Norms and Inner Products

Szymon Rusinkiewicz COS 302, Fall 2020
princeton
UNIVERSITY

More Concrete	More Abstract
Matrices	Linear mappings
Rank of a matrix	Dimension of the image of a map
Full-rank matrices	Injective (one-to-one) linear maps
Gaussian elimination	When do systems have solutions

More Concrete	More Abstract
Matrices	Linear mappings
Rank of a matrix	Dimension of the image of a map
Full-rank matrices	Injective (one-to-one) linear maps
Gaussian elimination	When do systems have solutions
Euclidean distance in \mathbb{R}^{n}	General norms
Dot products	General inner products

In Euclidean Space...

$$
\text { Length of a vector } \boldsymbol{x}:\|\boldsymbol{x}\|=\sqrt{\sum_{i} x_{i}^{2}}
$$

Distance between vectors \boldsymbol{x} and $\boldsymbol{y}: \quad\|\boldsymbol{x}-\boldsymbol{y}\|=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}$

These let us talk about lengths and distances in \mathbb{R}^{n}.
Dot product between vectors \boldsymbol{x} and $\boldsymbol{y}: \quad \boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i} x_{i} y_{i}$
This lets us talk about angles and perpendicularity (orthogonality).

Properties of Euclidean Length

- Real-valued function on vectors
- "Positive definite":
- Non-negative: $\|x\| \geq 0$
- Positive except for 0 vector
- Absolutely homogeneous: $\|\lambda \boldsymbol{x}\|=|\lambda|\|x\|$
- Obeys triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$
- Induces a distance metric between vectors: $d(\boldsymbol{x}, \boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\|$

All of these can apply to more general notions of "length."

Properties of Dot Product

- Real-valued function on pairs of vectors
- Symmetric: $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{y} \cdot \boldsymbol{x}$
- Bilinear: $(\lambda \boldsymbol{x}+\psi \boldsymbol{y}) \cdot \boldsymbol{z}=\lambda(\boldsymbol{x} \cdot \boldsymbol{z})+\psi(\boldsymbol{y} \cdot \boldsymbol{z})$

$$
\boldsymbol{x} \cdot(\lambda \boldsymbol{y}+\psi \boldsymbol{z})=\lambda(\boldsymbol{x} \cdot \boldsymbol{y})+\psi(\boldsymbol{x} \cdot \boldsymbol{z})
$$

- Positive definite: $\boldsymbol{x} \cdot \boldsymbol{x}>0$ unless $\boldsymbol{x}=\mathbf{0}$
- Induces a norm (in this case, standard Euclidean norm): $\|x\|=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}$

All of these can apply to more general notions of "product."

More Properties of Dot Product

Before we generalize, two more properties:

- Relation to matrix product: $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{y}=\boldsymbol{y}^{\top} \boldsymbol{x}$, and so $\|\boldsymbol{x}\|=\sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}}$
- Relation to angles: $\boldsymbol{x} \cdot \boldsymbol{y}=\|\boldsymbol{x}\|\|\boldsymbol{y}\| \cos \theta$
- Important special case: for nonzero $\boldsymbol{x}, \boldsymbol{y}$, $\boldsymbol{x} \cdot \boldsymbol{y}=0$ iff \boldsymbol{x} and \boldsymbol{y} are perpendicular

Generalizing Dot Product: Inner Product

Suppose you apply a linear mapping to both vectors, then take a dot product in the new space.

- Will this be the same as the original dot product?

Generalizing Dot Product: Inner Product

Suppose you apply a linear mapping to both vectors, then take a dot product in the new space.

- Will this be the same as the original dot product? No.
- Will this always produce a "valid" dot product?

Generalizing Dot Product: Inner Product

Suppose you apply a linear mapping to both vectors, then take a dot product in the new space.

- Will this be the same as the original dot product? No.
- Will this always produce a "valid" dot product? No.
- For positive definiteness, need the linear mapping not to collapse dimensions

Generalizing Dot Product: Inner Product

Suppose you apply an injective linear mapping to both vectors, then take a dot product in the new space.

Generalizing Dot Product: Inner Product

Suppose you apply a injective linear mapping to both vectors, then take a dot product in the new space.

Let the transformation be representable by matrix M.

New inner product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=(\boldsymbol{M} \boldsymbol{x})^{\top}(\boldsymbol{M} \boldsymbol{y})=\boldsymbol{x}^{\top} \boldsymbol{M}^{\top} \boldsymbol{M} \boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}$, where the matrix A is square, symmetric, and positive definite.

Aside: Quadratic Forms

You'll often see notation such as $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}$, with square and symmetric \boldsymbol{A}. This is a quadratic form: a second-order polynomial in the elements of \boldsymbol{x} :

Let $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$. Then,

$$
\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}+d x_{1} x_{3}+e x_{2} x_{3}+f x_{3}^{2}+\ldots
$$

Also: a bilinear form $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}$ is a function from two vectors to a scalar that is linear in both \boldsymbol{x} and \boldsymbol{y}.

Generalizing Dot Product: Inner Product

The generalized inner product, applied to the same vector twice, gives

$$
\langle x, x\rangle_{A}=x^{\top} A x
$$

for some square, symmetric A.

- If \boldsymbol{A} is diagonal, then we just have scaled versions of x_{1}^{2}, x_{2}^{2}, etc.
- Application: the "weight" or "importance" of each dimension is different.
- If A is not diagonal, also have "mixed" quadratic terms: $x_{1} x_{2}, x_{2} x_{3}$, etc.
- Application: accounting for "correlation" between dimensions.

Example: $\boldsymbol{A}=\left[\begin{array}{cc}1 & -1 / 2 \\ -1 / 2 & 1\end{array}\right]$, so $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}$.
The norm induced by this inner product downweights correlation in x_{1} and x_{2}.

Generalizing Dot Product: Inner Product

The generalized inner product, applied to the same vector twice, gives

$$
\langle x, x\rangle_{A}=x^{\top} A x
$$

for some square, symmetric A.

- But we know that this has to be >0 (unless \boldsymbol{x} is the 0 vector), because it came from a dot product in some (transformed) space.
- So we say that A is "symmetric positive definite" or SPD.
- Key duality between SPD matrices, generalized inner products, and norms on linearly-transformed vector spaces.
- \boldsymbol{A} is SPD iff it can be written as $\boldsymbol{A}=\boldsymbol{M}^{\top} \boldsymbol{M}$

Generalizing Norm: L^{p} Spaces

Not all norms come from inner products. We can have vector spaces with valid norms but no well-defined inner products.

Most important example: ℓ_{p} norm

$$
\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for $p \geq 1$. (For $p<1$, does not satisfy triangle inequality, so not a valid norm.)

Generalizing Norm: L^{p} Spaces

$$
\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

- $p=2$: Good ol' Euclidean norm.
- $p=1$: Manhattan or taxicab norm.
$\|\boldsymbol{x}\|_{1}=\sum_{i}\left|x_{i}\right|=$ sum of North-South and East-West distances, when restricted to city-block grid. Often used in robust estimation.
- $p=\infty$: Infinity norm or max norm.
$\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$

