Monte Carlo Integration

COS 302, Fall 2020

Numerical Integration Problems

- Basic 1D numerical integration
 - Given ability to evaluate f(x) for any x, find $\int_{a}^{b} f(x) dx$
 - Goal: best accuracy with fewest samples (# of times f is evaluated)
 - Classic problem many analytic functions not integrable in closed form

$$G(x) = \int_{-\infty}^{x} e^{-t^2} dt$$

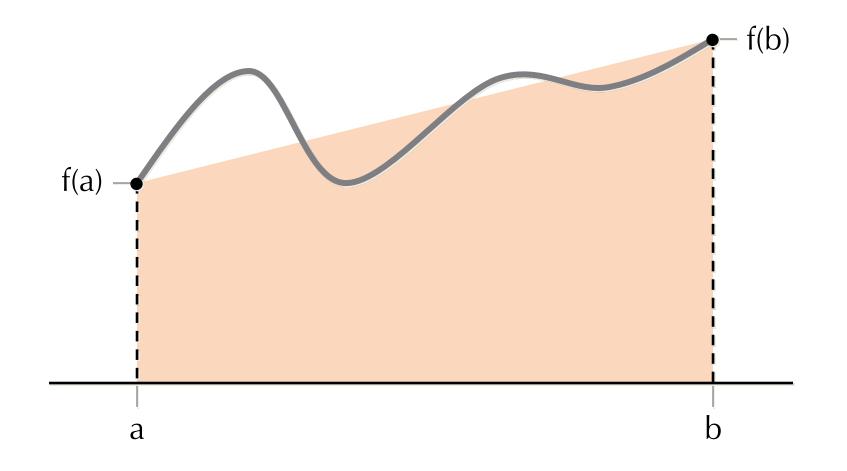
Quadrature

- 1. Sample *f*(*x*) at a set of points
- 2. Approximate by a friendly function
- 3. Integrate approximating function

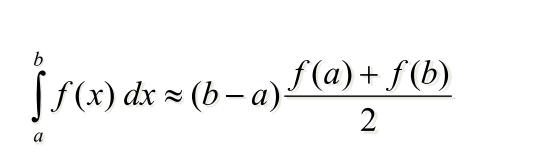
- Choices:
 - Which approximating function?
 - Which sampling points? ("nodes")
 - Even vs. uneven spacing?
 - Fit single function vs. multiple (piecewise)?

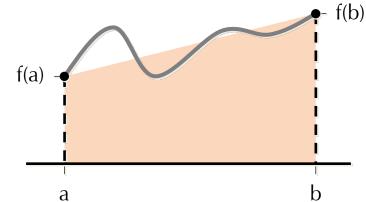
Trapezoidal Rule

• Approximate function by trapezoid

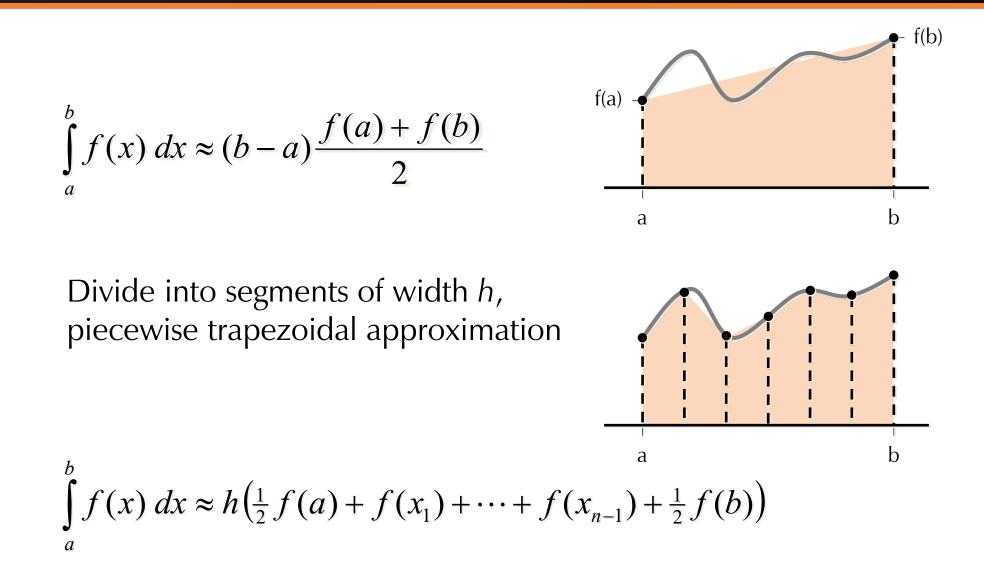


Trapezoidal Rule





Extended Trapezoidal Rule



Open Methods

- Trapezoidal rule won't work if function undefined at one of the points where evaluating
 - Common example: function infinite at an endpoint

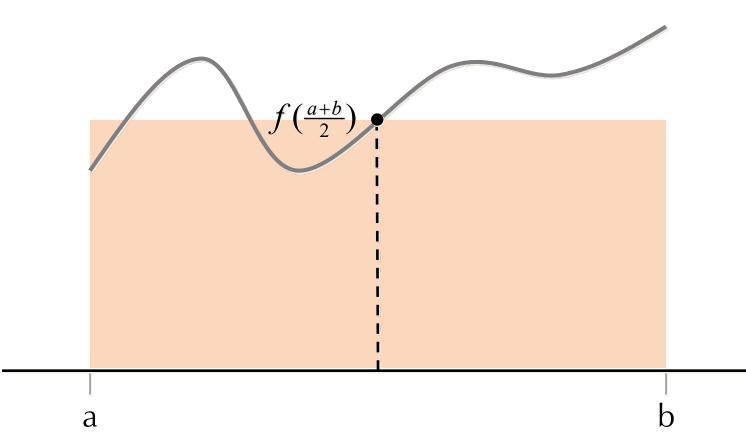
$$\int_{0}^{1} \frac{dx}{x^2}$$

1

 Open methods only evaluate function on the open interval (i.e., not at endpoints)

Midpoint Rule

• Approximate function by rectangle evaluated at midpoint

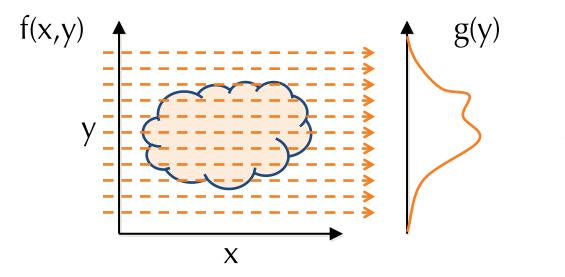


Extended Midpoint Rule

$$\int_{a}^{b} f(x) dx \approx (b-a) f(\frac{a+b}{2})$$
Divide into segments of width h:
$$\int_{a}^{b} f(x) dx \approx h(f(a+\frac{h}{2}) + f(a+\frac{3h}{2}) + \dots + f(b-\frac{h}{2}))$$

Integration in *d* Dimensions?

• One option: nested 1-D integration



$$\iint f(x, y) \, dx \, dy = \int g(y) \, dy$$

Evaluate the latter numerically, but each "sample" of g(y) is itself a 1-D integral, evaluated using a nested call to a numerical method

Integration in *d* Dimensions?

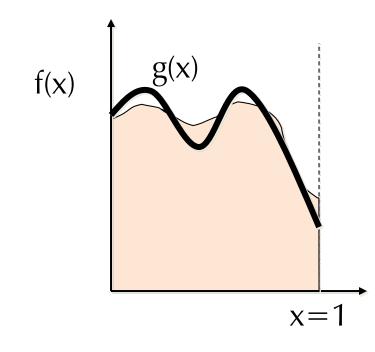
- Midpoint / trapezoid / other quadrature rule in *d* dimensions?
 - In 1D: (b-a)/h points
 - In 2D: (b-a)/ h^2 points
 - In general: $O(1/h^d)$ points
- Required # of points grows exponentially with dimension
 - "Curse of dimensionality"
- Other problems, e.g. non-rectangular domains

Rethinking Integration in 1D

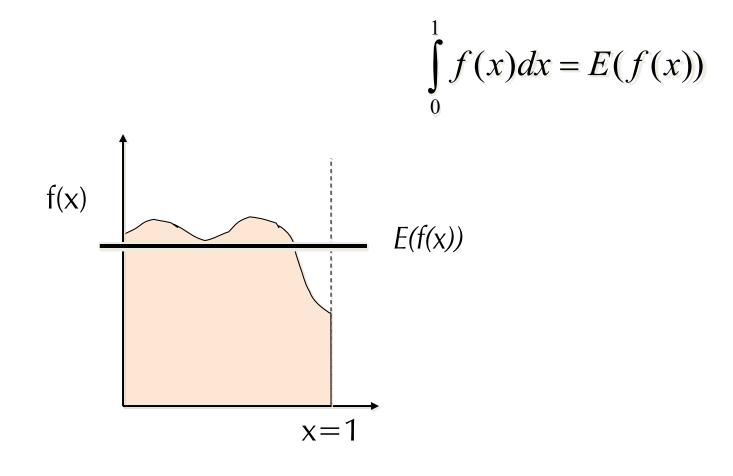
f(x)
$$\int_{0}^{1} f(x) dx = ?$$

We Can Approximate...

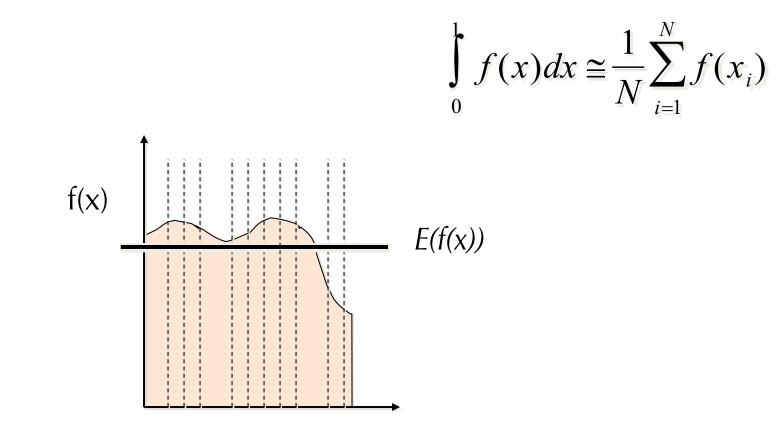
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} g(x) dx$$



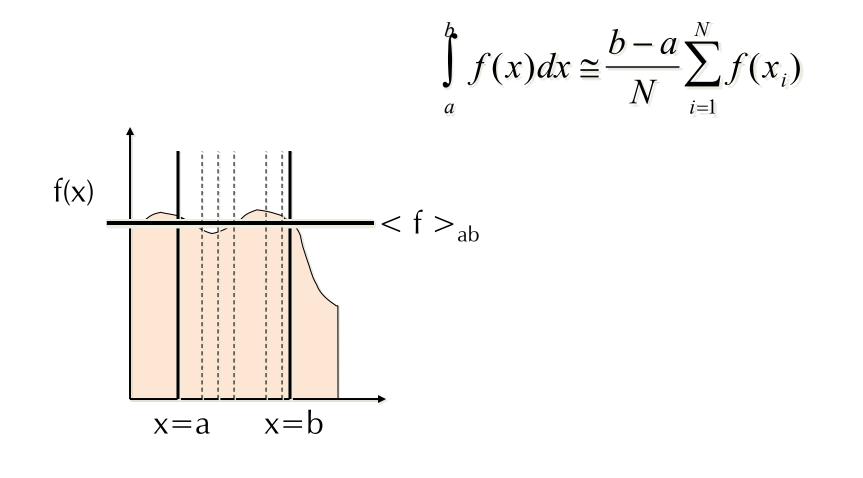
Or We Can Average



Estimating the Average



Other Domains

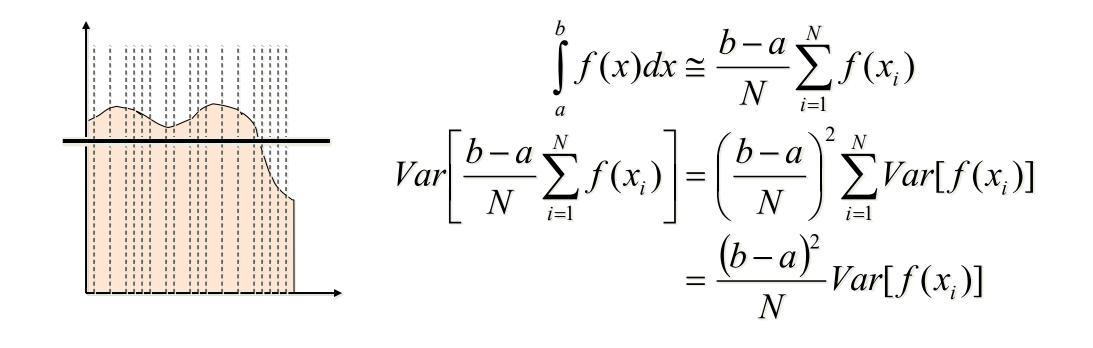


"Monte Carlo" Integration

- No "exponential explosion" in required number of samples with increase in dimension
- (Some) resistance to badly-behaved functions

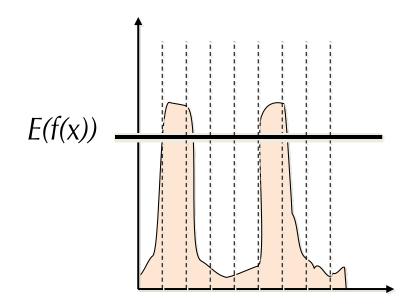
Le Grand Casino de Monte-Carlo

Variance



Variance decreases as 1/N Error of E decreases as 1/sqrt(N)

- Problem: variance decreases with 1/N
 - Increasing # samples removes noise slowly



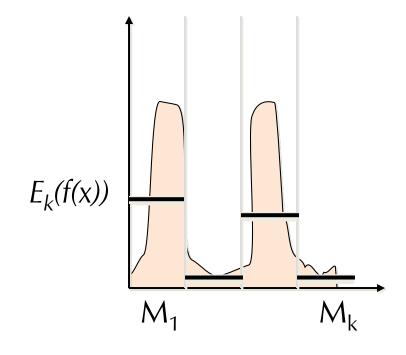
Variance Reduction Techniques

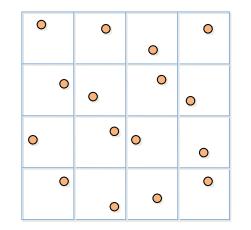
- Problem: variance decreases with 1/N
 - Increasing # samples removes noise slowly

- Variance reduction:
 - Stratified sampling
 - Importance sampling

Stratified Sampling

• Estimate subdomains separately

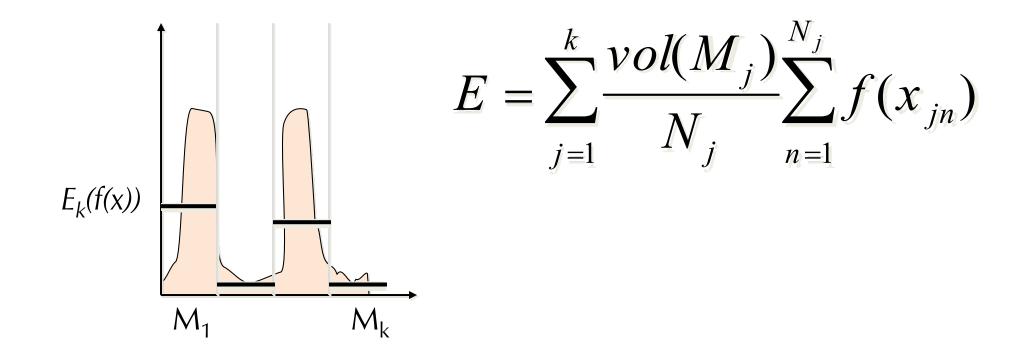




Can do this recursively!

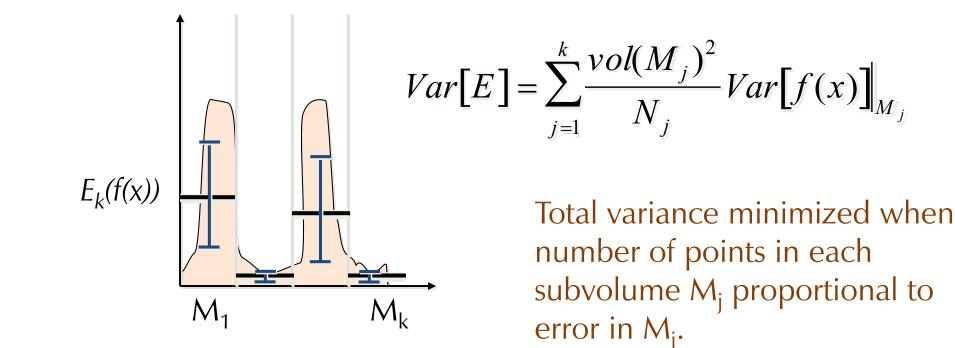
Stratified Sampling

• This is still unbiased

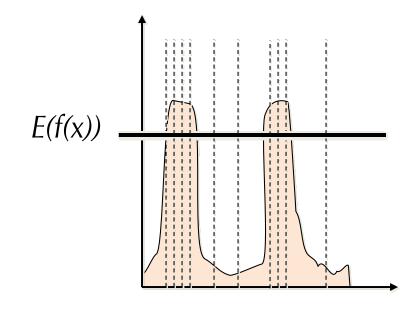


Stratified Sampling

• Less overall variance if less variance in subdomains



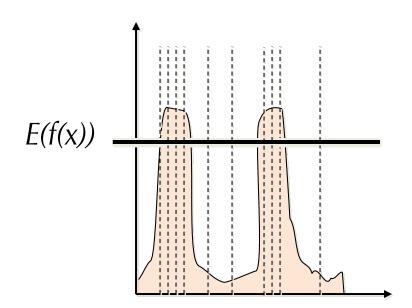
• Put more samples where f(x) is bigger



$$\int_{\Omega} f(x) dx = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

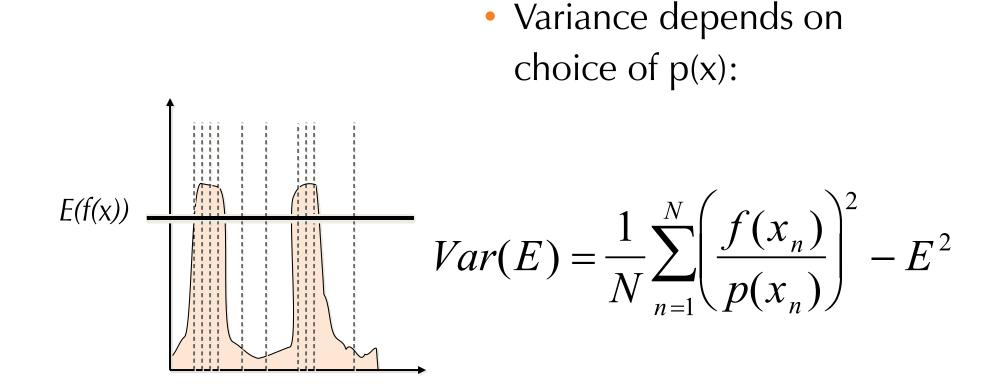
where $Y_i = \frac{f(x_i)}{p(x_i)}$
and x_i drawn from $P(x)$

• This is still unbiased

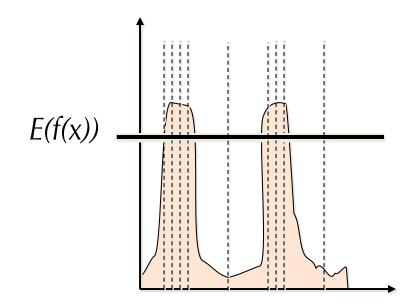


$$E[Y_i] = \int_{\Omega} Y(x) p(x) dx$$
$$= \int_{\Omega} \frac{f(x)}{p(x)} p(x) dx$$
$$= \int_{\Omega} f(x) dx$$
for all N

for all N



• Zero variance if $p(x) \sim f(x)$

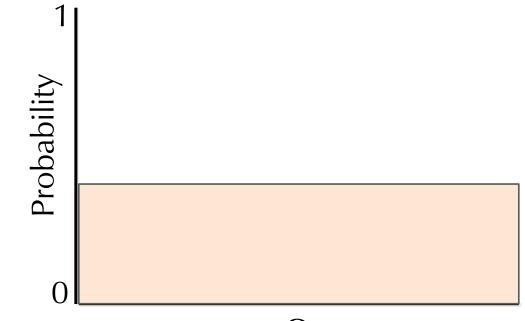


$$p(x) = cf(x)$$
$$Y_i = \frac{f(x_i)}{p(x_i)} = \frac{1}{c}$$
$$Var(Y) = 0$$

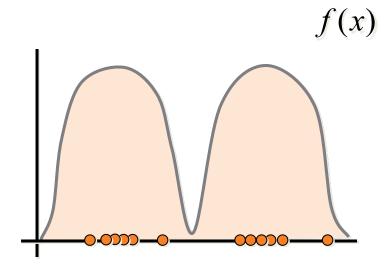
Less variance with better importance sampling

Generating Random Points

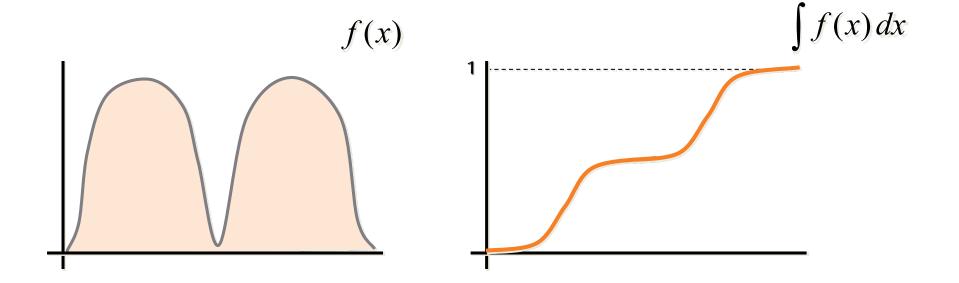
- Uniform distribution:
 - Use pseudorandom number generator



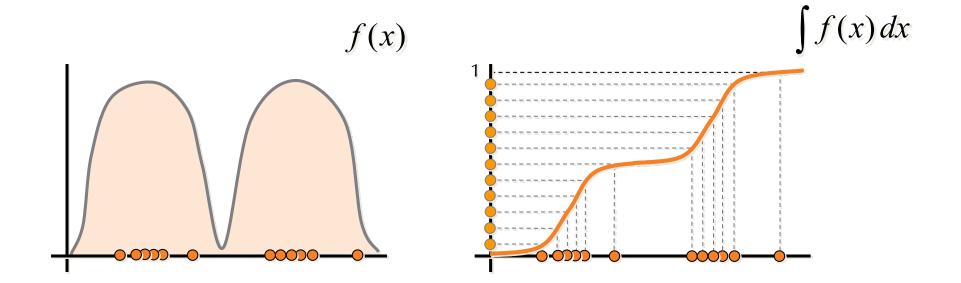
- Inversion method
- Rejection method



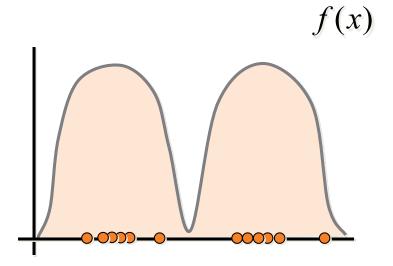
- Inversion method
 - Integrate f(x): Cumulative Distribution Function



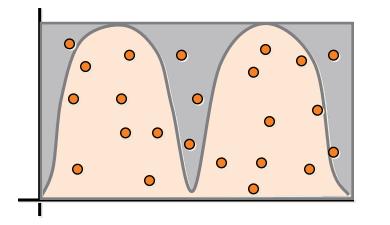
- Inversion method
 - Integrate f(x): Cumulative Distribution Function
 - Invert CDF, apply to uniform random variable



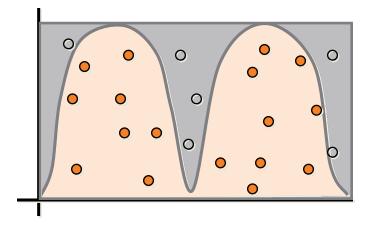
- Inversion method
- Rejection method



- Rejection method
 - Generate random (x,y) pairs, y between 0 and max(f(x))

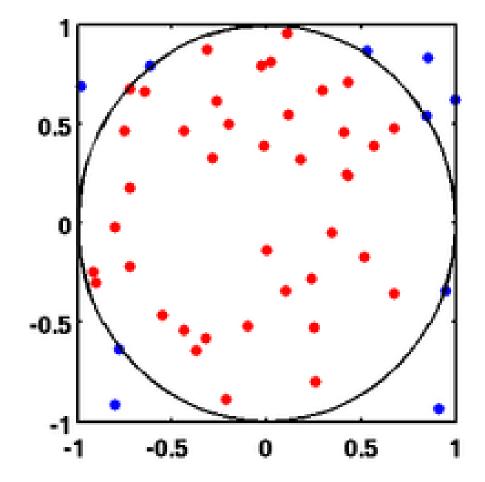


- Rejection method
 - Generate random (x,y) pairs, y between 0 and max(f(x))
 - Keep only samples where y < f(x)

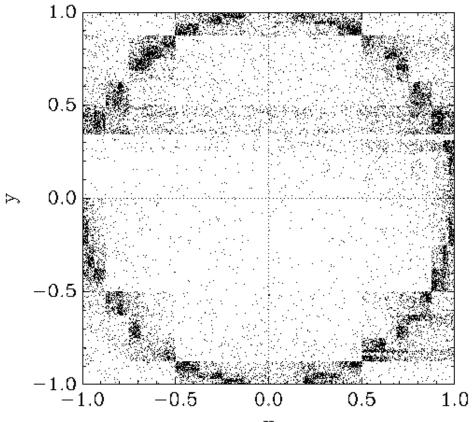


- Pro: does not require CDF, inversion
- Con: wastes samples

Example: Computing pi



With Stratified Sampling

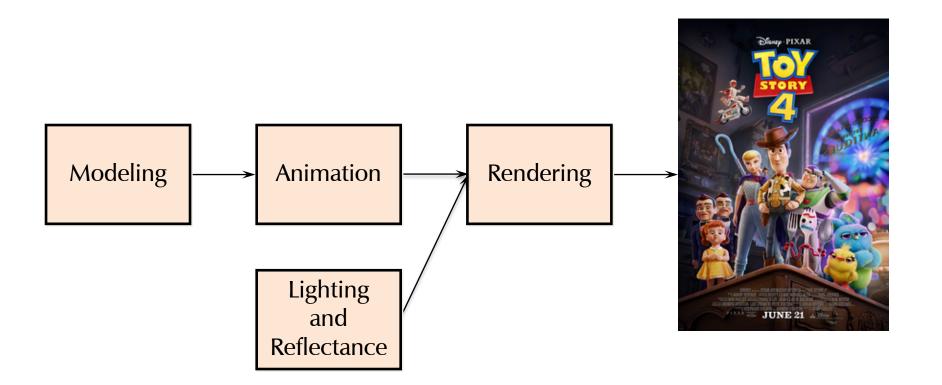


Monte Carlo in Computer Graphics

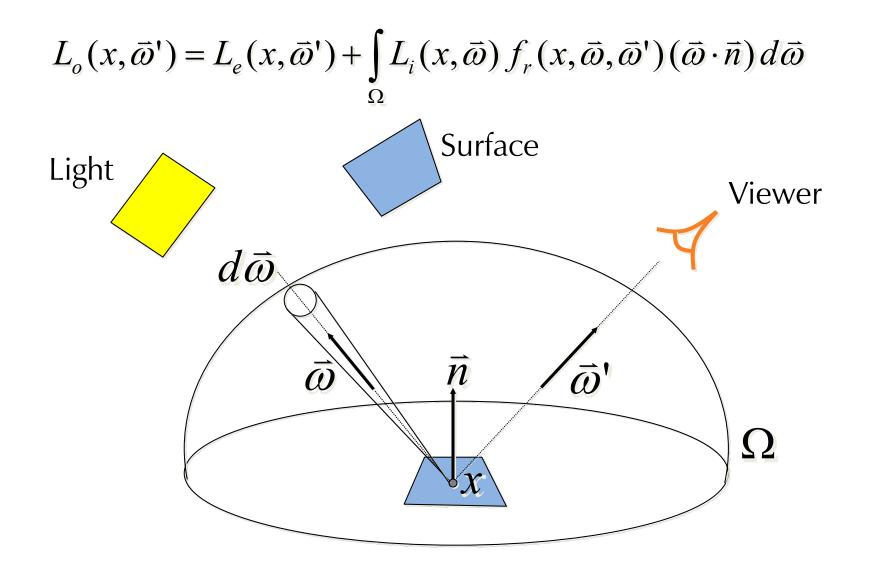
or, Solving Integral Equations for Fun and Profit

or, Ugly Equations, Pretty Pictures

Computer Graphics Pipeline



Rendering Equation



[Kajiya 1986]

Rendering Equation

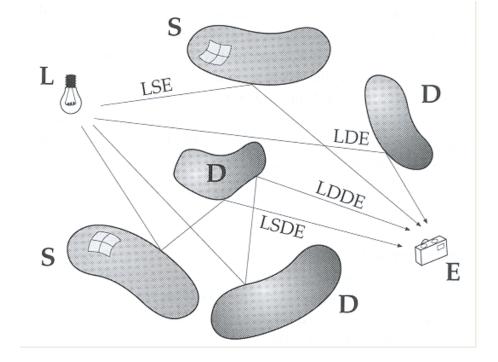
$$L_o(x,\vec{\omega}') = L_e(x,\vec{\omega}') + \int_{\Omega} L_i(x,\vec{\omega}) f_r(x,\vec{\omega},\vec{\omega}')(\vec{\omega}\cdot\vec{n}) d\vec{\omega}$$

- This is an integral equation
- Hard to solve!
 - Can't solve this in closed form
 - Simulate complex phenomena

Rendering Equation

$$L_o(x,\bar{\omega}') = L_e(x,\bar{\omega}') + \int_{\Omega} L_i(x,\bar{\omega}) f_r(x,\bar{\omega},\bar{\omega}')(\bar{\omega}\cdot\bar{n}) d\bar{\omega}$$

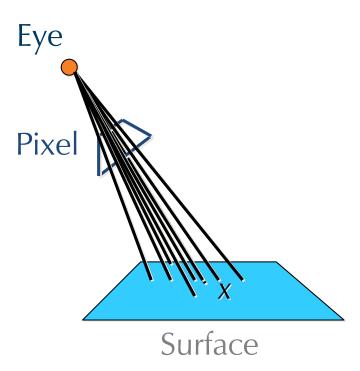
- This is an integral equation
- Hard to solve!
 - Can't solve this in closed form
 - Simulate complex phenomena



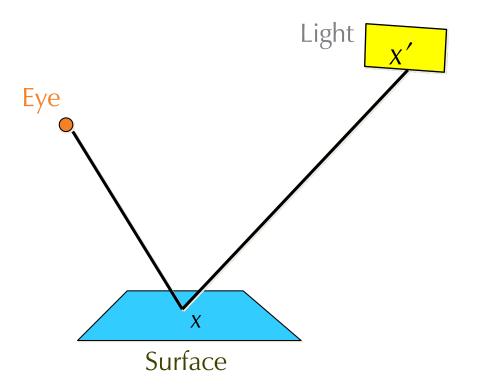
Estimate integral for each pixel by random sampling

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

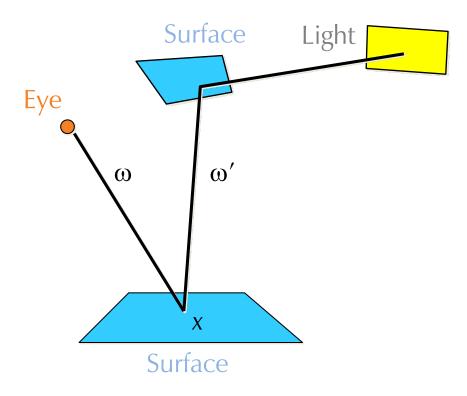


- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics



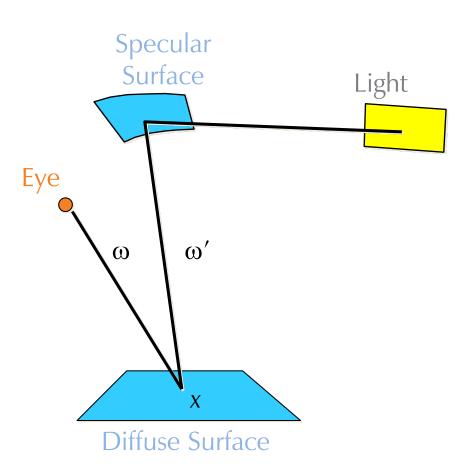
- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

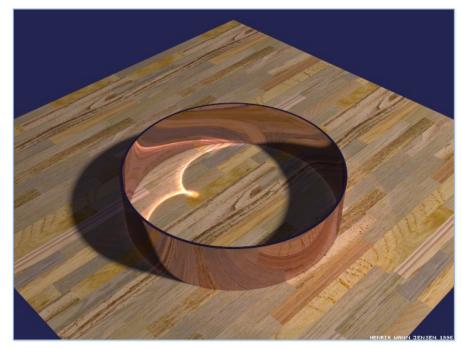


- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics



- Rendering = integration
 - Antialiasing
 - Soft shadows
 - Indirect illumination
 - Caustics

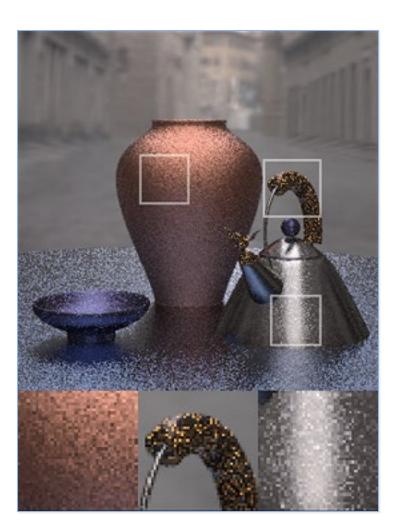


• Rendering integrals are difficult to evaluate

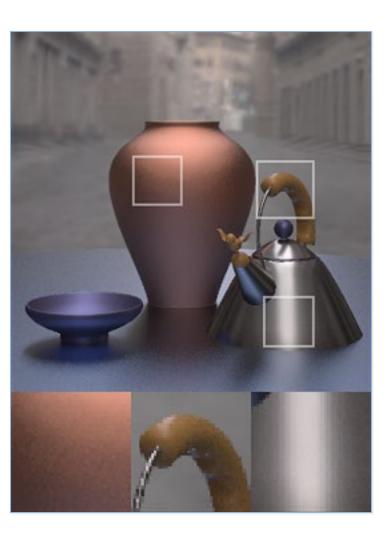
- Multiple dimensions
- Discontinuities
 - Partial occluders
 - Highlights
 - Caustics
- Significant energy carried by "rare" paths

- Rendering integrals are difficult to evaluate
 - Multiple dimensions
 - Discontinuities
 - Partial occluders
 - Highlights
 - Caustics
 - Significant energy carried by "rare" paths

- Drawback: can be noisy unless *lots* of paths simulated
- 40 paths per pixel:



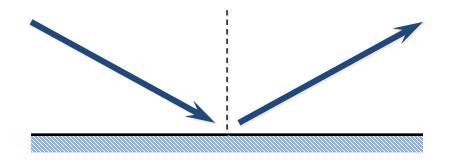
- Drawback: can be noisy unless *lots* of paths simulated
- 1200 paths per pixel:



1000 paths/pixel

Reducing Variance

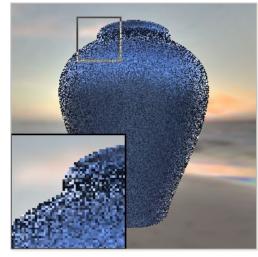
- Observation: some paths more important (carry more energy) than others
 - For example, shiny surfaces reflect most light in the ideal "mirror" direction



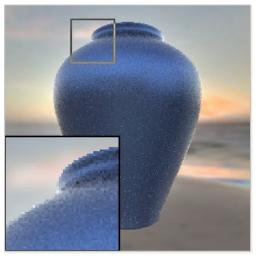
• Importance sampling! Put more paths where there is energy flow!

Effect of Importance Sampling

• Less noise at a given number of samples



Uniform random sampling



Importance sampling

• Equivalently, need to simulate fewer paths for some desired limit of noise

Lawrence