Differentiating Vector- and Matrix-Valued Functions

Szymon Rusinkiewicz
COS 302, Fall 2020
PRINCETON
UNIVERSITY

Generalizing Functions...

Functions of scalars, vectors, matrices ... returning scalars, vectors, matrices

- Function of a scalar, returning a scalar: $\mathbb{R} \rightarrow \mathbb{R}$
- Example: $f(x)=a x+b$
- Function of a scalar, returning a vector: $\mathbb{R} \rightarrow \mathbb{R}^{n}$
- Example: $\boldsymbol{f}(x)=x \boldsymbol{v}$
- Function of a vector, returning a scalar: $\mathbb{R}^{n} \rightarrow \mathbb{R}$
- Example: $f(\boldsymbol{x})=\boldsymbol{v}^{\top} \boldsymbol{x}$
- Function of a vector, returning a vector: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- Example: $f(x)=M x$
- Function of a vector, returning a matrix: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$
- Example: $\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{x}^{\top}$
- Many other possibilities: function of a matrix, etc.

Generalizing Functions... and Taking Their Derivatives

- Function of a scalar, returning a scalar: $\mathbb{R} \rightarrow \mathbb{R}$
- Example: $f(x)=a x+b \quad \rightarrow$ Ordinary derivative $\frac{d f}{d x}: \mathbb{R} \rightarrow \mathbb{R}$
- Function of a scalar, returning a vector: $\mathbb{R} \rightarrow \mathbb{R}^{n}$
- Example: $f(x)=x v$
\rightarrow Vector-valued derivative $\frac{d f}{d x}: \mathbb{R} \rightarrow \mathbb{R}^{n}$
- Function of a vector, returning a scalar: $\mathbb{R}^{n} \rightarrow \mathbb{R}$
- Example: $f(\boldsymbol{x})=\boldsymbol{v}^{\top} \boldsymbol{x} \quad \rightarrow$ Gradient $\nabla f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{1 \times n}$
- Function of a vector, returning a vector: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- Example: $\boldsymbol{f}(\boldsymbol{x})=\mathbf{M} \boldsymbol{x} \quad \rightarrow$ Jacobian $\nabla f(x)$ or $\mathrm{J}(f(x)): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$
- Function of a vector, returning a matrix: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$
- Example: $\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{x}^{\top} \quad \rightarrow$ Generalized Jacobian $\nabla F(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n \times n}$

Generalizing Functions... and Taking Their Derivatives

In general, if f is a function

$$
f: \mathbb{R}^{(\text {input shape })} \rightarrow \mathbb{R}^{(\text {output shape })}
$$

then its generalized derivative will be a function

$$
\nabla f: \mathbb{R}^{(\text {input shape })} \rightarrow \mathbb{R}^{(\text {output shape }) \times(\text { input shape })}
$$

where the extra dimensions on output correspond to taking partial derivatives with respect to all the input dimensions.

Tensors

So what if we end up with e.g. an $n \times n \times n$ object?

- Tensors are multidimensional generalizations of scalars, vectors, matrices.
- For our purposes, represented as multidimensional arrays of numbers.
- The number of indices in the shape can be called the order, degree, (confusingly) dimension, or (even more confusingly) rank of the tensor.
- Example: Take a function of a vector, returning a matrix, and differentiate it. The resulting $n \times n \times n$ beastie is a degree- 3 or $3^{\text {rd }}$-order tensor.

Tensors in Python

- NumPy arrays can represent tensors
- A = np.zeros((5, 6, 7))
\rightarrow A.shape $==(5,6,7)$
- Transpose can take a permutation of dimensions
- B = np.transpose(A, (2, 0, 1))
\rightarrow B.shape == (7, 5, 6)
- Careful if using np.matmul or np. dot for tensor multiplication np. tensordot lets you explicitly specify axes to sum over

```
- C = np.tensordot(A, B, (2, 0))
C.shape == (5, 6, 5, 6)
- D = np.tensordot(A, B, ([2,1], [0,2])) -> D.shape == (5, 5)
```


Tensors and Differentiation

$$
\nabla f: \mathbb{R}^{(\text {input shape })} \rightarrow \mathbb{R}^{(\text {output shape }) \times(\text { input shape })}
$$

- If you take more advanced math, you'll learn that the "dimensions" of tensors behave in two different ways: covariant and contravariant.
- We won't go into that here, except to note that the dimensions arising from differentiation always behave "transposed".
- For example, the gradient of a scalar function of a vector is a row vector.
- Intimate connection to directional derivatives: multiplying a gradient by a direction \boldsymbol{d} (an object of the input shape) gives you derivative of the output in that direction:

$$
D_{\boldsymbol{d}} f(\boldsymbol{x}) \text { or } \nabla_{\boldsymbol{d}} f(\boldsymbol{x})=\nabla f(\boldsymbol{x}) \boldsymbol{d}
$$

where the last dimension(s) of ∇f are dotted against \boldsymbol{d}.

Preliminaries

Before we get into specific examples of these generalized derivatives, let's review which rules from single-variable calculus still work:

- Derivative of a constant of any shape is 0
- Derivative of the variable with respect to which we're differentiating is 1 , or the identity of the appropriate shape
- Derivative of a sum is the sum of derivatives
- Derivative of a scalar multiple is the constant times the derivative
- Chain rule works, but order might matter: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
- Product rule requires care about dimensions and transposes (stay tuned!)

Function of a Scalar, Returning a Vector

Simple...

$$
\begin{aligned}
f(x) & =\left[\begin{array}{c}
3 x+42 \\
\sin x
\end{array}\right] \\
\frac{d \boldsymbol{f}}{d x} & =\left[\begin{array}{c}
3 \\
\cos x
\end{array}\right]
\end{aligned}
$$

Can also consider functions written as scalar/vector products:

$$
\begin{aligned}
& f(x)=x \boldsymbol{v} \\
& \frac{d f}{d x}=\left[\begin{array}{c}
\frac{d}{d x}\left(x v_{1}\right) \\
\frac{d}{d x}\left(x v_{2}\right) \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots
\end{array}\right]=\boldsymbol{v}
\end{aligned}
$$

Function of a Vector, Returning a Scalar

This is the ordinary gradient, which is a row vector of partial derivatives:

$$
\begin{aligned}
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) & =x_{1}^{3}+x_{1} x_{2}+42 x_{3} \\
\nabla f & =\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \frac{\partial f}{\partial x_{3}}
\end{array}\right] \\
& =\left[\begin{array}{llll}
3 x_{1}^{2}+x_{2} & x_{1} & 42
\end{array}\right]
\end{aligned}
$$

Directional Derivative

$$
\nabla f=\left[\begin{array}{lll}
3 x_{1}^{2}+x_{2} & x_{1} & 42
\end{array}\right]
$$

How does f change with an infinitesimal step in direction $\boldsymbol{d}=\left[\begin{array}{c}0.6 \\ 0 \\ 0.8\end{array}\right]$?

$$
\nabla_{\boldsymbol{d}} f=\left[\begin{array}{lll}
3 x_{1}^{2}+x_{2} & x_{1} & 42
\end{array}\right]\left[\begin{array}{c}
0.6 \\
0 \\
0.8
\end{array}\right]=1.8 x_{1}^{2}+0.6 x_{2}+33.6
$$

This is a scalar - the same shape as the output of f.

Directional Derivative

- What if we had done this in the previous case, where we had a function of a scalar, returning a vector?

$$
\begin{aligned}
f(x) & =x v \\
\frac{d f}{d x} & =v
\end{aligned}
$$

- Multiplying by a (scalar) infinitesimal step in x in "direction" 1 , we get just \boldsymbol{v}.
- This is a (column) vector - the same shape as the output of f.

Function of a Vector, Returning a Scalar

Let's try a dot product!

$$
\begin{aligned}
f(\boldsymbol{x}) & =\boldsymbol{v} \cdot \boldsymbol{x}=\sum_{i} v_{i} x_{i} \\
\nabla f & =\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots
\end{array}\right] \\
& =\left[\begin{array}{lll}
v_{1} & v_{2} & \cdots
\end{array}\right] \\
& =\boldsymbol{v}^{\top}
\end{aligned}
$$

But $\boldsymbol{v} \cdot \boldsymbol{x}=\boldsymbol{v}^{\top} \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{v}$, so we have the following:

$$
\nabla\left(\boldsymbol{v}^{\top} \boldsymbol{x}\right)=\boldsymbol{v}^{\top} \quad \text { and } \quad \nabla\left(\boldsymbol{x}^{\top} \boldsymbol{v}\right)=\boldsymbol{v}^{\top}
$$

Function of a Vector, Returning a Scalar

Next interesting case:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\boldsymbol{x} \cdot \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{x}=\|\boldsymbol{x}\|^{2}=\sum_{i} x_{i}^{2} \\
\nabla f & =\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 x_{1} & 2 x_{2} & \cdots
\end{array}\right] \\
& =2 \boldsymbol{x}^{\top}
\end{aligned}
$$

Note the analogy to $\frac{d}{d x} x^{2}=2 x$, but we need the transpose to get the output shape right.

Function of a Vector, Returning a Scalar

Even more interesting:

$$
f(\boldsymbol{x})=\|\boldsymbol{x}\|=\sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}}=\sqrt{\sum x_{i}^{2}}
$$

Applying the chain rule:

$$
\begin{aligned}
\nabla f & =\frac{1}{2}\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right)^{-\frac{1}{2}} \nabla\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right) \\
& =\frac{2 \boldsymbol{x}^{\top}}{2 \sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}}} \\
& =\frac{\boldsymbol{x}^{\top}}{\|\boldsymbol{x}\|}
\end{aligned}
$$

Directional Derivative

$$
\nabla\|x\|=\frac{\boldsymbol{x}^{\top}}{\|\boldsymbol{x}\|}
$$

As \boldsymbol{x} changes by an infinitesimal step in direction \boldsymbol{d},

$$
\nabla_{d}\|x\|=\frac{x}{\|x\|} \cdot d
$$

Intuitive: if \boldsymbol{d} is in the direction of \boldsymbol{x}, change in $\|\boldsymbol{x}\|$ is 1 times the step size, etc.

Function of a Vector, Returning a Vector

Let's move on to a Jacobian:

$$
\begin{aligned}
f(x) & =M x \\
\nabla f & =\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots
\end{array}\right]
\end{aligned}
$$

The only terms in $\boldsymbol{M} \boldsymbol{x}$ involving x_{i} come from the $i^{\text {th }}$ column of \boldsymbol{M}, so:

$$
\frac{\partial f}{\partial x_{1}}=\left[\begin{array}{c}
M_{11} \\
M_{21} \\
\vdots
\end{array}\right], \quad \frac{\partial f}{\partial x_{2}}=\left[\begin{array}{c}
M_{12} \\
M_{22} \\
\vdots
\end{array}\right], \text { etc. }
$$

Function of a Vector, Returning a Vector

- Stitching everything together,

$$
\begin{aligned}
\nabla(\boldsymbol{M} \boldsymbol{x}) & =\left[\left(\begin{array}{c}
M_{11} \\
M_{21} \\
\vdots
\end{array}\right)\left(\begin{array}{c}
M_{12} \\
M_{22} \\
\vdots
\end{array}\right) \ldots\right. \\
& =\boldsymbol{M}
\end{aligned}
$$

- Special case: $\nabla(\boldsymbol{x})=\nabla(\boldsymbol{I x})=I$
- This reinforces our intuition that differentiating any constant thing times \boldsymbol{x} gives just that constant, whether it's a scalar, vector, matrix, etc.

Function of a Vector, Returning a Matrix

$$
\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{v}^{\top}=\left[\begin{array}{ccc}
x_{1} v_{1} & x_{1} v_{2} & \cdots \\
x_{2} v_{1} & x_{2} v_{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Just apply the rules, and watch the tensor appear!

$$
\begin{aligned}
\nabla \boldsymbol{F}(\boldsymbol{x}) & =\left[\begin{array}{lll}
\frac{\partial \boldsymbol{F}}{\partial x_{1}} & \frac{\partial \boldsymbol{F}}{\partial x_{2}} & \cdots
\end{array}\right] \\
& =\left[\left[\begin{array}{ccc}
v_{1} & v_{2} & \cdots \\
0 & 0 & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & \cdots \\
v_{1} & v_{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right] \quad \cdots\right.
\end{aligned}
$$

Function of a Vector, Returning a Matrix

$$
\nabla \boldsymbol{F}(\boldsymbol{x})=\left[\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right] \boldsymbol{v}^{\top}\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right] \boldsymbol{v}^{\top}\left[\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right] \boldsymbol{v}^{\top} \quad \ldots\right.
$$

At this point, it might be tempting to factor out the \boldsymbol{v}^{\top}. But be careful!
This object is an $n \times n \times n$ tensor, and if you factor it into an $n \times 1 \times n$ tensor and a $1 \times n$ vector, you have to remember which dimensions should be multiplied!

Generalizing Product Rule

- As we just saw, tensor multiplication can get confusing. This complicates cleanly stating a generalized product rule.
- But, let's derive a rule for vector-vector (dot) products:

$$
\nabla(\boldsymbol{v} \cdot \boldsymbol{w})=\nabla\left(\sum_{i} v_{i} w_{i}\right)
$$

where \boldsymbol{v} and \boldsymbol{w} are both potentially functions of \boldsymbol{x}.

- Writing out the partial derivatives,

$$
\nabla(\boldsymbol{v} \cdot \boldsymbol{w})=\left[\begin{array}{lll}
\frac{\partial\left(\sum v_{i} w_{i}\right)}{\partial x_{1}} & \frac{\partial\left(\sum v_{i} w_{i}\right)}{\partial x_{2}} & \cdots
\end{array}\right]
$$

Generalizing Product Rule

- Because v_{i} and w_{i} are just scalars, the product rule works normally:

$$
\frac{\partial\left(\sum v_{i} w_{i}\right)}{\partial x_{1}}=\sum_{i}\left(v_{i} \frac{\partial w_{i}}{\partial x_{1}}+\frac{\partial v_{i}}{\partial x_{1}} w_{i}\right)
$$

- Applying the distributive rule, we get

$$
\nabla(\boldsymbol{v} \cdot \boldsymbol{w})=\boldsymbol{v} \cdot(\nabla \boldsymbol{w})+(\nabla \boldsymbol{v}) \cdot \boldsymbol{w}
$$

- Or, in matrix notation,

$$
\nabla\left(\boldsymbol{v}^{\top} \boldsymbol{w}\right)=\boldsymbol{v}^{\top} \nabla \boldsymbol{w}+\boldsymbol{w}^{\top} \nabla \boldsymbol{v}
$$

Bilinear Form

Let's apply our newly-derived knowledge!

$$
\begin{aligned}
f(\boldsymbol{x}) & =\boldsymbol{x}^{\top} \boldsymbol{M} \boldsymbol{x} \\
\nabla f & =\boldsymbol{x}^{\top} \nabla(\boldsymbol{M} \boldsymbol{x})+(\boldsymbol{M} \boldsymbol{x})^{\top} \nabla \boldsymbol{x} \\
& =\boldsymbol{x}^{\top} \boldsymbol{M}+\boldsymbol{x}^{\top} \boldsymbol{M}^{\top} \boldsymbol{I} \\
& =\boldsymbol{x}^{\top}\left(\boldsymbol{M}+\boldsymbol{M}^{\top}\right)
\end{aligned}
$$

Note the similarity to $\frac{d}{d x}\left(a x^{2}\right)=2 a x$.

The Grand Finale: Least Squares

- We've mentioned before that our methods for solving overdetermined linear systems of the form $\boldsymbol{A x}=\boldsymbol{b}$ minimize a least-squares residual:

$$
\arg \min _{\boldsymbol{x}}\|\boldsymbol{A x}-\boldsymbol{b}\|^{2}
$$

- Let's apply the methods we've learned to find the \boldsymbol{x} that minimizes this, by taking the derivative (gradient) and setting it equal to 0 .

The Grand Finale: Least Squares

- Applying the chain rule:

$$
\nabla\|A x-b\|^{2}=2\|A x-b\| \nabla\|A x-b\|
$$

- And again (order matters!):

$$
=2\|A x-b\| \frac{(A x-b)^{\top}}{\|A x-b\|} \nabla(A x-b)
$$

- And computing a final Jacobian:

$$
=2(\boldsymbol{A x}-\boldsymbol{b})^{\top} \boldsymbol{A}
$$

The Grand Finale: Least Squares

- To check, let's derive this a different way:

$$
\begin{aligned}
\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} & =(A \boldsymbol{x}-\boldsymbol{b})^{\top}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}) \\
& =\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{b}-\boldsymbol{b}^{\top} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}^{\top} \boldsymbol{b} \\
\nabla\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} & =\boldsymbol{x}^{\top}\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{\top}\right)-\boldsymbol{b}^{\top} \boldsymbol{A}-\boldsymbol{b}^{\top} \boldsymbol{A}+0 \\
& =2 \boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A}-2 \boldsymbol{b}^{\top} \boldsymbol{A} \\
& =2\left(\boldsymbol{x}^{\top} \boldsymbol{A}^{\top}-\boldsymbol{b}^{\top}\right) \boldsymbol{A} \\
& =2(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})^{\top} \boldsymbol{A}
\end{aligned}
$$

The Grand Finale: Least Squares

- Setting the gradient equal to a row vector of zeros:

$$
2(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})^{\top} \boldsymbol{A}=\mathbf{0}^{\top}
$$

- Transposing and dividing by 2 :

$$
A^{\top}(A x-b)=0
$$

- And finally, rearranging:

$$
A^{\top} A x=A^{\top} b
$$

