Are "Cubic" Linear Algebra Algorithms Really Cubic?

Szymon Rusinkiewicz
COS 302, Fall 2020
PRINCETON
UNIVERSITY

Running Time - Is n^{3} the Limit?

- How fast is matrix multiplication?

$$
\begin{aligned}
{\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] } & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \\
c_{11} & =a_{11} b_{11}+a_{12} b_{21} \\
c_{12} & =a_{11} b_{12}+a_{12} b_{22} \\
c_{21} & =a_{21} b_{11}+a_{22} b_{21} \\
c_{22} & =a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

- Looks like 8 multiplies, 4 adds, right?
(In general n^{3} multiplies and $n^{2}(n-1)$ adds...)

Nothing Up My Sleeve...

- Strassen's method [1969]

$$
\begin{aligned}
& M_{1}=\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right) \\
& M_{2}=\left(a_{21}+a_{22}\right) b_{11} \\
& M_{3}=a_{11}\left(b_{12}-b_{22}\right) \\
& M_{4}=a_{22}\left(b_{21}-b_{11}\right) \\
& M_{5}=\left(a_{11}+a_{12}\right) b_{22} \\
& M_{6}=\left(a_{21}-a_{11}\right)\left(b_{11}+b_{12}\right) \\
& M_{7}=\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right) \\
& c_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
& c_{12}=M_{3}+M_{5} \\
& c_{21}=M_{2}+M_{4} \\
& c_{22}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Strassen's Method

- Requires only 7 multiplies (and a whole bunch of adds)
- Can be applied recursively!
- Recursive application for 4 half-size submatrices needs 7 half-size matrix multiplies
- Asymptotic running time proportional to $n^{\log _{2} 7} \approx n^{2.8}$
- Only worth it for large n, because of all those additions...
- Still, practically useful for $n>$ hundreds or thousands
- Current best algorithm achieves $n^{2.3728639}$
- Not useful in practice...

Running Time - Is n^{3} the Limit?

- Similar sub-cubic algorithms for inverse, LU, etc.
- Most "cubic" linear-algebra problems aren't!
- What is the ultimate limit? We ...ummm ...don't know.
- Is it $n^{2} ? n^{2} \log n$? $n^{\text {some ugly constant? }}$
- Major open question, for such a fundamental problem!

