More on Vectors and Matrices

Szymon Rusinkiewicz
COS 302, Fall 2020

UNIVERSITY

Perspectives on Vectors and Matrices

- Physicist vs. Mathematician vs. Computer Scientist
- Things we do in Computer Science and Machine Learning that make Physicists and Mathematicians go hmm...

Vectors with Different Units Per Dimension

- Housing

Vectors with Different Units Per Dimension

- Web page ranking
[3 keyword mentions] 42 incoming links

Vectors with Different Units Per Dimension

- Health monitoring
$\left[\begin{array}{c}72 \text { beats } / \mathrm{min} \\ 123 \mathrm{~mm} \mathrm{Hg}\end{array}\right]$

Linear Operations "Accommodate" Units

- Components with different "units" add
$\left[\begin{array}{c}3 \text { keyword mentions } \\ 42 \text { incoming links }\end{array}\right]+\left[\begin{array}{c}5 \text { keyword mentions } \\ 17 \text { incoming links }\end{array}\right]=\left[\begin{array}{c}8 \text { keyword mentions } \\ 59 \text { incoming links }\end{array}\right]$
Web page \#1
Web page \#2
Web page collection

Linear Operations "Accommodate" Units

- One way of thinking about dot product is "weighting" dimensions or "probing" individual components, while accommodating units

$$
\left[\begin{array}{c}
72 \text { beats } / \mathrm{min} \\
123 \mathrm{~mm} \mathrm{Hg}
\end{array}\right] \cdot\left[\begin{array}{c}
1 \text { unit risk } /(\text { beat } / \mathrm{min}) \\
0.5 \text { units risk } /(\mathrm{mm} \mathrm{Hg})
\end{array}\right]=133.5 \text { units risk }
$$

$\left[\begin{array}{c}72 \text { beats } / \mathrm{min} \\ 123 \mathrm{~mm} \mathrm{Hg}\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]=72$ beats $/ \mathrm{min}$

Matrices vs. Arrays of Numbers

- We will often go back and forth between arrays of numbers, matrices, and "unrolled" vectors

Linear Algebra on Images

- Digital images are arrays of pixels
- Value at each pixel is intensity of light
- For color, store intensity in Red, Green, Blue channels (3 channels enough because of human visual system)
- Can "unroll" an image, treat it as a vector in a (high-dimensional) vector space
- Light is linear! *(But images are often nonlinearly mapped)
- Can perform usual manipulations, such as ...

Average Princetonian Face

- From 2005 BSE thesis project by Clay Bavor and Jesse Levinson

Vector Spaces of Images

Detecting Princetonians

Matching response
(darker $=$ better match)

