Matrix Trace and Invariants

Szymon Rusinkiewicz COS 302, Fall 2020

That Mysterious Trace...

Simple definition: trace of a square matrix = sum of its diagonal elements

- Book properties:
 - Linearity: Tr(A + B) = Tr(A) + Tr(B); $Tr(\alpha A) = \alpha Tr(A)$
 - Commutativity: Tr(AB) = Tr(BA) but $\neq Tr(A) Tr(B)$
- Other trivial properties:
 - For an *n*-dimensional identity matrix: Tr(I) = n
 - For a transpose: $Tr(\mathbf{A}^{\mathsf{T}}) = Tr(\mathbf{A})$
- But what's the intuition?

Invariance

• For any change-of-basis matrix *M*,

$$\mathrm{Tr}(\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{M})=\mathrm{Tr}(\boldsymbol{A})$$

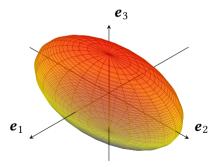
- Really big deal: this means that, like determinant, trace is basis invariant
- In particular, *M* can be transformation that diagonalizes into eigenbasis:

$$\boldsymbol{D} = \boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{M}$$

• So, trace equals the sum of eigenvalues, just as determinant is their product

Applications

- Consider a symmetric matrix *A*. You may recall that it always has real eigenvalues and orthogonal eigenvectors.
- If positive definite: think of generalized ellipse / ellipsoid



Applications

• Now consider the quadratic form

$\hat{\boldsymbol{v}}^{\mathsf{T}} \boldsymbol{A} \, \hat{\boldsymbol{v}}$

that tells you stretch along each unit-length direction $\hat{\boldsymbol{v}}$.

- $\frac{1}{n}$ times the trace of A gives the *mean* or *expected value* of the quadratic form over all directions \hat{v}
 - In engineering, if matrix is *stress tensor*, gives mean stress
 - In differential geometry, if matrix is curvature tensor, gives mean curvature

Other Invariants

• You might wonder if there are other invariant quantities for a matrix

 $f(\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{M}) = f(\boldsymbol{A})$

besides the trace and determinant.

- It turns out that for an *n* × *n* matrix there are *n* independent invariants (in the sense that they are not related to each other by some function).
 - For 2×2 , just the trace and determinant!

Other Invariants

The *principal invariants* of a matrix *A* are:

For 2 × 2 :	For 3 × 3 :	For 4 × 4 :
$I_1 = \lambda_1 + \lambda_2$	$I_1 = \lambda_1 + \lambda_2 + \lambda_3$	$I_1 = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4$
$I_2 = \lambda_1 \lambda_2$	$I_2 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3$	$I_2 = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4$
	$I_3 = \lambda_1 \lambda_2 \lambda_3$	$I_3 = \lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_2 \lambda_4 + \lambda_1 \lambda_3 \lambda_4 + \lambda_2 \lambda_3 \lambda_4$
		$I_4=\lambda_1\lambda_2\lambda_3\lambda_4$

where $\lambda_1, \lambda_2, \lambda_3, \ldots$ are the eigenvalues of *A*.

Notice that the first and last ones are always the trace and determinant.