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Monte Carlo Integration



Numerical Integration Problems

• Basic 1D numerical integration
– Given ability to evaluate f (x) for any x, find

– Goal: best accuracy with fewest samples (# of times f is evaluated)

– Classic problem – many analytic functions not integrable in closed form
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Quadrature

1. Sample f(x) at a set of points

2. Approximate by a friendly function

3. Integrate approximating function

• Choices:
– Which approximating function?

– Which sampling points? (“nodes”)
• Even vs. uneven spacing?

– Fit single function vs. multiple (piecewise)?



Trapezoidal Rule

• Approximate function by trapezoid
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Trapezoidal Rule
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Extended Trapezoidal Rule
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Divide into segments of width h,
piecewise trapezoidal approximation
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Open Methods

• Trapezoidal rule won’t work if function undefined at
one of the points where evaluating
– Common example: function infinite at an endpoint

• Open methods only evaluate function on the open interval
(i.e., not at endpoints)

∫
1

0
2x

dx



Midpoint Rule

• Approximate function by rectangle evaluated at midpoint
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Extended Midpoint Rule
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Divide into segments of width h:
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Integration in d Dimensions?

• One option: nested 1-D integration

Evaluate the latter numerically, but each “sample” of g(y) is itself a 1-D integral, 
evaluated using a nested call to a numerical method
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Integration in d Dimensions?

• Midpoint / trapezoid / other quadrature rule in d dimensions?

– In 1D: (b-a)/h points

– In 2D: (b-a)/h2 points

– In general: O(1/hd) points

• Required # of points grows exponentially with dimension
– “Curse of dimensionality”

• Other problems, e.g. non-rectangular domains



Rethinking Integration in 1D
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We Can Approximate…
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f(x) g(x)
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Or We Can Average
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Estimating the Average

f(x)
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Other Domains
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“Monte Carlo” Integration

• No “exponential explosion”
in required number of samples
with increase in dimension

• (Some) resistance to
badly-behaved functions

Le Grand Casino de Monte-Carlo



Variance

Variance decreases as 1/N
Error of E decreases as 1/sqrt(N)
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Variance

• Problem: variance decreases with 1/N
– Increasing # samples removes noise slowly

E(f(x))



Variance Reduction Techniques

• Problem: variance decreases with 1/N
– Increasing # samples removes noise slowly

• Variance reduction:
– Stratified sampling

– Importance sampling



Stratified Sampling

• Estimate subdomains separately

M1 Mk

Ek(f(x))

Can do this recursively!



Stratified Sampling

• This is still unbiased
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Stratified Sampling

• Less overall variance if less variance in subdomains

 

Var E[ ] =
vol(M j )
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Importance Sampling

• Put more samples where f(x) is bigger
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Importance Sampling

• This is still unbiased

E(f(x))
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Importance Sampling

• Variance depends on 
choice of p(x):
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Importance Sampling

• Zero variance if p(x) ~ f(x)

E(f(x))

Less variance with better
importance sampling

0)(

1
)(
)(

)()(

=

==

=

YVar
cxp

xfY

xcfxp

i

i
i



Generating Random Points

• Uniform distribution:
– Use pseudorandom number generator
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Sampling from a Non-Uniform Distribution

• Inversion method

• Rejection method
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Sampling from a Non-Uniform Distribution

• Inversion method
– Integrate f(x): Cumulative Distribution Function
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Sampling from a Non-Uniform Distribution

• Inversion method
– Integrate f(x): Cumulative Distribution Function

– Invert CDF, apply to uniform random variable
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Sampling from a Non-Uniform Distribution

• Inversion method

• Rejection method
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Sampling from a Non-Uniform Distribution

• Rejection method
– Generate random (x,y) pairs, y between 0 and max(f(x)) 



Sampling from a Non-Uniform Distribution

• Rejection method
– Generate random (x,y) pairs, y between 0 and max(f(x))

– Keep only samples where y < f(x)

• Pro: does not require CDF, inversion

• Con: wastes samples



Example: Computing pi



With Stratified Sampling



Monte Carlo in Computer Graphics



or, Solving Integral Equations
for Fun and Profit



or, Ugly Equations, Pretty Pictures



Animation

Computer Graphics Pipeline

Rendering

Lighting
and

Reflectance

Modeling
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Rendering Equation

Surface
Light
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Rendering Equation

• This is an integral equation

• Hard to solve!
– Can’t solve this in closed form

– Simulate complex phenomena

Heinrich
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Rendering Equation

Jensen
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• This is an integral equation

• Hard to solve!
– Can’t solve this in closed form

– Simulate complex phenomena



Monte Carlo Path Tracing

Estimate integral 
for each pixel 

by random sampling



Monte Carlo Global Illumination

• Rendering = integration
– Antialiasing

– Soft shadows

– Indirect illumination

– Caustics



Monte Carlo Global Illumination

• Rendering = integration
– Antialiasing

– Soft shadows

– Indirect illumination

– Caustics

Surface

Eye

Pixel
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Monte Carlo Global Illumination

• Rendering = integration
– Antialiasing

– Soft shadows

– Indirect illumination

– Caustics
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Monte Carlo Global Illumination

• Rendering = integration
– Antialiasing

– Soft shadows

– Indirect illumination

– Caustics

Herf



Monte Carlo Global Illumination

• Rendering = integration
– Antialiasing

– Soft shadows

– Indirect illumination

– Caustics
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Monte Carlo Global Illumination

• Rendering = integration
– Antialiasing

– Soft shadows

– Indirect illumination

– Caustics

Debevec



Monte Carlo Global Illumination

• Rendering = integration
– Antialiasing

– Soft shadows

– Indirect illumination

– Caustics

Diffuse Surface

Eye

Light
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Monte Carlo Global Illumination

• Rendering = integration
– Antialiasing

– Soft shadows

– Indirect illumination

– Caustics

Jensen



Challenge

• Rendering integrals are difficult to evaluate
– Multiple dimensions

– Discontinuities
• Partial occluders

• Highlights

• Caustics

– Significant energy carried
by “rare” paths

Jensen



Challenge

• Rendering integrals are difficult to evaluate
– Multiple dimensions

– Discontinuities
• Partial occluders

• Highlights

• Caustics

– Significant energy carried
by “rare” paths

Jensen



Monte Carlo Path Tracing

• Drawback: can be noisy unless
lots of paths simulated

• 40 paths per pixel:

Lawrence



Monte Carlo Path Tracing

• Drawback: can be noisy unless
lots of paths simulated

• 1200 paths per pixel:

Lawrence



Monte Carlo Path Tracing

1000 paths/pixel

Jensen



Reducing Variance

• Observation: some paths more important (carry more energy) than others
– For example, shiny surfaces reflect most light in the ideal “mirror” direction

• Importance sampling!  Put more paths where there is energy flow!



Effect of Importance Sampling

• Less noise at a given number of samples

• Equivalently, need to simulate fewer paths for some desired limit of noise

Uniform random sampling Importance sampling

Lawrence
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