Applications of SVD: PCA \& MDS

Szymon Rusinkiewicz
COS 302, Fall 2020

Last Time

- Singular Value Decomposition
- Solving linear least-squares...
- without incurring condition-squaring effect of normal equations ($\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b}$)
- when \boldsymbol{A} is singular, "fat", or otherwise poorly-specified?
- Total least squares

Today: More Applications of SVD

- Principal Components Analysis
- Multi-dimensional Scaling

Principal Components Analysis (PCA)

- Approximating a high-dimensional data set with a lower-dimensional linear subspace
- Also converts possibly-correlated attributes into uncorrelated attributes

SVD and PCA

- Data matrix with points/examples as rows
- Center data by subtracting mean
- Compute (reduced) SVD
- Columns of \boldsymbol{V} are normalized principal components
- Each w_{i} indicates importance of corresponding component
- Rows of \boldsymbol{U} are data points expressed in terms of principal components

Dimensionality Reduction

- Map points in high-dimensional space to lower number of dimensions
- (Try to) preserve structure: pairwise distances, etc.
- Useful for further processing:
- Less computation, fewer parameters
- Easier to understand, visualize

SVD for Rank-k approximation

- \boldsymbol{A} is $m \times n$ matrix of rank $>k$
- Suppose you want to find best rank-k approximation to \boldsymbol{A}
- Take SVD: $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{W V}^{\top}$
- Set all but the largest k singular values of \boldsymbol{W} to 0
- Can form compact representation by eliminating columns of \boldsymbol{U} and \boldsymbol{V} corresponding to zeroed w_{i}

PCA on Images

- Compression: each new image can be approximated by projection onto first few principal components
- Recognition: for a new image, project onto first few principal components, match feature vectors
- Generation: Adjust contributions of a few principal components to generate new plausible data points

PCA on Images

$$
\begin{aligned}
& \text { E } \\
& \boldsymbol{A} \quad]=[\\
& \boldsymbol{U} \quad]\left[\begin{array}{ccc}
w_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & w_{m}
\end{array}\right]\left[\begin{array}{l}
\quad \\
\end{array}\right.
\end{aligned}
$$

Unrolled Images

PCA for Relighting

- Images under different illumination

PCA for Relighting

- Images under different illumination
- Most variation captured by first 5 principal components can re-illuminate by combining only a few images

Face Recognition

- Suppose you want to recognize a particular face
- How does this face differ from average face
- Not all variations equally important
(variation in a single pixel relatively unimportant)
- If images are high-dimensional vectors, want to find directions in this space with high variation
- PCA!

PCA on Faces: "Eigenfaces"

Using PCA for Recognition

- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components

$$
\text { image }=\text { average }+\sum_{i=1}^{i_{\max }} a_{i} \text { Eigenface }_{i}
$$

Using PCA for Recognition

- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients

$$
a_{i}=(\text { image }- \text { average }) \cdot \text { Eigenface }_{i}
$$

Using PCA for Recognition

- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients
- Is it a face?

$$
\| \text { image }-\left(\text { average }+\sum_{i=1}^{i_{\max }} a_{i} \text { Eigenface }_{i}\right) \|<\text { threshold? }
$$

Using PCA for Recognition

- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients
- Is it a face?
- If a face, find image in database with closest a_{i}
- "Nearest-neighbor classifier"

Choosing the Dimension k

- How many eigenfaces to use?
- Look at the decay of the singular values
- Singular value gives the amount of variance "in the direction" of that eigenface

PCA for DNA Microarrays

- Measure gene activation under different conditions

PCA for DNA Microarrays

- Measure gene activation under different conditions

PCA for DNA Microarrays

- PCA shows patterns of correlated activation
- Genes with same pattern might have similar function

PCA for DNA Microarrays

- PCA shows patterns of correlated activation
- Genes with same pattern might have similar function

PCA for Music

Music Map

- ambient

Practical Considerations for PCA

- Sensitive to scale of each attribute (column)
- In practice, may "standardize" by scaling each attribute to have unit variance
- Sensitive to noisy attributes
- Just because a dimension is highly weighted by PCA doesn't mean it's relevant, informative, etc.

Multidimensional Scaling

Multidimensional Scaling

- In some experiments, can only measure similarity or dissimilarity
- e.g., are responses to stimuli similar or different? How different are they?
- Frequent in psychophysical experiments, preference surveys, etc.
- Want to recover absolute positions in k-dimensional space

Multidimensional Scaling

- Example: given pairwise distances between cities

	Atl	Chi	Den	Hou	LA	Mia	NYC	SF	Sea	DC
Atlanta	0									
Chicago	587	0								
Denver	1212	920	0							
Houston	701	940	879	0						
LA	1936	1745	831	1374	0					
Miami	604	1188	1726	968	2339	0				
NYC	748	713	1631	1420	2451	1092	0			
SF	2139	1858	949	1645	347	2594	2571	0		
Seattle	2182	1737	1021	1891	959	2734	2406	678	0	
DC	543	597	1494	1220	2300	923	205	2442	2329	0

- Want to recover (x, y) locations

Euclidean MDS

- Formally, let's say we have $n \times n$ matrix \boldsymbol{D} consisting of squared distances $d_{i j}=\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}$
- Want to recover $n \times k$ matrix \boldsymbol{X} of positions in k-dimensional space

$$
\begin{gathered}
D=\left(\begin{array}{ccc}
0 & \left(x_{1}-x_{2}\right)^{2} & \left(x_{1}-x_{3}\right)^{2} \\
& \\
\left(x_{1}-x_{2}\right)^{2} & 0 & \left(x_{2}-x_{3}\right)^{2} \\
\left(x_{1}-x_{3}\right)^{2} & \left(x_{2}-x_{3}\right)^{2} & 0 \\
& \\
X=\left(\begin{array}{c}
\left(\cdots x_{1} \cdots\right) \\
\left(\cdots x_{2} \cdots\right) \\
\vdots
\end{array}\right)
\end{array}, .\right.
\end{gathered}
$$

Euclidean MDS

- Observe that

$$
d_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}=x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2}
$$

- Strategy: convert matrix \boldsymbol{D} of $d_{i j}{ }^{2}$ into matrix \boldsymbol{B} of $x_{i} x_{j}$
- "Centered" distance matrix
- Then decompose $\boldsymbol{B}=\boldsymbol{X} \boldsymbol{X}^{\top}$

Euclidean MDS

- Centering:
- Sum of row i of $\boldsymbol{D}=$ sum of column i of $\boldsymbol{D}=$

$$
\begin{aligned}
s_{i} & =\sum_{j} d_{i j}^{2}=\sum_{j} x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2} \\
& =n x_{i}^{2}-2 x_{i} \sum_{j} x_{j}+\sum_{j} x_{j}^{2}
\end{aligned}
$$

- Sum of all entries in $\boldsymbol{D}=$

$$
s=\sum_{i} s_{i}=2 n \sum_{i} x_{i}^{2}-2\left(\sum_{i} x_{i}\right)^{2}
$$

Euclidean MDS

- Choose $\Sigma x_{i}=0$
- Solution will have average position at origin
- Then,

$$
\begin{aligned}
& s_{i}=n x_{i}^{2}+\sum_{j} x_{j}^{2}, \quad s=2 n \sum_{j} x_{j}^{2} \\
& d_{i j}^{2}-\frac{1}{n} s_{i}-\frac{1}{n} s_{j}+\frac{1}{n^{2}} s=-2 x_{i} x_{j}
\end{aligned}
$$

- So, to get \boldsymbol{B} :
- compute row (or column) sums
- compute sum of sums
- apply above formula to each entry of \boldsymbol{D}
- Divide by -2

Factoring $B=X X^{\mathrm{T}}$ using SVD

- Now have \boldsymbol{B}, want to factor into $\boldsymbol{X} \boldsymbol{X}^{\top}$
- If \boldsymbol{X} is $n \times k, \boldsymbol{B}$ must have rank k
- Take SVD, set all but top k singular values to 0
- Eliminate corresponding columns of \boldsymbol{U} and \boldsymbol{V}
- Have $\boldsymbol{B}^{\prime}=\boldsymbol{U}^{\boldsymbol{\prime}} \boldsymbol{W}^{\boldsymbol{\prime}} \boldsymbol{V}^{\boldsymbol{\top}}$
$-\boldsymbol{B}^{\prime}$ is square and symmetric, so $\boldsymbol{U}^{\prime}=\boldsymbol{V}^{\prime}$
- Take $\boldsymbol{X}=\boldsymbol{U}^{\prime}$ times square root of \boldsymbol{W}^{\prime}

Multidimensional Scaling

- Result ($k=2$):

Another application

Figure 2 (a) RMDS of children's similarity judgments about is body parts: (b) RMDS of adults' similarity judgments aboul is body parts.

Perceptual Mapping for Marketing

Multidimensional Scaling

- Caveat: actual axes, center not necessarily what you want (can't recover them!)
- This is "classical" or "Euclidean" MDS [Torgerson 52]
- Distance matrix assumed to be actual Euclidean distance
- More sophisticated versions available
- "Non-metric MDS": not Euclidean distance, sometimes just inequalities
- Replicated MDS: for multiple data sources (e.g. people)
- "Weighted MDS": account for observer bias

