Common Probabilistic Identities and Inequalities

Szymon Rusinkiewicz COS 302, Fall 2020

Inequalities

Markov's inequality: Nonnegative random variable X For any a > 0: $P(X \ge a) \le \frac{\mathbb{E}[X]}{a}$

Chebyshev's inequality: Random variable X with finite mean and variance For all a > 0: $P(|X - \mathbb{E}[X]| \ge a) \le \frac{Var(X)}{a^2}$

Chernoff bound: Random variable X with mean zero $P(X \ge \epsilon) \le \min_{t>0} \mathbb{E}[e^{tX}] e^{-t\epsilon} = \min_{t>0} M_X(t) e^{-t\epsilon}$

Jensen's inequality: Random variable X, convex function f(x) $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

Central Limit Theorem

Independent, identically-distributed (i.i.d.) random variables X_1, X_2, \ldots, X_n with mean μ and variance σ^2

$$\sqrt{n}\left(\frac{1}{n}\sum_{i}(X_{i}-\mu)\right)$$
 converges in distribution to $\mathcal{N}(0,\sigma^{2})$ as $n \to \infty$

or

$$\frac{1}{n}\sum_{i}X_{i} \text{ converges in distribution to } \mathcal{N}(\mu,\sigma^{2}/n) \text{ as } n \to \infty$$

• Handy rule: variance of the mean of i.i.d. random variables goes as 1/n; standard deviation decreases as $1/\sqrt{n}$

Moment Generating Functions

Moment generating function for random variable *X*

$$M_X(t) = \mathbb{E}[e^{tX}] = \mathbb{E}\left[\sum_{k=0}^{\infty} \frac{t^k X^k}{k!}\right] = \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbb{E}[X^k]$$

- k^{th} moment is k^{th} derivative of $M_X(t)$ evaluated at t = 0: $\mathbb{E}[X^k] = \frac{d^k}{dt^k} M_X(0)$
- MGF interacts nicely with scaling/sum:

$$Z = \alpha X + \beta Y$$
$$M_Z(t) = M_X(\alpha t) M_Y(\beta t)$$