Singular Value Decomposition

Szymon Rusinkiewicz
COS 302, Fall 2020

Singular Value Decomposition (SVD)

- Matrix decomposition that reveals structure
- Useful for:
- Inverses, pseudoinverses

- Stable least-squares, even for unconstrained problems
- Matrix similarity and approximation
- Dimensionality reduction and PCA
- Orthogonalization
- Constrained least squares and multidimensional scaling

Condition Number

- $\operatorname{cond}(\boldsymbol{A})$ is function of \boldsymbol{A}
- $\operatorname{cond}(\boldsymbol{A})>=1$, bigger is bad
- Measures how change in input propagates to output:

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}
$$

- E.g., if $\operatorname{cond}(\boldsymbol{A})=451$ then can lose $\log (451)=2.65$ digits of accuracy in x, compared to precision of \boldsymbol{A}
- For matrices with real eigenvalues, cond $(\boldsymbol{A})=\left|\lambda_{\max }\right| /\left|\lambda_{\text {min }}\right|$

Normal Equations are Bad

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}
$$

- Least squares using normal equations involves solving $\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b}$
- $\operatorname{cond}\left(A^{\top} A\right)=[\operatorname{cond}(A)]^{2}$
- E.g., if $\operatorname{cond}(\boldsymbol{A})=451$ then can lose $\log \left(451^{2}\right)=5.3$ digits of accuracy, compared to precision of \boldsymbol{A}

Underconstrained Least Squares

- What if you have fewer data points than parameters in your function?
- Intuitively, can't do standard least squares
- Solution takes the form $\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b}$
- When \boldsymbol{A} has more columns than rows, $\boldsymbol{A}^{\top} \boldsymbol{A}$ is singular: can't take its inverse, etc.

Underconstrained Least Squares

- More subtle version: more data points than unknowns, but data poorly constrains function
- Example: fitting to $y=a x^{2}+b x+c$

Underconstrained Least Squares

- Problem: if problem very close to singular, roundoff error can have a huge effect
- Even on "well-determined" values!
- Can detect this:
- Uncertainty proportional to covariance $\boldsymbol{C}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1}$
- In other words, unstable if $\boldsymbol{A}^{\top} \boldsymbol{A}$ has small values
- More precisely, care if $\boldsymbol{x}^{\top}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right) \boldsymbol{x}$ is small for any \boldsymbol{x}
- Idea: if part of solution unstable, set answer to 0
- Avoid corrupting good parts of answer

Singular Value Decomposition (SVD)

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix \boldsymbol{A}, algorithm to find matrices $\boldsymbol{U}, \boldsymbol{V}$, and \boldsymbol{W} with:

$$
\begin{aligned}
& \boldsymbol{A}=\boldsymbol{U} \boldsymbol{W} \boldsymbol{V}^{\top} \\
& \boldsymbol{U} \text { is } m \times m \text { and orthonormal } \\
& \boldsymbol{W} \text { is } m \times n \text { and zero except main diagonal } \\
& \boldsymbol{V} \text { is } n \times n \text { and orthonormal }
\end{aligned}
$$

- Won't derive algorithm - treat as black box (e.g., numpy .linalg.svd)

"Full" SVD

$$
\left[\begin{array}{l}
\boldsymbol{A}
\end{array}\right]=\left[\begin{array}{c}
{\left[\begin{array}{ccc}
w_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & w_{n} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V}
\end{array}\right]} \\
m \times n \\
m \times m
\end{array}\right]
$$

$$
u, w, v t=\text { numpy.linalg.svd(a) }
$$

- Handwavy explanation: rotate to a basis where all the scaling and stretching of \boldsymbol{A} is along coordinate axes
- Should remind you of eigendecomposition (which would have $\boldsymbol{U}=\boldsymbol{V}$)
- The w_{i} are called the singular values of \boldsymbol{A}
- If \boldsymbol{A} is singular, some of the w_{i} will be 0
- In general $\operatorname{rank}(\boldsymbol{A})=$ number of nonzero w_{i}
- SVD is mostly unique (up to permutation of singular values, or if some w_{i} are equal)
- The w_{i} are conventionally returned in sorted order, largest to smallest

Singular Value Decomposition (SVD)

- If $m>n$, only n nonzero rows in \boldsymbol{W}, many useless columns in \boldsymbol{U}
- If $n>m$, only m nonzero columns in \boldsymbol{W}, many useless columns in \boldsymbol{V}
- Define "compact" or "reduced" versions that omit all those zeroes

"Compact" SVD, if $m>n$

$$
\left[\begin{array} { l }
{ [\boldsymbol { A } } \\
{ [\begin{array} { l l }
{ \boldsymbol { U } }
\end{array}] = [\begin{array} { c c c }
{ w _ { 1 } } & { 0 } & { 0 } \\
{ 0 } & { \ddots } & { 0 } \\
{ 0 } & { 0 } & { w _ { n } }
\end{array}] [\begin{array} { l }
{ \boldsymbol { V } }
\end{array}] ^ { \mathrm { T } } } \\
{ m \times n }
\end{array} \quad \left[\begin{array}{l}
\\
m \times n
\end{array}\right.\right.
$$

"Compact" SVD, if $n>m$

$$
\left[\begin{array}{c}
\boldsymbol{A}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{U} \\
0 & \ddots
\end{array} 00 \begin{array}{ccc}
w_{1} & 0 & 0 \\
0 & 0 & w_{m}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V} \\
m \times n \\
m \times m
\end{array}\right]^{\mathrm{T}}
$$

u,w,vt = numpy.linalg.svd(a, full_matrices=False)

SVD and Inverses

- Why is SVD so useful?
- Application \#1: inverses
- $\boldsymbol{A}^{-1}=\left(\boldsymbol{V}^{\top}\right)^{-1} \boldsymbol{W}^{-1} \boldsymbol{U}^{-1}=\boldsymbol{V} \boldsymbol{W}^{-1} \boldsymbol{U}^{\top}$
- Using fact that inverse = transpose for orthogonal matrices
- Since \boldsymbol{W} is diagonal, \boldsymbol{W}^{-1} also diagonal with reciprocals of entries of \boldsymbol{W}

SVD and the Pseudoinverse

- $\boldsymbol{A}^{-1}=\left(\boldsymbol{V}^{\top}\right)^{-1} \boldsymbol{W}^{-1} \boldsymbol{U}^{-1}=\boldsymbol{V} \boldsymbol{W}^{-1} \boldsymbol{U}^{\top}$
- This fails when some w_{i} are 0
- It's supposed to fail - singular matrix
- Happens when rectangular \boldsymbol{A} is rank deficient
- Pseudoinverse \boldsymbol{A}^{+}: if $w_{i}=0$, set $1 / w_{i}$ to $0(!!)$
- "Closest" matrix to inverse
- Defined for all (even non-square, singular, etc.) matrices
- Equal to $\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top}$ if $\boldsymbol{A}^{\top} \boldsymbol{A}$ invertible

SVD and Least Squares

- Solving $\boldsymbol{A x}=\boldsymbol{b}$ by least squares:
- $\boldsymbol{A}^{\top} \boldsymbol{A x}=\boldsymbol{A}^{\top} \boldsymbol{b} \rightarrow \mathbf{x}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$
- Replace with $\boldsymbol{A}^{+}: \boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}$
- Compute pseudoinverse using SVD
- Lets you see if data is singular (<n nonzero singular values)
- Singular values tell you how stable the solution will be
- Condition number $=$ ratio of largest to smallest singular values
- For better stability, set $1 / w_{i}$ to 0 if w_{i} is small (even if not exactly 0)
- Accuracy / stability tradeoff? Not if that component was underconstrained...

SVD and Matrix Similarity

- One common definition for the norm of a matrix is the Frobenius norm:

$$
\|\mathbf{A}\|_{\mathrm{F}}=\sum_{i} \sum_{j} a_{i j}^{2}
$$

- Frobenius norm can be computed from SVD

$$
\|\mathbf{A}\|_{\mathrm{F}}=\sum_{i} w_{i}^{2}
$$

- Euclidean (spectral) norm can also be computed:

$$
\|\mathbf{A}\|_{2}=\{\max |\lambda|: \lambda \in \sigma(\mathbf{A})\}
$$

- So changes to a matrix can be evaluated by looking at changes to singular values

SVD and Matrix Similarity

- Suppose you want to find best rank-k approximation to \boldsymbol{A}
- Answer: set all but the largest k singular values to zero
- Can form compact representation by eliminating columns of \boldsymbol{U} and \boldsymbol{V} corresponding to zeroed w_{i}

SVD and Orthogonalization

- \boldsymbol{U} and \boldsymbol{V} are orthonormal, all stretching and scaling in \boldsymbol{W}
- The matrix $\boldsymbol{U} \boldsymbol{V}^{\top}$ is the "closest" orthonormal matrix to \boldsymbol{A}
- Yet another useful application of the matrix-approximation properties of SVD
- Much more stable numerically than Graham-Schmidt orthogonalization

Total Least Squares

- One final least squares application
- Fitting a line: vertical vs. perpendicular error

Total Least Squares

- Distance from point to line:

$$
d_{i}=\binom{x_{i}}{y_{i}} \cdot \vec{n}-a
$$

where \boldsymbol{n} is normal vector to line, a is a constant

- Minimize:

$$
\chi^{2}=\sum_{i} d_{i}^{2}=\sum_{i}\left[\binom{x_{i}}{y_{i}} \cdot \vec{n}-a\right]^{2}
$$

Total Least Squares

- First, let's pretend we know \boldsymbol{n}, solve for a
- Then

$$
\begin{aligned}
& \chi^{2}=\sum_{i}\left[\binom{x_{i}}{y_{i}} \cdot \vec{n}-a\right]^{2} \\
& a=\frac{1}{m} \sum_{i}\binom{x_{i}}{y_{i}} \cdot \vec{n}
\end{aligned}
$$

$$
d_{i}=\binom{x_{i}}{y_{i}} \cdot \vec{n}-a=\binom{x_{i}-\frac{\Sigma x_{i}}{m}}{y_{i}-\frac{\Sigma v_{i}}{m}} \cdot \vec{n}
$$

Total Least Squares

- So, let's define
and minimize

$$
\begin{gathered}
\binom{\tilde{x}_{i}}{\tilde{y}_{i}}=\binom{x_{i}-\frac{\Sigma x_{i}}{m}}{y_{i}-\frac{\Sigma y_{i}}{m}} \\
\sum_{i}\left[\binom{\tilde{x}_{i}}{\tilde{y}_{i}} \cdot \vec{n}\right]^{2}
\end{gathered}
$$

Total Least Squares

- Write as linear system

$$
\left(\begin{array}{cc}
\tilde{x}_{1} & \tilde{y}_{1} \\
\tilde{x}_{2} & \tilde{y}_{2} \\
\tilde{x}_{3} & \tilde{y}_{3} \\
& \vdots
\end{array}\right)\binom{n_{x}}{n_{y}}=\overrightarrow{0}
$$

- Have $\boldsymbol{A n}=\mathbf{0}$
- Problem: lots of n are solutions, including $\boldsymbol{n}=\mathbf{0}$
- Standard least squares will, in fact, return $\boldsymbol{n}=\mathbf{0}$

Constrained Optimization

- Solution: constrain n to be unit length
- So, try to minimize $\|\boldsymbol{A} \boldsymbol{n}\|^{2}$ subject to $\|\boldsymbol{n}\|^{2}=1$

$$
\|\mathbf{A} \vec{n}\|^{2}=(\mathbf{A} \vec{n})^{\mathrm{T}}(\mathbf{A} \vec{n})=\vec{n}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \vec{n}
$$

- Expand in eigenvectors \mathbf{e}_{i} of $\boldsymbol{A}^{\top} \boldsymbol{A}$:

$$
\begin{gathered}
\vec{n}=\mu_{1} \mathbf{e}_{1}+\mu_{2} \mathbf{e}_{2} \\
\vec{n}^{\mathrm{T}}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right) \vec{n}=\lambda_{1} \mu_{1}^{2}+\lambda_{2} \mu_{2}^{2} \\
\|\vec{n}\|^{2}=\mu_{1}^{2}+\mu_{2}^{2}
\end{gathered}
$$

where the λ_{i} are eigenvalues of $\boldsymbol{A}^{\top} \boldsymbol{A}$

Constrained Optimization

- To minimize $\lambda_{1} \mu_{1}^{2}+\lambda_{2} \mu_{2}^{2}$ subject to $\mu_{1}^{2}+\mu_{2}^{2}=1$ set $\mu_{\text {min }}=1$, all other $\mu_{i}=0$
- That is, \boldsymbol{n} is eigenvector of $\boldsymbol{A}^{\top} \boldsymbol{A}$ with the smallest corresponding eigenvalue

SVD and Eigenvectors

- Let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{W} \boldsymbol{V}^{\top}$, and let x_{i} be $i^{\text {th }}$ column of \boldsymbol{V}
- Consider $\boldsymbol{A}^{\top} \boldsymbol{A} \mathrm{x}_{i}$:

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A} x_{i}=\mathbf{V W}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{U W} \mathbf{V}^{\mathrm{T}} x_{i}=\mathbf{V W}^{2} \mathbf{V}^{\mathrm{T}} x_{i}=\mathbf{V} \mathbf{W}^{2}\left(\begin{array}{c}
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)=\mathbf{V}\left(\begin{array}{c}
\vdots \\
w_{i}^{2} \\
\vdots \\
0
\end{array}\right)=w_{i}^{2} x_{i}
$$

- So elements of \boldsymbol{W} are sqrt(eigenvalues) and columns of \boldsymbol{V} are eigenvectors of $\boldsymbol{A}^{\top} \boldsymbol{A}$

Constrained Optimization

- To minimize $\lambda_{1} \mu_{1}^{2}+\lambda_{2} \mu_{2}^{2}$ subject to $\mu_{1}^{2}+\mu_{2}^{2}=1$ set $\mu_{\text {min }}=1$, all other $\mu_{i}=0$
- That is, \boldsymbol{n} is eigenvector of $\boldsymbol{A}^{\top} \boldsymbol{A}$ with the smallest corresponding eigenvalue
- That is, \boldsymbol{n} is column of \boldsymbol{V} corresponding to smallest singular value
- Provides a solution to the total least squares problem
- Also very related to PCA - next time

