# Applications of SVD: PCA & MDS

Szymon Rusinkiewicz COS 302, Fall 2020



#### Last Time

- Singular Value Decomposition
- Solving linear least-squares...
  - without incurring condition-squaring effect of normal equations  $(A^T A x = A^T b)$
  - when *A* is singular, "fat", or otherwise poorly-specified?
- Total least squares

# Today: More Applications of SVD

- Principal Components Analysis
- Multi-dimensional Scaling

# Principal Components Analysis (PCA)

- Approximating a high-dimensional data set with a lower-dimensional linear subspace
- Also converts possibly-correlated attributes into uncorrelated attributes



## SVD and PCA

- Data matrix with points/examples as rows
- Center data by subtracting mean
- Compute (reduced) SVD
- Columns of *V* are normalized principal components
- Each *w<sub>i</sub>* indicates importance of corresponding component
- Rows of *U* are data points expressed in terms of principal components

# **Dimensionality Reduction**

- Map points in high-dimensional space to lower number of dimensions
- (Try to) preserve structure: pairwise distances, etc.
- Useful for further processing:
  - Less computation, fewer parameters
  - Easier to understand, visualize

# SVD for Rank-*k* approximation

- **A** is  $m \times n$  matrix of rank > k
- Suppose you want to find best rank-k approximation to A
- Take SVD:  $A = UWV^{T}$
- Set all but the largest k singular values of **W** to 0
- Can form compact representation by eliminating columns of *U* and *V* corresponding to zeroed w<sub>i</sub>

# PCA on Images

- Compression: each new image can be approximated by projection onto first few principal components
- Recognition: for a new image, project onto first few principal components, match feature vectors
- Generation: Adjust contributions of a few principal components to generate new plausible data points

#### PCA on Images



- Unrolled Images

# PCA for Relighting

• Images under different illumination



# PCA for Relighting

- Images under different illumination
- Most variation captured by first 5 principal components – can re-illuminate by combining only a few images



# Face Recognition

- Suppose you want to recognize a particular face
- How does *this* face differ from average face
  - Not all variations equally important (variation in a single pixel relatively unimportant)
- If images are high-dimensional vectors, want to find directions in this space with high variation
  - PCA!

#### PCA on Faces: "Eigenfaces"



- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components

image = average + 
$$\sum_{i=1}^{i_{max}} a_i$$
Eigenface<sub>i</sub>



- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients

$$a_i = (\text{image} - \text{average}) \cdot \text{Eigenface}_i$$

- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients
- Is it a face?

$$\left\| \text{image} - \left( \text{average} + \sum_{i=1}^{i_{max}} a_i \text{Eigenface}_i \right) \right\| < \text{threshold}?$$

- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients
- Is it a face?
- If a face, find image in database with closest  $a_i$ 
  - "Nearest-neighbor classifier"

# Choosing the Dimension k

- How many eigenfaces to use?
- Look at the decay of the singular values
  - Singular value gives the amount of variance "in the direction" of that eigenface



• Measure gene activation under different conditions



[Troyanskaya]

• Measure gene activation under different conditions



[Troyanskaya]

- PCA shows patterns of correlated activation
  - Genes with same pattern might have similar function



[Wall et al.]

- PCA shows patterns of correlated activation
  - Genes with same pattern might have similar function



#### PCA for Music



#### Practical Considerations for PCA

- Sensitive to scale of each attribute (column)
  - In practice, may "standardize" by scaling each attribute to have unit variance
- Sensitive to noisy attributes
  - Just because a dimension is highly weighted by PCA doesn't mean it's relevant, informative, etc.



- In some experiments, can only measure similarity or dissimilarity
  - e.g., are responses to stimuli similar or different? How different are they?
  - Frequent in psychophysical experiments, preference surveys, etc.
- Want to recover absolute positions in *k*-dimensional space

#### • Example: given pairwise distances between cities

|         | Atl  | Chi  | Den  | Hou  | LA   | Mia  | NYC  | SF   | Sea  | DC |
|---------|------|------|------|------|------|------|------|------|------|----|
| Atlanta | 0    |      |      |      |      |      |      |      |      |    |
| Chicago | 587  | 0    |      |      |      |      |      |      |      |    |
| Denver  | 1212 | 920  | 0    |      |      |      |      |      |      |    |
| Houston | 701  | 940  | 879  | 0    |      |      |      |      |      |    |
| LA      | 1936 | 1745 | 831  | 1374 | 0    |      |      |      |      |    |
| Miami   | 604  | 1188 | 1726 | 968  | 2339 | 0    |      |      |      |    |
| NYC     | 748  | 713  | 1631 | 1420 | 2451 | 1092 | 0    |      |      |    |
| SF      | 2139 | 1858 | 949  | 1645 | 347  | 2594 | 2571 | 0    |      |    |
| Seattle | 2182 | 1737 | 1021 | 1891 | 959  | 2734 | 2406 | 678  | 0    |    |
| DC      | 543  | 597  | 1494 | 1220 | 2300 | 923  | 205  | 2442 | 2329 | 0  |

- Want to recover (x,y) locations

- Formally, let's say we have  $n \times n$  matrix **D** consisting of squared distances  $d_{ij} = ||\mathbf{x}_i - \mathbf{x}_j||^2$
- Want to recover *n* × *k* matrix **X** of positions in *k*-dimensional space

$$D = \begin{pmatrix} 0 & (x_1 - x_2)^2 & (x_1 - x_3)^2 \\ (x_1 - x_2)^2 & 0 & (x_2 - x_3)^2 \\ (x_1 - x_3)^2 & (x_2 - x_3)^2 & 0 \\ & & \ddots \end{pmatrix}$$
$$X = \begin{pmatrix} (\cdots x_1 \cdots ) \\ (\cdots x_2 \cdots ) \\ \vdots \end{pmatrix}$$

• Observe that

$$d_{ij}^{2} = (x_{i} - x_{j})^{2} = x_{i}^{2} - 2x_{i}x_{j} + x_{j}^{2}$$

- Strategy: convert matrix **D** of  $d_{ij}^2$  into matrix **B** of  $x_i x_j$ 
  - "Centered" distance matrix
  - Then decompose  $B = XX^{T}$

- Centering:
  - Sum of row *i* of D = sum of column *i* of D =

$$s_{i} = \sum_{j} d_{ij}^{2} = \sum_{j} x_{i}^{2} - 2x_{i}x_{j} + x_{j}^{2}$$
$$= nx_{i}^{2} - 2x_{i}\sum_{j} x_{j} + \sum_{j} x_{j}^{2}$$

- Sum of all entries in D =

$$s = \sum_{i} s_{i} = 2n \sum_{i} x_{i}^{2} - 2\left(\sum_{i} x_{i}\right)^{2}$$

- Choose  $\Sigma x_i = 0$ 
  - Solution will have average position at origin

$$s_i = nx_i^2 + \sum_j x_j^2, \quad s = 2n\sum_j x_j^2$$

$$d_{ij}^2 - \frac{1}{n}s_i - \frac{1}{n}s_j + \frac{1}{n^2}s = -2x_ix_j$$

- So, to get **B**:
  - compute row (or column) sums
  - compute sum of sums
  - apply above formula to each entry of  $\boldsymbol{D}$
  - Divide by –2

# Factoring $B = XX^T$ using SVD

- Now have **B**, want to factor into **XX^{T}**
- If **X** is  $n \times k$ , **B** must have rank k
- Take SVD, set all but top k singular values to 0
  - Eliminate corresponding columns of U and V
  - Have **B'**=**U'W'V'**<sup>⊺</sup>
  - -B' is square and symmetric, so U' = V'
  - Take X = U' times square root of W'

• Result (k = 2):



### Another application



Figure 2 (a) RMDS of children's similarity judgments about 15 body parts: (b) RMDS of adults' similarity judgments about 15 body parts,

From Young 1985 / Jacobowitz 1973

#### Perceptual Mapping for Marketing



- Caveat: actual axes, center not necessarily what you want (can't recover them!)
- This is "classical" or "Euclidean" MDS [Torgerson 52]
  - Distance matrix assumed to be actual Euclidean distance
- More sophisticated versions available
  - "Non-metric MDS": not Euclidean distance, sometimes just inequalities
  - Replicated MDS: for multiple data sources (e.g. people)
  - "Weighted MDS": account for observer bias