Applications of SVD: PCA & MDS

Szymon Rusinkiewicz COS 302, Fall 2020

Last Time

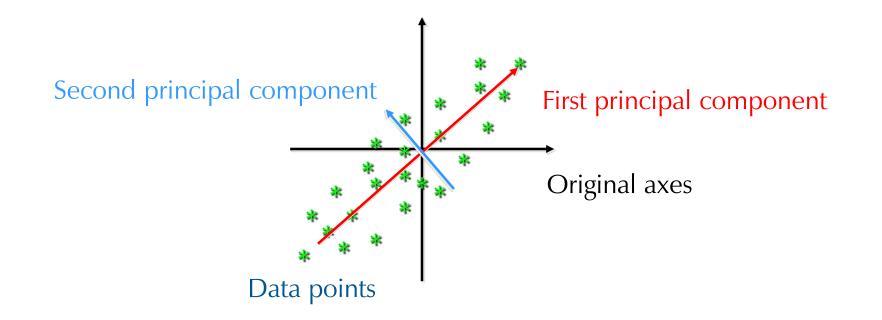
- Singular Value Decomposition
- Solving linear least-squares...
 - without incurring condition-squaring effect of normal equations $(A^T A x = A^T b)$
 - when *A* is singular, "fat", or otherwise poorly-specified?
- Total least squares

Today: More Applications of SVD

- Principal Components Analysis
- Multi-dimensional Scaling

Principal Components Analysis (PCA)

- Approximating a high-dimensional data set with a lower-dimensional linear subspace
- Also converts possibly-correlated attributes into uncorrelated attributes



SVD and PCA

- Data matrix with points/examples as rows
- Center data by subtracting mean
- Compute (reduced) SVD
- Columns of *V* are normalized principal components
- Each *w_i* indicates importance of corresponding component
- Rows of *U* are data points expressed in terms of principal components

Dimensionality Reduction

- Map points in high-dimensional space to lower number of dimensions
- (Try to) preserve structure: pairwise distances, etc.
- Useful for further processing:
 - Less computation, fewer parameters
 - Easier to understand, visualize

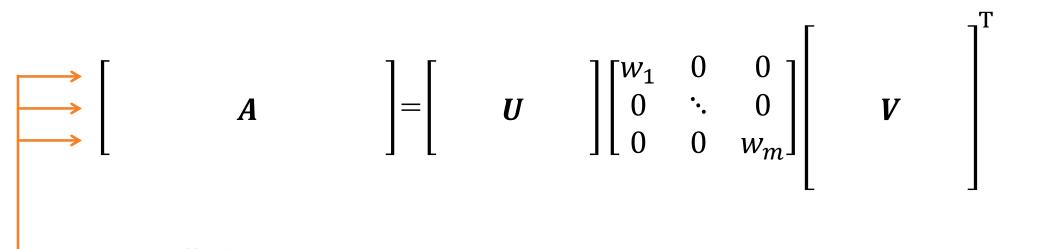
SVD for Rank-*k* approximation

- **A** is $m \times n$ matrix of rank > k
- Suppose you want to find best rank-k approximation to A
- Take SVD: $A = UWV^{T}$
- Set all but the largest k singular values of **W** to 0
- Can form compact representation by eliminating columns of *U* and *V* corresponding to zeroed w_i

PCA on Images

- Compression: each new image can be approximated by projection onto first few principal components
- Recognition: for a new image, project onto first few principal components, match feature vectors
- Generation: Adjust contributions of a few principal components to generate new plausible data points

PCA on Images



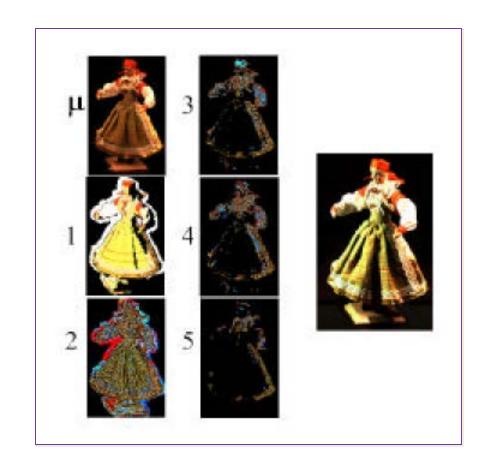
- Unrolled Images

PCA for Relighting

• Images under different illumination

PCA for Relighting

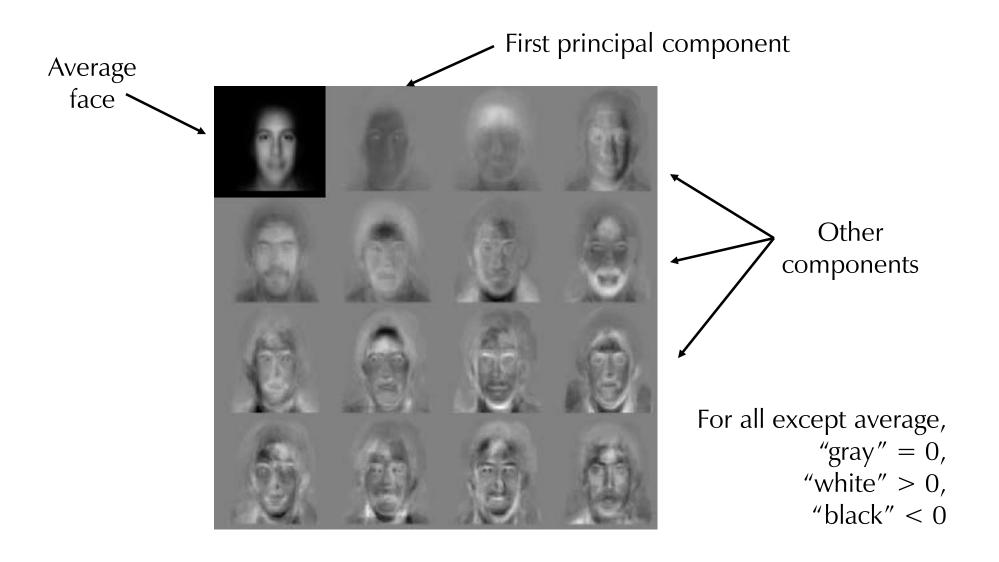
- Images under different illumination
- Most variation captured by first 5 principal components – can re-illuminate by combining only a few images



Face Recognition

- Suppose you want to recognize a particular face
- How does *this* face differ from average face
 - Not all variations equally important (variation in a single pixel relatively unimportant)
- If images are high-dimensional vectors, want to find directions in this space with high variation
 - PCA!

PCA on Faces: "Eigenfaces"



- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components

image = average +
$$\sum_{i=1}^{i_{max}} a_i$$
Eigenface_i

- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients

$$a_i = (\text{image} - \text{average}) \cdot \text{Eigenface}_i$$

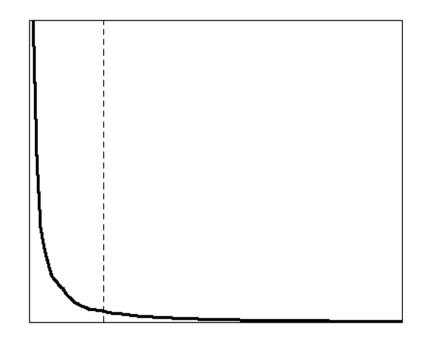
- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients
- Is it a face?

$$\left\| \text{image} - \left(\text{average} + \sum_{i=1}^{i_{max}} a_i \text{Eigenface}_i \right) \right\| < \text{threshold}?$$

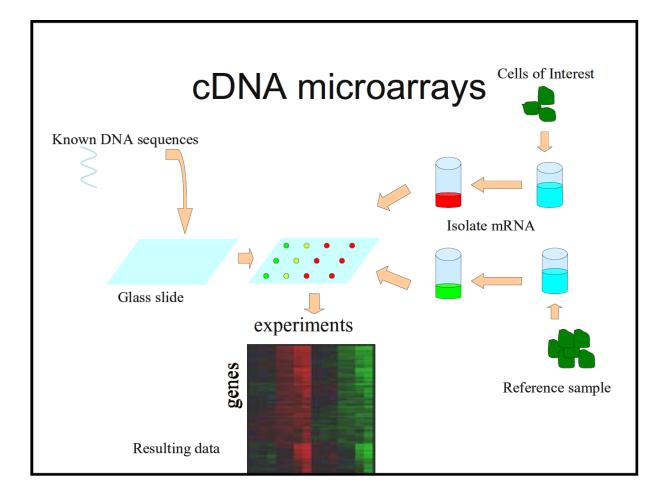
- Compute PCA basis using training set
- Store each person as coefficients of projection onto first few principal components
- For a new image: calculate coefficients
- Is it a face?
- If a face, find image in database with closest a_i
 - "Nearest-neighbor classifier"

Choosing the Dimension k

- How many eigenfaces to use?
- Look at the decay of the singular values
 - Singular value gives the amount of variance "in the direction" of that eigenface

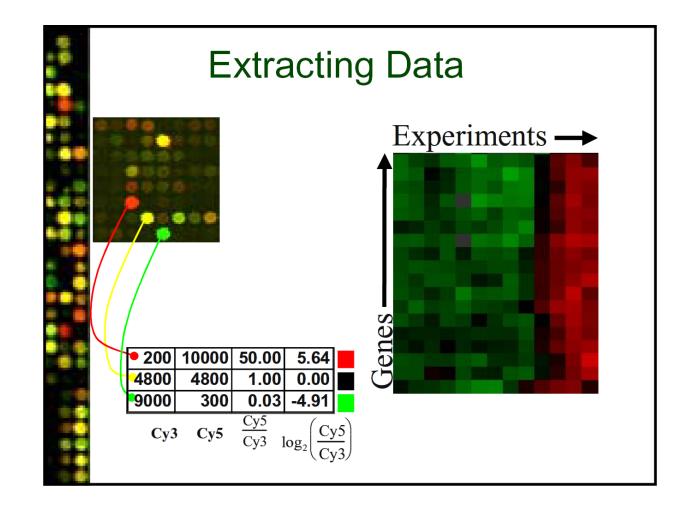


• Measure gene activation under different conditions



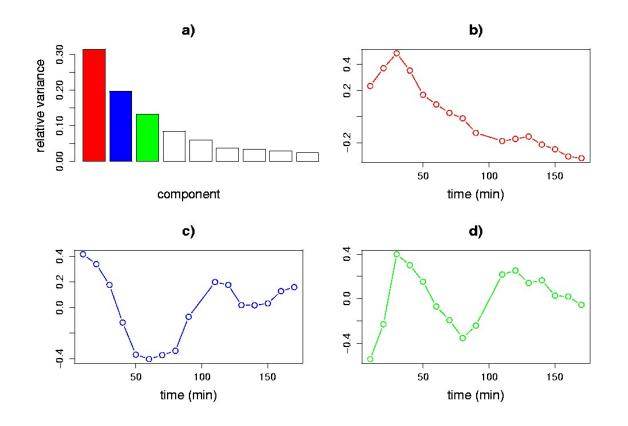
[Troyanskaya]

• Measure gene activation under different conditions



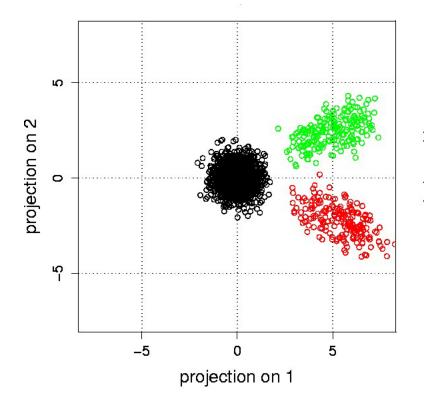
[Troyanskaya]

- PCA shows patterns of correlated activation
 - Genes with same pattern might have similar function

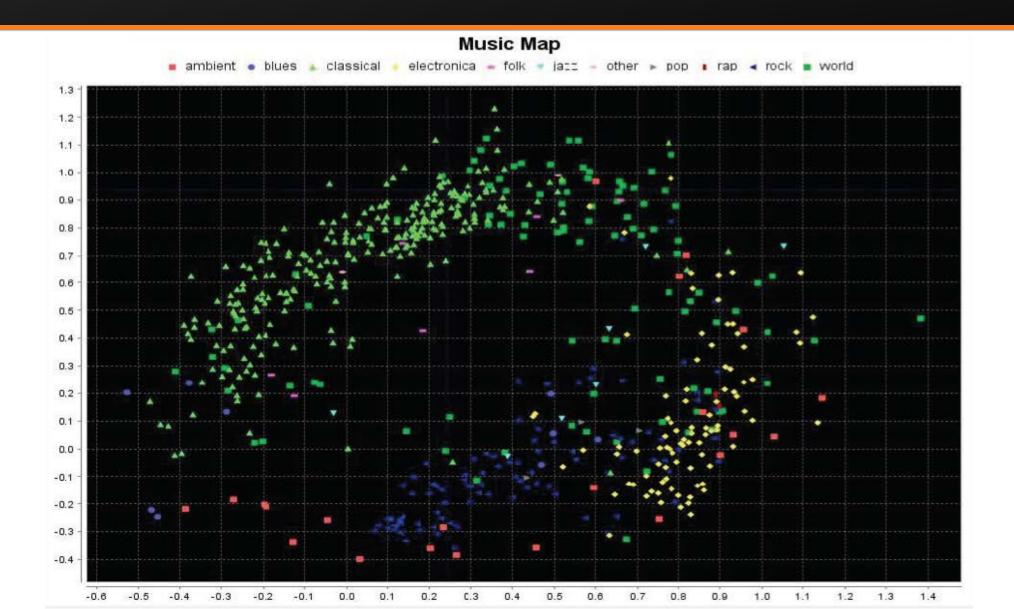


[Wall et al.]

- PCA shows patterns of correlated activation
 - Genes with same pattern might have similar function

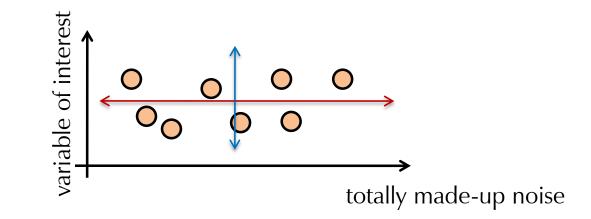


PCA for Music



Practical Considerations for PCA

- Sensitive to scale of each attribute (column)
 - In practice, may "standardize" by scaling each attribute to have unit variance
- Sensitive to noisy attributes
 - Just because a dimension is highly weighted by PCA doesn't mean it's relevant, informative, etc.



- In some experiments, can only measure similarity or dissimilarity
 - e.g., are responses to stimuli similar or different? How different are they?
 - Frequent in psychophysical experiments, preference surveys, etc.
- Want to recover absolute positions in *k*-dimensional space

• Example: given pairwise distances between cities

	Atl	Chi	Den	Hou	LA	Mia	NYC	SF	Sea	DC
Atlanta	0									
Chicago	587	0								
Denver	1212	920	0							
Houston	701	940	879	0						
LA	1936	1745	831	1374	0					
Miami	604	1188	1726	968	2339	0				
NYC	748	713	1631	1420	2451	1092	0			
SF	2139	1858	949	1645	347	2594	2571	0		
Seattle	2182	1737	1021	1891	959	2734	2406	678	0	
DC	543	597	1494	1220	2300	923	205	2442	2329	0

- Want to recover (x,y) locations

- Formally, let's say we have $n \times n$ matrix **D** consisting of squared distances $d_{ij} = ||\mathbf{x}_i - \mathbf{x}_j||^2$
- Want to recover *n* × *k* matrix **X** of positions in *k*-dimensional space

$$D = \begin{pmatrix} 0 & (x_1 - x_2)^2 & (x_1 - x_3)^2 \\ (x_1 - x_2)^2 & 0 & (x_2 - x_3)^2 \\ (x_1 - x_3)^2 & (x_2 - x_3)^2 & 0 \\ & & \ddots \end{pmatrix}$$
$$X = \begin{pmatrix} (\cdots x_1 \cdots) \\ (\cdots x_2 \cdots) \\ \vdots \end{pmatrix}$$

• Observe that

$$d_{ij}^{2} = (x_{i} - x_{j})^{2} = x_{i}^{2} - 2x_{i}x_{j} + x_{j}^{2}$$

- Strategy: convert matrix **D** of d_{ij}^2 into matrix **B** of $x_i x_j$
 - "Centered" distance matrix
 - Then decompose $B = XX^{T}$

- Centering:
 - Sum of row *i* of D = sum of column *i* of D =

$$s_{i} = \sum_{j} d_{ij}^{2} = \sum_{j} x_{i}^{2} - 2x_{i}x_{j} + x_{j}^{2}$$
$$= nx_{i}^{2} - 2x_{i}\sum_{j} x_{j} + \sum_{j} x_{j}^{2}$$

- Sum of all entries in D =

$$s = \sum_{i} s_{i} = 2n \sum_{i} x_{i}^{2} - 2\left(\sum_{i} x_{i}\right)^{2}$$

- Choose $\Sigma x_i = 0$
 - Solution will have average position at origin

$$s_i = nx_i^2 + \sum_j x_j^2, \quad s = 2n\sum_j x_j^2$$

$$d_{ij}^2 - \frac{1}{n}s_i - \frac{1}{n}s_j + \frac{1}{n^2}s = -2x_ix_j$$

- So, to get **B**:
 - compute row (or column) sums
 - compute sum of sums
 - apply above formula to each entry of \boldsymbol{D}
 - Divide by –2

Factoring $B = XX^T$ using SVD

- Now have **B**, want to factor into **XX^{T}**
- If **X** is $n \times k$, **B** must have rank k
- Take SVD, set all but top k singular values to 0
 - Eliminate corresponding columns of U and V
 - Have **B'**=**U'W'V'**[⊺]
 - -B' is square and symmetric, so U' = V'
 - Take X = U' times square root of W'

• Result (k = 2):

Another application

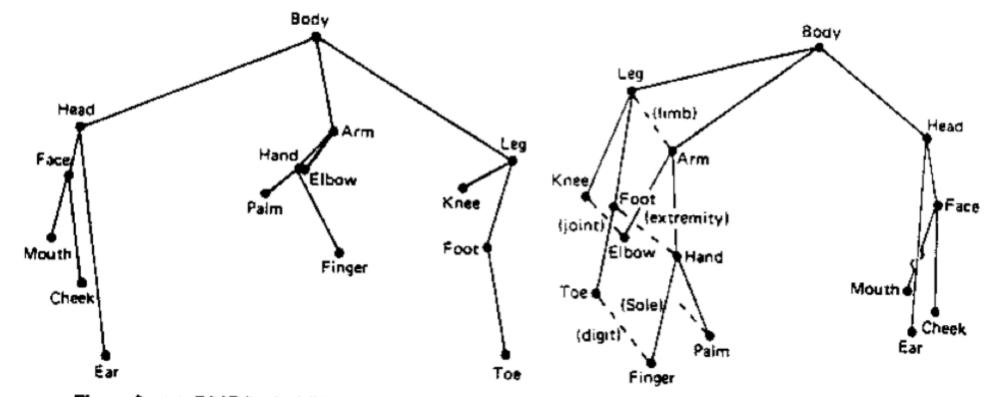
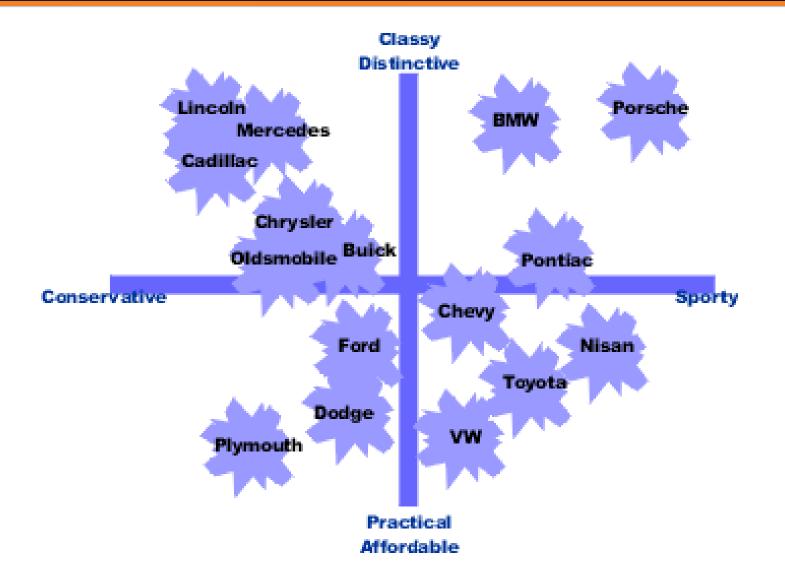


Figure 2 (a) RMDS of children's similarity judgments about 15 body parts: (b) RMDS of adults' similarity judgments about 15 body parts,

From Young 1985 / Jacobowitz 1973

Perceptual Mapping for Marketing



- Caveat: actual axes, center not necessarily what you want (can't recover them!)
- This is "classical" or "Euclidean" MDS [Torgerson 52]
 - Distance matrix assumed to be actual Euclidean distance
- More sophisticated versions available
 - "Non-metric MDS": not Euclidean distance, sometimes just inequalities
 - Replicated MDS: for multiple data sources (e.g. people)
 - "Weighted MDS": account for observer bias