Linear Independence, Bases, and Rank

Szymon Rusinkiewicz
COS 302, Fall 2020
PRINCETON
UNIVERSITY

Linear Combination

- Let \mathbb{V} be a vector space. $\boldsymbol{v} \in \mathbb{V}$ is a linear combination of vectors $x_{1}, \ldots, x_{k} \in \mathbb{V}$ if

$$
\boldsymbol{v}=\lambda_{1} x_{1}+\ldots+\lambda_{k} x_{k}=\sum_{i=1}^{k} \lambda_{i} x_{i} \in \mathbb{V}
$$

- Nontrivial linear combinations have at least one coefficient $\lambda_{i} \neq 0$
- The 0 -vector can be "trivially" represented as a linear combination $\sum_{i=1}^{k} 0 \boldsymbol{x}_{\boldsymbol{i}}$.

Linear (In)dependence

- If there is at least one nontrivial linear combination of $x_{1}, \ldots, x_{k} \in \mathbb{V}$ such that $\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}_{\boldsymbol{i}}=\mathbf{0}$, then $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{k}}$ are linearly dependent.
- Otherwise, when only the trivial solution exists, they are linearly independent.

Linear (In)dependence

- Linearly independent vectors have no "redundancy"
- If we remove any one of them, there will be certain vectors we can no longer represent via linear combinations.
- Equivalently, can't express any $\boldsymbol{x}_{\boldsymbol{i}}$ as a linear combination of the others.

Linear (In)dependence

Example: Consider three vectors $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} where $\boldsymbol{c}=\boldsymbol{a}+\boldsymbol{b}$.

These vectors are linearly dependent because $\boldsymbol{a}+\boldsymbol{b}-\boldsymbol{c}=\mathbf{0}$.

Checking Linear Independence

Use Gaussian Elimination to check linear (in-)dependence:

- Construct a matrix by stacking the vectors as columns
- Reduce to row echelon form
- If every column has a leading "1," linearly independent

Checking Linear Independence

Example:

$$
\boldsymbol{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-3 \\
4
\end{array}\right], \quad \boldsymbol{x}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right], \quad \boldsymbol{x}_{3}=\left[\begin{array}{c}
-1 \\
-2 \\
1 \\
1
\end{array}\right] .
$$

Transform the corresponding matrix to reduced row echelon form:

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 1 & -2 \\
-3 & 0 & 1 \\
4 & 2 & 1
\end{array}\right] \leadsto \cdots \leadsto\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Every column has a leading " 1 ," so the vectors are linearly independent.

Span and Basis

- The span of a set of vectors is the set of all their linear combinations.
- A set of vectors is a generating set for a vector space \mathbb{V} if its span is \mathbb{V}.
- A basis is a minimal generating set.

Basis Example

In \mathbb{R}^{3}, the canonical or standard basis is

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

Two other bases of \mathbb{R}^{3} are

$$
\mathcal{B}_{1}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}, \mathcal{B}_{2}=\left\{\left[\begin{array}{l}
0.5 \\
0.8 \\
0.4
\end{array}\right],\left[\begin{array}{c}
1.8 \\
0.3 \\
-0.3
\end{array}\right],\left[\begin{array}{c}
-2.2 \\
-1.3 \\
3.5
\end{array}\right]\right\}
$$

Basis Non-Example

The set

$$
\mathcal{A}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
0 \\
-4
\end{array}\right]\right\}
$$

is not a generating set (and so not a basis) of \mathbb{R}^{4}.

Remarks about Bases

- Every vector space possesses a basis, but there is no unique basis.
- All bases contain the same number of basis vectors.
- The dimension of \mathbb{V} is the number of basis vectors of \mathbb{V} : intuitively, the dimension of a vector space can be thought of as the number of independent directions in this vector space.
- The dimension of a vector space is not necessarily the number of elements in a vector. For example,

$$
\mathbb{V}=\operatorname{span}\left(\left[\begin{array}{l}
1.0 \\
0.5
\end{array}\right]\right)
$$

is one-dimensional.

Finding a Basis

Use Gaussian Elimination to find a basis for the vector space spanned by $\boldsymbol{x}_{\mathbf{1}} \ldots \boldsymbol{x}_{\boldsymbol{m}}$:

- Construct a matrix by stacking the vectors as columns
- Reduce to row echelon form
- Take every column with a leading " 1 "

Finding Basis: Example

Consider a subspace \mathbb{U} of \mathbb{R}^{5} spanned by the vectors

$$
\boldsymbol{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
-1 \\
-1
\end{array}\right], \quad \boldsymbol{x}_{2}=\left[\begin{array}{c}
2 \\
-1 \\
1 \\
2 \\
-2
\end{array}\right], \quad \boldsymbol{x}_{3}=\left[\begin{array}{c}
3 \\
-4 \\
3 \\
5 \\
-3
\end{array}\right], \quad \boldsymbol{x}_{4}=\left[\begin{array}{c}
-1 \\
8 \\
-5 \\
-6 \\
1
\end{array}\right]
$$

To find which of the vectors are a basis for \mathbb{U}...

Finding Basis: Example

Write down matrix and reduce:

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
2 & -1 & -4 & 8 \\
-1 & 1 & 3 & -5 \\
-1 & 2 & 5 & -6 \\
-1 & -2 & -3 & 1
\end{array}\right] \leadsto \cdots \leadsto\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & 1 & 2 & -2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Pivot columns (with leading ones) indicate linearly independent vectors, so $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$, and \boldsymbol{x}_{4} form a basis for \mathbb{U}.

Rank

- The rank of a matrix is the number of linearly independently rows (= the number of linearly independent columns)
- Example: The matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

has $\operatorname{rk}(A)=2$, because A has two linearly independent columns / rows.

Properties of Rank

- $\operatorname{rk}(A)=\operatorname{rk}\left(A^{\top}\right)$
- The columns of $A \in \mathbb{R}^{m \times n}$ span a subspace $\mathbb{U} \subseteq \mathbb{R}^{m}$ with $\operatorname{dim}(\mathbb{U})=\operatorname{rk}(A)$
- The rows of $A \in \mathbb{R}^{m \times n}$ span a subspace $\mathbb{W} \subseteq \mathbb{R}^{n}$ with $\operatorname{dim}(\mathbb{W})=\operatorname{rk}(A)$.
- For all $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \boldsymbol{A}$ is invertible iff $\operatorname{rk}(\boldsymbol{A})=n$

Properties of Rank, cont.

- For $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, the subspace of solutions to $A \boldsymbol{x}=0$ has dimension $n-\operatorname{rk}(A)$. This is called the kernel or null space of A.
- A matrix $A \in \mathbb{R}^{m \times n}$ has full rank if its rank equals the largest possible rank for a matrix of the same dimensions. In other words, the rank of a full rank matrix is $\operatorname{rk}(A)=\min (m, n)$.
- A matrix is said to be rank deficient if it does not have full rank.
- A square matrix is singular if it does not have an inverse or, equivalently, is rank deficient.

