called the leading coefficient.

Row-Echelon Form

Examples

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 2 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Table of Contents

(1) Groups and Vector Spaces

Row-Echelon Form(3) Reduced Row-Echelon Form
(4) Elementary Transformations
(5) Gaussian Elimination

Reduced Row-Echelon Form

Definition

A matrix is in reduced row-echelon form if

- It is in row-echelon form
- Every pivot ${ }^{a}$ is 1
- The pivot is the only nonzero entry in its column.
${ }^{a}$ The first nonzero value from the left in each row

Reduced Row-Echelon Form

Examples

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llllc}
1 & 3 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 9 \\
0 & 0 & 0 & 1 & -4
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 8 & -4 \\
0 & 1 & 2 & 12
\end{array}\right]
$$

In general, row-echelon form and reduced row-echelon form make it easier for us to determine a particular solution and the general solution.

Table of Contents

(1) Groups and Vector Spaces

(2) Row-Echelon Form
(3) Reduced Row-Echelon Form
(4) Elementary Transformations
(5) Gaussian Elimination

Elementary Transformations

Given a matrix \boldsymbol{A}, there are three elementary operations one can perform on \boldsymbol{A} to transform \boldsymbol{A} into reduced row-echelon form without changing the solution set of $A x=b$.

- Addition of two rows

Elementary Transformations

Given a matrix \boldsymbol{A}, there are three elementary operations one can perform on \boldsymbol{A} to transform \boldsymbol{A} into reduced row-echelon form without changing the solution set of $A x=b$.

- Addition of two rows
- Multiplication of a row with a constant $\lambda \in \mathbb{R}$, where $\lambda \neq 0$

Elementary Transformations

Given a matrix \boldsymbol{A}, there are three elementary operations one can perform on \boldsymbol{A} to transform \boldsymbol{A} into reduced row-echelon form without changing the solution set of $A x=b$.

- Addition of two rows
- Multiplication of a row with a constant $\lambda \in \mathbb{R}$, where $\lambda \neq 0$
- Exchange two rows of a matrix

Elementary Transformations

Given a matrix \boldsymbol{A}, there are three elementary operations one can perform on \boldsymbol{A} to transform \boldsymbol{A} into reduced row-echelon form without changing the solution set of $A x=b$.

- Addition of two rows
- Multiplication of a row with a constant $\lambda \in \mathbb{R}$, where $\lambda \neq 0$
- Exchange two rows of a matrix
- Exchange two columns of a matrix

Table of Contents

(1) Groups and Vector Spaces

Row-Echelon Form(3) Reduced Row-Echelon Form
(4) Elementary Transformations
(5) Gaussian Elimination

Gaussian Elimination

Gaussian elimination is an algorithm that performs elementary transformations to bring a system of linear equations into reduced row-echelon form.

Gaussian Elimination

$$
\left\{\begin{array}{l}
x_{1}+x_{2}-x_{3}=7 \\
x_{1}-x_{2}+2 x_{3}=3 \\
2 x_{1}+x_{2}+x_{3}=9
\end{array}\right.
$$

Gaussian Elimination

$$
\left\{\begin{array}{l}
x_{1}+x_{2}-x_{3}=7 \\
x_{1}-x_{2}+2 x_{3}=3 \\
2 x_{1}+x_{2}+x_{3}=9
\end{array}\right.
$$

The above system of equations can be represented by this augmented matrix:

$$
\left[\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
1 & -1 & 2 & 3 \\
2 & 1 & 1 & 9
\end{array}\right]
$$

We will perform Gaussian Elimination on this system of equations (Open Colab Notebook)

Invert Matrix via Gaussian Elimination

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Invert Matrix via Gaussian Elimination

Perform Gaussian Elimination on the following Augmented Matrix:

$$
\left[\begin{array}{llll|llll}
1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Invert Matrix via Gaussian Elimination

$$
\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & -1 & 2 & -2 & 2 \\
0 & 1 & 0 & 0 & 1 & -1 & 2 & -2 \\
0 & 0 & 1 & 0 & 1 & -1 & 1 & -1 \\
0 & 0 & 0 & 1 & -1 & 0 & -1 & 2
\end{array}\right]
$$

Invert Matrix via Gaussian Elimination

$$
\boldsymbol{A}^{-\mathbf{1}}=\left[\begin{array}{cccc}
-1 & 2 & -2 & 2 \\
1 & -1 & 2 & -2 \\
1 & -1 & 1 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

Justification(Optional)

Each elementary operation on \boldsymbol{A} can be written as left multiplying \boldsymbol{A} by a matrix. Transforming \boldsymbol{A} to the identity matrix can be written as: $E_{1} E_{2} \cdots E_{n} A=I$. This implies that $E_{1} E_{2} \cdots E_{n} A A^{-1}=I A^{-1}=A^{-1}$, which implies that $E_{1} E_{2} \cdots E_{n} I=A^{-\mathbf{1}}$. This means that applying the sequence of elementary operations that transformed \boldsymbol{A} to the identity matrix on \boldsymbol{I} will transform I to $\boldsymbol{A}^{\mathbf{- 1}}$.

