Norms and Inner Products

Szymon Rusinkiewicz COS 302, Fall 2020

Concrete vs. Abstract

More Concrete	More Abstract
Matrices	Linear mappings
Rank of a matrix	Dimension of the image of a map
Full-rank matrices	Injective (one-to-one) linear maps
Gaussian elimination	When do systems have solutions

Concrete vs. Abstract

More Concrete	More Abstract
Matrices	Linear mappings
Rank of a matrix	Dimension of the image of a map
Full-rank matrices	Injective (one-to-one) linear maps
Gaussian elimination	When do systems have solutions
Euclidean distance in \mathbb{R}^n	General norms
Dot products	General inner products

In Euclidean Space...

Length of a vector
$$\mathbf{x}$$
: $\|\mathbf{x}\| = \sqrt{\sum_{i} x_i^2}$

Distance between vectors \mathbf{x} and \mathbf{y} : $\|\mathbf{x} - \mathbf{y}\| = \sqrt{\sum_{i} (x_i - y_i)^2}$

These let us talk about lengths and distances in \mathbb{R}^n .

Dot product between vectors
$$\mathbf{x}$$
 and \mathbf{y} : $\mathbf{x} \cdot \mathbf{y} = \sum_{i} x_{i} y_{i}$

This lets us talk about angles and perpendicularity (orthogonality).

Properties of Euclidean Length

- Real-valued function on vectors
- "Positive definite":
 - Non-negative: $||x|| \ge 0$
 - Positive except for **0** vector
- Absolutely homogeneous: $\|\lambda x\| = |\lambda| \|x\|$
- Obeys triangle inequality: $||x + y|| \le ||x|| + ||y||$
- Induces a distance metric between vectors: $d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||$

All of these can apply to more general notions of "length."

Properties of Dot Product

- Real-valued function on pairs of vectors
- Symmetric: $x \cdot y = y \cdot x$
- Bilinear: $(\lambda \mathbf{x} + \psi \mathbf{y}) \cdot \mathbf{z} = \lambda(\mathbf{x} \cdot \mathbf{z}) + \psi(\mathbf{y} \cdot \mathbf{z})$ $\mathbf{x} \cdot (\lambda \mathbf{y} + \psi \mathbf{z}) = \lambda(\mathbf{x} \cdot \mathbf{y}) + \psi(\mathbf{x} \cdot \mathbf{z})$
- Positive definite: $x \cdot x > 0$ unless x = 0
- Induces a norm (in this case, standard Euclidean norm): $||x|| = \sqrt{x \cdot x}$
- induces a norm (in this case, standard Edendean norm). $\|x\| = \sqrt{x}$

All of these can apply to more general notions of "product."

More Properties of Dot Product

Before we generalize, two more properties:

- Relation to matrix product: $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{y} = \mathbf{y}^{\mathsf{T}} \mathbf{x}$, and so $||\mathbf{x}|| = \sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{x}}$
- Relation to angles: $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$
 - Important special case: for nonzero x, y, $x \cdot y = 0$ iff x and y are perpendicular

Suppose you apply a linear mapping to both vectors, then take a dot product in the new space.

• Will this be the same as the original dot product?

Suppose you apply a linear mapping to both vectors, then take a dot product in the new space.

- Will this be the same as the original dot product? No.
- Will this always produce a "valid" dot product?

Suppose you apply a linear mapping to both vectors, then take a dot product in the new space.

- Will this be the same as the original dot product? No.
- Will this always produce a "valid" dot product? No.
 - For positive definiteness, need the linear mapping *not* to collapse dimensions

Suppose you apply an injective linear mapping to both vectors, then take a dot product in the new space.

Suppose you apply a injective linear mapping to both vectors, then take a dot product in the new space.

Let the transformation be representable by matrix M.

New inner product $\langle x, y \rangle = (Mx)^{\mathsf{T}} (My) = x^{\mathsf{T}} M^{\mathsf{T}} M y = x^{\mathsf{T}} A y$, where the matrix A is square, symmetric, and *positive definite*.

Aside: Quadratic Forms

You'll often see notation such as x^TAx , with square and symmetric A. This is a *quadratic form*: a second-order polynomial in the elements of x:

Let
$$\mathbf{x} = (x_1, x_2, x_3, ...)$$
. Then,

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = a x_1^2 + b x_1 x_2 + c x_2^2 + d x_1 x_3 + e x_2 x_3 + f x_3^2 + \dots$$

Also: a *bilinear form* x^TAy is a function from two vectors to a scalar that is linear in both x and y.

The generalized inner product, applied to the same vector twice, gives

$$\langle x, x \rangle_A = x^T A x$$

for some square, symmetric A.

- If **A** is diagonal, then we just have scaled versions of x_1^2 , x_2^2 , etc.
 - Application: the "weight" or "importance" of each dimension is different.
- If *A* is not diagonal, also have "mixed" quadratic terms: x_1x_2 , x_2x_3 , etc.
 - Application: accounting for "correlation" between dimensions.

Example:
$$\mathbf{A} = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}$$
, so $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = x_1^2 + x_2^2 - x_1 x_2$.

The norm induced by this inner product *downweights* correlation in x_1 and x_2 .

The generalized inner product, applied to the same vector twice, gives

$$\langle x, x \rangle_A = x^T A x$$

for some square, symmetric A.

- But we know that this has to be > 0 (unless x is the 0 vector),
 because it came from a dot product in some (transformed) space.
- So we say that *A* is "symmetric positive definite" or SPD.
- Key duality between SPD matrices, generalized inner products, and norms on linearly-transformed vector spaces.
 - A is SPD iff it can be written as $A = M^T M$

Generalizing Norm: L^p Spaces

Not all norms come from inner products. We can have vector spaces with *valid norms* but *no well-defined inner products*.

Most important example: ℓ_p norm

$$\|\mathbf{x}\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$$

for $p \ge 1$. (For p < 1, does not satisfy triangle inequality, so not a valid norm.)

Generalizing Norm: L^p Spaces

$$\|\boldsymbol{x}\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$$

- p = 2: Good ol' Euclidean norm.
- p = 1: Manhattan or taxicab norm. $\|x\|_1 = \sum_i |x_i| = \text{sum of North-South and East-West distances}$, when restricted to city-block grid. Often used in *robust estimation*.
- $p = \infty$: Infinity norm or *max* norm.

$$\|\boldsymbol{x}\|_{\infty} = \max_{i} |x_{i}|$$

