Linear Systems

Szymon Rusinkiewicz
 COS 302, Fall 2020

UNIVERSITY

Linear Systems

- Simultaneously satisfy a set of linear equations
- In 2D, a linear equation in 2 variables defines a line
- 2 equations might intersect in 1 point, giving a unique solution

Linear Systems

- Simultaneously satisfy a set of linear equations
- In 3D, a linear equation in 3 variables defines a plane
- 3 equations might intersect in 1 point, giving a unique solution

Applications of Linear Systems

- Regression ("fitting a model to data")
- Simulation (e.g., mass-spring systems)
- Analysis (e.g., how much stress is there in a beam in a building or bridge)
- Subroutine in other numerical algorithms (e.g., Newton's method for optimization or implicit Euler method for differential equations)

Linear Systems

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots=b_{3} \\
\vdots \\
{\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots
\end{array}\right]}
\end{gathered}
$$

Linear Systems

- Solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where \boldsymbol{A} is an $n \times n$ matrix and \boldsymbol{b} is an $n \times 1$ column vector
- Can also talk about non-square systems where \boldsymbol{A} is $m \times n, \boldsymbol{b}$ is $m \times 1$, and \boldsymbol{x} is $n \times 1$
- Usually overdetermined if $m>n$: "more constraints than unknowns" (Can look for "best" solution using least squares.)
- Underdetermined if $n>m$: "more unknowns than constraints" (Can compute all solutions, as in textbook, but it is more common to look for "best" solution using regularization.)

Singular Systems

- A square matrix A is singular if some row is linear combination of other rows
- Singular systems might have infinitely many solutions:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=5 \\
& 4 x_{1}+6 x_{2}=10
\end{aligned}
$$

or no solutions:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=5 \\
& 4 x_{1}+6 x_{2}=11
\end{aligned}
$$

Singular Systems

Singular with infinite solutions

Singular with no solutions

Near-Singular Systems

Near-singular or ill-conditioned: noise in inputs, or roundoff error in computation, may result in large changes to solution

Solving Linear Systems

- Seemingly the most direct way to solve a well-determined, square system is to use the matrix inverse:

$$
\begin{aligned}
A x & =b \\
A^{-1} A x & =A^{-1} b \\
x & =A^{-1} b
\end{aligned}
$$

Notes:

1. The inverse of a square matrix need not exist. But if it does, it is unique and has the property $A A^{-1}=A^{-1} A=I$.
2. Matrix multiplication is associative, so $A^{-1}(A x)=\left(A^{-1} A\right) x=I x=x$.
3. Matrix multiplication is not commutative, so we were careful to multiply both $A x$ and b on the left by A^{-1}.

Inverses and Linear Systems

- In fact, using $\boldsymbol{x}=A^{-1} \boldsymbol{b}$, and computing the inverse, is usually a bad idea:
- Inefficient
- Prone to roundoff error
- Linear solver algorithms
- Direct: nested loops over matrix, get solution at end
- Iterative: get approximate answer, then each iteration improves it
- In fact compute inverse using linear solver
- Solve $\boldsymbol{A x _ { i }}=\boldsymbol{b}_{i}$, where \boldsymbol{b}_{i} are columns of identity, \boldsymbol{x}_{i} are columns of inverse
- Many solvers can solve several Right Hand Sides (RHS) at once
- Simple-to-understand direct solver (though not used in practice)
- Transforms matrix to reduced row-echelon form*, while simultaneously manipulating one or more right-hand side(s)
*First nonzero entry in each row is 1 , it's to the right of the 1 in the row above, and it's the only nonzero entry in that column.
- Fundamental operations:

1. Replace one row with linear combination of it and other rows
2. Interchange two rows
3. Re-label two variables (interchange two columns)

- Simplest variant uses only \#1 operations but numerical stability improved by adding \#2 (partial pivoting) or both \#2 and \#3 (full pivoting).

Gaussian Elimination

- Solve:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=7 \\
& 4 x_{1}+5 x_{2}=13
\end{aligned}
$$

- Only care about numbers - form "tableau" or "augmented matrix":

$$
\left[\begin{array}{cc|c}
2 & 3 & 7 \\
4 & 5 & 13
\end{array}\right]
$$

- Could have multiple right-hand sides (e.g. for computing an inverse)

Gaussian Elimination

- Given:

$$
\left[\begin{array}{ll|c}
2 & 3 & 7 \\
4 & 5 & 13
\end{array}\right]
$$

- Goal: reduce this to the following form:

$$
\left[\begin{array}{ll|l}
1 & 0 & ? \\
0 & 1 & ?
\end{array}\right]
$$

and read off answer from right column

Gaussian Elimination

$$
\left[\begin{array}{cc|c}
2 & 3 & 7 \\
4 & 5 & 13
\end{array}\right]
$$

- Basic operation: replace any row by linear combination with any other row
- Here, replace first row with $1 / 2$ times first row plus 0 times second row:

$$
\left[\begin{array}{cc|c}
1 & 3 / 2 & 7 / 2 \\
4 & 5 & 13
\end{array}\right]
$$

Gaussian Elimination

$$
\left[\begin{array}{cc|c}
1 & 3 / 2 & 7 / 2 \\
4 & 5 & 13
\end{array}\right]
$$

- Replace second row with -4 times first row plus 1 times second row:

$$
\left[\begin{array}{cc|c}
1 & 3 / 2 & 7 / 2 \\
0 & -1 & -1
\end{array}\right]
$$

- Negate second row:

$$
\left[\begin{array}{cc|c}
1 & 3 / 2 & 7 / 2 \\
0 & 1 & 1
\end{array}\right]
$$

Gaussian Elimination

$$
\left[\begin{array}{cc|c}
1 & 3 / 2 & 7 / 2 \\
0 & 1 & 1
\end{array}\right]
$$

- Add $-3 / 2$ times second row to first row:

$$
\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

- ...aaaaand we're done. This is in reduced row-echelon form!

Gaussian Elimination Analysis

- For each row i :
- Multiply row i by $1 / a_{i i}$
- For each other row j :
- Add $-a_{j i}$ times row i to row j
- Innermost loop executed $n(n-1)$ times, and requires $n+1$ additions and multiplications
- Asymptotic behavior: when n is large, that's about $2 n$ arithmetic operations in inner loop, or about $2 n^{3}$ total
- Can solve any number of RHS at once (but must be known ahead of time)

Pivoting

- Consider this system:

$$
\left[\begin{array}{ll|l}
0 & 1 & 2 \\
2 & 3 & 8
\end{array}\right]
$$

- Immediately run into problem: algorithm wants us to divide by zero!
- More subtle version:

$$
\left[\begin{array}{cc|c}
0.001 & 1 & 2 \\
2 & 3 & 8
\end{array}\right]
$$

- Small diagonal ("pivot") elements bad!
- Swap in larger element from somewhere else...

Partial Pivoting

$$
\left[\begin{array}{ll|l}
0 & 1 & 2 \\
2 & 3 & 8
\end{array}\right]
$$

- Swap rows 1 and 2:

$$
\left[\begin{array}{ll|l}
2 & 3 & 8 \\
0 & 1 & 2
\end{array}\right]
$$

- Now continue:

$$
\left[\begin{array}{cc|c}
1 & 3 / 2 & 4 \\
0 & 1 & 2
\end{array}\right] \quad\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Real-World Linear Solvers

- In practice, partial pivoting widely implemented
- To speed things up, don't go all the way to reduced row-echelon form
- Also, it would be nice to be able to specify a new \boldsymbol{b} after the expensive computation on A has been done...

Triangular Systems

- Special case: lower-triangular system

$$
\left[\begin{array}{cccc|c}
a_{11} & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & 0 & \cdots & b_{2} \\
a_{31} & a_{32} & a_{33} & \cdots & b_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]
$$

Triangular Systems

- Solve by forward substitution

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
a_{11} & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & 0 & \cdots & b_{2} \\
a_{31} & a_{32} & a_{33} & \cdots & b_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]} \\
x_{1}=\frac{b_{1}}{a_{11}} \quad x_{2}=\frac{b_{2}-a_{21} x_{1}}{a_{22}} x_{3}=\frac{b_{3}-a_{31} x_{1}-a_{32} x_{2}}{a_{33}}
\end{gathered} \cdots .
$$

Triangular Systems

- Similarly, upper triangular systems solved by back-substitution

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
a_{11} & a_{12} & a_{13} & a_{14} & b_{1} \\
0 & a_{22} & a_{23} & a_{24} & b_{2} \\
0 & 0 & a_{33} & a_{34} & b_{3} \\
0 & 0 & 0 & a_{44} & b_{4}
\end{array}\right]} \\
x_{4}=\frac{b_{4}}{a_{44}} \quad x_{3}=\frac{b_{3}-a_{34} x_{4}}{a_{33}} \quad x_{2}=\frac{b_{2}-a_{24} x_{4}-a_{23} x_{3}}{a_{22}} \quad \ldots
\end{gathered}
$$

LU Decomposition

- Both special cases can be solved in time $\sim n^{2}$
- This motives a factorization approach:
- Find a way of writing A as $L \boldsymbol{U}$, where L is lower-triangular and U is upper-triangular
- $A x=b \Rightarrow L U x=b \Rightarrow L y=b \Rightarrow U x=y$
- Time to factor matrix dominates computation
- Turns out to be faster than Gaussian elimination (but still cubic in n)
- Can solve for new \boldsymbol{b} at any time after factorization
- Real-world, general-purpose linear solvers (such as numpy.linalg.solve) use LU Decomposition with partial pivoting
- ...but for big ($n \sim$ thousands or millions) problems, approximate iterative methods are common

