More on Vectors and Matrices

Szymon Rusinkiewicz COS 302, Fall 2020

Perspectives on Vectors and Matrices

• Physicist vs. Mathematician vs. Computer Scientist

• Things we do in Computer Science and Machine Learning that make Physicists and Mathematicians go hmm...

Vectors with Different Units Per Dimension

[2600 ft²] [\$300,000]

Vectors with Different Units Per Dimension

• Web page ranking

[3 keyword mentions] 42 incoming links

Vectors with Different Units Per Dimension

• Health monitoring

[72 beats/min] 123 mm Hg

Linear Operations "Accommodate" Units

• Components with different "units" add

 $\begin{bmatrix} 3 \text{ keyword mentions} \\ 42 \text{ incoming links} \end{bmatrix} + \begin{bmatrix} 5 \text{ keyword mentions} \\ 17 \text{ incoming links} \end{bmatrix} = \begin{bmatrix} 8 \text{ keyword mentions} \\ 59 \text{ incoming links} \end{bmatrix}$ Web page #1 Web page #2 Web page collection

Linear Operations "Accommodate" Units

 One way of thinking about dot product is "weighting" dimensions or "probing" individual components, while accommodating units

 $\begin{bmatrix} 72 \text{ beats/min} \\ 123 \text{ mm Hg} \end{bmatrix} \cdot \begin{bmatrix} 1 \text{ unit risk / (beat/min)} \\ 0.5 \text{ units risk / (mm Hg)} \end{bmatrix} = 133.5 \text{ units risk}$

 $\begin{bmatrix} 72 \text{ beats/min} \\ 123 \text{ mm Hg} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 72 \text{ beats/min}$

Matrices vs. Arrays of Numbers

• We will often go back and forth between arrays of numbers, matrices, and "unrolled" vectors

Linear Algebra on Images

- Digital images are arrays of pixels
 - Value at each pixel is intensity of light
 - For color, store intensity in Red, Green, Blue channels
 (3 channels enough because of human visual system)
- Can "unroll" an image, treat it as a vector in a (high-dimensional) vector space
 - Light is linear! *(But images are often nonlinearly mapped)
 - Can perform usual manipulations, such as ...

Average Princetonian Face

 From 2005 BSE thesis project by Clay Bavor and Jesse Levinson

Vector Spaces of Images

Detecting Princetonians

Matching response (darker = better match)

[Bavor & Levinson]