Linear Mappings and *-ective *-morphisms

Szymon Rusinkiewicz
COS 302, Fall 2020
PRINCETON
UNIVERSITY

a.k.a. The COS 302 Mathematician-English Dictionary

Szymon Rusinkiewicz
COS 302, Fall 2020
PRINCETON
UNIVERSITY

Linear Mapping

The Mathematician Says:

A vector space homomorphism $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}, \lambda, \psi \in \mathbb{R}: \Phi(\lambda \boldsymbol{x}+\psi \boldsymbol{y})=\lambda \Phi(\boldsymbol{x})+\psi \Phi(\boldsymbol{y})
$$

Linear Mapping

The Mathematician Says:

A vector space homomorphism $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}, \lambda, \psi \in \mathbb{R}: \Phi(\lambda \boldsymbol{x}+\psi \boldsymbol{y})=\lambda \Phi(\boldsymbol{x})+\psi \Phi(\boldsymbol{y})
$$

In English:

Φ is a linear mapping from \mathbb{V} to \mathbb{W} if it preserves the properties of a vector space.
If vectors in \mathbb{V} are n-dimensional, and vectors in \mathbb{W} are m-dimensional, then Φ can be represented by an $m \times n$ matrix.

Injectivity

The Mathematician Says:

An injective mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}: \Phi(\boldsymbol{x})=\Phi(\boldsymbol{y}) \Rightarrow \boldsymbol{x}=\boldsymbol{y}
$$

Injectivity

The Mathematician Says:

An injective mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}: \Phi(\boldsymbol{x})=\Phi(\boldsymbol{y}) \Rightarrow \boldsymbol{x}=\boldsymbol{y}
$$

In English:
Φ is one-to-one iff it doesn't collapse multiple elements into one.

Surjectivity

The Mathematician Says:

An surjective mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\forall \boldsymbol{w} \in \mathbb{W}, \exists \boldsymbol{v} \in \mathbb{V}: \Phi(\boldsymbol{v})=\boldsymbol{w}
$$

Surjectivity

The Mathematician Says:

An surjective mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\forall \boldsymbol{w} \in \mathbb{W}, \exists \boldsymbol{v} \in \mathbb{V}: \Phi(\boldsymbol{v})=\boldsymbol{w}
$$

In English:
Φ is onto iff it can output every element of \mathbb{W} (perhaps not uniquely).

Bijectivity

The Mathematician Says:
A mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ is bijective iff it is both injective and surjective.

Bijectivity

The Mathematician Says:

A mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ is bijective iff it is both injective and surjective.

In English:

Φ is a one-to-one correspondence iff there is
a unique element of \mathbb{W} for every element of \mathbb{V}, and vice versa.
In this case, Φ is guaranteed to have an inverse, written Φ^{-1}.

*-jectivity Decoder Chart

- Isomorphisms are linear, bijective maps.
- Endomorphisms are linear maps into the same space. ("square matrix")
- Automorphisms are isomorphic endomorphisms. ("square invertible matrix")

Kernel

The Mathematician Says:
The kernel of a mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\operatorname{ker}(\Phi)=\{\boldsymbol{v} \in \mathbb{V}: \Phi(\boldsymbol{v})=\mathbf{0}\}
$$

Kernel

The Mathematician Says:

The kernel of a mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\operatorname{ker}(\Phi)=\{\boldsymbol{v} \in \mathbb{V}: \Phi(\boldsymbol{v})=\mathbf{0}\}
$$

In English:

A linear mapping collapses some set of vectors (always including the $\mathbf{0}$ vector) to zero. This set of vectors is called the kernel or null space.

Image

The Mathematician Says:
The image of a mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\operatorname{Im}(\Phi)=\{\boldsymbol{w} \in \mathbb{W}: \exists \boldsymbol{v} \in \mathbb{V}, \Phi(\boldsymbol{v})=\boldsymbol{w}\}
$$

Image

The Mathematician Says:

The image of a mapping $\Phi: \mathbb{V} \rightarrow \mathbb{W}$ satisfies

$$
\operatorname{Im}(\Phi)=\{\boldsymbol{w} \in \mathbb{W}: \exists \boldsymbol{v} \in \mathbb{V}, \Phi(\boldsymbol{v})=\boldsymbol{w}\}
$$

In English:

The image or range of a mapping is the set of vectors it can output.

Rank-Nullity Theorem

The Mathematician Says:

The dimension of the domain of a linear map is the sum of the dimensions of its kernel and its image.

$$
\operatorname{dim}(\mathbb{V})=\operatorname{dim}(\operatorname{ker}(\Phi))+\operatorname{dim}(\operatorname{Im}(\Phi))
$$

Rank-Nullity Theorem

The Mathematician Says:

The dimension of the domain of a linear map is the sum of the dimensions of its kernel and its image.

$$
\operatorname{dim}(\mathbb{V})=\operatorname{dim}(\operatorname{ker}(\Phi))+\operatorname{dim}(\operatorname{Im}(\Phi))
$$

In English:

The number of dimensions preserved by a linear transformation, plus the number collapsed to zero, equals the dimension of the original vector space (where the "dimensions" need not be the coordinate axes or basis vectors.)

