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Based on slides by Tom Funkhouser and Misha Kazhdan 

  



From 2D to 3D: Some Things Easier 

No occlusion (but sometimes missing data instead) 

Segmenting objects often simpler 



From 2D to 3D: Many Things Harder 

Rigid transform has 6 degrees of freedom vs. 3 
• Brute-force algorithms much less practical 

Rotations do not commute 
• Difficult to parameterize, search over 

No natural parameterization for surfaces in 3D 
• Hard to do FFT, convolution, PCA 
• Exception: range images (which are view dependent) 



Shape Matching Challenge 

Need shape descriptor & matching method that is: 
• Concise to store 
• Quick to compute 
• Efficient to match 
• Discriminating 
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Shape Matching Challenge 

Need shape descriptor & matching method that is: 
• Concise to store 
• Quick to compute 
• Efficient to match 
• Discriminating 
 Invariant to transformations 
• Invariant to deformations 
• Insensitive to noise 
• Insensitive to topology 
• Robust to degeneracies 

Different Transformations 
(translation, scale, rotation, mirror) 



Shape Matching Challenge 

Need shape descriptor & matching method that is: 
• Concise to store 
• Quick to compute 
• Efficient to match 
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Different Articulated Poses 



Shape Matching Challenge 

Need shape descriptor & matching method that is: 
• Concise to store 
• Quick to compute 
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Image courtesy of 
Ramamoorthi et al. 



Shape Matching Challenge 

Need shape descriptor & matching method that is: 
• Concise to store 
• Quick to compute 
• Efficient to match 
• Discriminating 
• Invariant to transformations 
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Shape Matching Challenge 

Need shape descriptor & matching method that is: 
• Concise to store 
• Quick to compute 
• Efficient to match 
• Discriminating 
• Invariant to transformations 
• Invariant to deformations 
• Insensitive to noise 
• Insensitive to topology 
Robust to degeneracies 

Images courtesy of  
Utah & De Espona 
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Images courtesy of  
Amenta & Osada Taxonomy of 3D Matching Methods 

Structural representations 
• Skeletons 
• Part-based methods 
• Feature-based methods 

 

Statistical representations 
• Attribute feature vectors 
• Volumetric methods 
• Surface-based methods 
• View-based methods 



Features on Surfaces 

Can construct edge and corner detectors 

 

Analogue of 1st derivative: surface normal 

Analogue of 2nd derivative: curvature 
• Curvature at each point 

in each direction 
• Minimum and maximum: 

“principal curvatures” 
• Can threshold or do 

nonmaximum suppression 



Using Curvatures for Recognition/Matching 

Curvature histograms: compute κ1 and κ2 
 throughout surface, create 2D histograms 

 

Invariant to translation, rotation 

 

Alternative: use κ2 / κ1 – also invariant to scale 
• Shape index: 

 

Curvatures sensitive to noise (2nd derivative…), so 
sometimes just use sign of curvatures 
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Using Curvatures for Segmentation 

Sharp creases in surface (i.e., where |κ1| is large) 
tend to be good places to segment 

 

Option #1: look for maxima of curvature in the first 
principal direction 
• Much like Canny edge detection 
• Nonmaximum suppression, hysteresis thresholding 

 

Option #2: optimize for both high curvature and 
smoothness using graph cuts, snakes, etc. 



Image courtesy of  
Mao Chen Taxonomy of 3D Matching Methods 

Structural representations 
• Skeletons 
• Part-based methods 
• Feature-based methods 

 

Statistical representations 
• Attribute feature vectors 
• Volumetric methods 
• Surface-based methods 
• View-based methods 
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Example 

Shape distributions 
• Shape representation: probability distributions 
• Distance measure: difference between distributions 
• Evaluation method: classification performance 



Shape Distributions 

Key idea: map 3D surfaces to common parameterization  
 by randomly sampling shape function 

3D Models D2 Shape Distributions 
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Which Shape Function? 

Implementation: simple shape functions based on  
 angles, distances, areas, and volumes 

A3 
(angle) 

D1 
(distance) 

 
[Ankerst 99] 
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D2 Shape Distribution 

Properties 
• Concise to store? 
• Quick to compute? 
• Invariant to transforms? 
• Efficient to match? 
• Insensitive to noise? 
• Insensitive to topology? 
• Robust to degeneracies? 
• Invariant to deformations? 
• Discriminating? 



D2 Shape Distribution 

Properties 
Concise to store? 
Quick to compute? 
• Invariant to transforms? 
• Efficient to match? 
• Insensitive to noise? 
• Insensitive to topology? 
• Robust to degeneracies? 
• Invariant to deformations? 
• Discriminating? 

512 bytes (64 values) 
0.5 seconds (106 samples) 
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D2 Shape Distribution 

Properties 
Concise to store 
Quick to compute 
 Invariant to transforms? 
• Efficient to match? 
• Insensitive to noise? 
• Insensitive to topology? 
• Robust to degeneracies? 
• Invariant to deformations? 
• Discriminating? 

Translation 
Rotation 
Mirror { 

Normalized Means 

Scale (w/ normalization) 

Skateboard Porsche 



D2 Shape Distribution 

Properties 
Concise to store 
Quick to compute 
 Invariant to transforms 
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D2 Shape Distribution 

Properties 
Concise to store 
Quick to compute 
 Invariant to transforms 
Efficient to match 
 Insensitive to noise? 
 Insensitive to topology? 
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D2 Shape Distribution 

Properties 
Concise to store 
Quick to compute 
 Invariant to transforms 
Efficient to match 
 Insensitive to noise 
 Insensitive to topology 
Robust to degeneracies 
 Invariant to deformations? 
• Discriminating? 
 

Ellipsoids with  
Different Eccentricities 



D2 Shape Distribution 

Properties 
Concise to store 
Quick to compute 
 Invariant to transforms 
Efficient to match 
 Insensitive to noise 
 Insensitive to topology 
Robust to degeneracies 

Invariant to deformations 
Discriminating? 
 

Line Segment Circle 

Cylinder Cube 

Sphere Two Spheres 



D2 Shape Distribution Results 

Question 
• How discriminating are 

D2 shape distributions? 

Test database 
• 133 polygonal models 
• 25 classes 

 

 

4 Mugs 

6 Cars 

3 Boats 



D2 Shape Distribution Results 

D2 distributions are different across classes 

D2 shape distributions for 15 classes of objects 



D2 Shape Distribution Results 

D2 shape distributions for 15 classes of objects 
Line Segment 

D2 distributions reveal gross shape of object 
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D2 Shape Distribution Results 

D2 distributions reveal gross shape of object 

D2 shape distributions for 15 classes of objects 

Sphere 



D2 Shape Distribution Results 

D2 distributions reveal gross shape of object 

D2 shape distributions for 15 classes of objects 
Two Spheres 



D2 Shape Distribution Results 

But … are D2 distributions discriminating? 

D2 shape distributions for 15 classes of objects 



D2 Shape Distribution Results 

D2 distributions for 5 tanks (gray) and 6 cars (black) 
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Evaluation Methods 

For each model (the query): 
• Compute match score for all models 
• Rank matches from best to worst 
• Measure how often models in same class as query  

appear near top of ranked list 
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Evaluation Methods 

Precision-recall curves 
• Precision = retrieved_in_class / total_retrieved 
• Recall = retrieved_in_class / total_in_class 
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Evaluation Methods 

Precision-recall curve example 
• Precision = 0 / 0 
• Recall = 0 / 5 
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Evaluation Methods 

Precision-recall curve example 
• Precision = 1 / 1 
• Recall = 1 / 5 
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Evaluation Methods 

Precision-recall curve example 
• Precision = 2 / 3 
• Recall = 2 / 5 
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Query 
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Evaluation Methods 

Precision-recall curve example 
• Precision = 3 / 5 
• Recall = 3 / 5 
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Evaluation Methods 

Precision-recall curve example 
• Precision = 4 / 7 
• Recall = 4 / 5 
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Evaluation Methods 

Precision-recall curve example 
• Precision = 5 / 9 
• Recall = 5 / 5 
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Evaluation Methods 
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Extended Gaussian Image 

Represent a model by a spherical function by binning 
surface normals 

Model Angular Bins EGI 

[Horn, 1984] 



Extended Gaussian Image 

Properties: 
• Invertible for convex shapes 
• Can be defined for most models 
• 2D array of information 

[Horn, 1984] 
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Extended Gaussian Image 

Properties: 
• Invertible for convex shapes 
• Can be defined for most models 
• 2D array of information 

Limitations: 
• In general, shapes are not convex 
• Normals are sensitive to noise 

3D Model EGI 

[Horn, 1984] 



Extended Gaussian Image 

Properties: 
• Invertible for convex shapes 
• Can be defined for most models 
• 2D array of information 

Limitations: 
• In general, shapes are not convex 
• Normals are sensitive to noise 

Initial Model Noisy Model 

[Horn, 1984] 



Retrieval Results 

Princeton Shape Benchmark 
 

51 potted plants 33 faces 15 desk chairs 22 dining chairs 

100 humans 28 biplanes 14 flying birds 11 ships 



Retrieval Results 
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Shape Histograms 

Shape descriptor stores a histogram of how much 
surface resides at different bins in space 

Model Shape Histogram 
(Sectors + Shells) 

[Ankerst et al., 1999] 



Boundary Voxel Representation 

Represent a model as the (anti-aliased) rasterization of 
its surface into a regular grid: 
• A voxel has value 1 (or area of intersection) if it 

intersects the boundary 
• A voxel has value 0 if it doesn’t intersect 

 

Model 
Voxel Grid 



Boundary Voxel Representation 

Properties: 
• Can be defined for any model 
• Invertible 
• 3D array of information 
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Boundary Voxel Representation 

Properties: 
• Can be defined for any model 
• Invertible 
• 3D array of information 

Limitations: 
• Difficult to match 

If the resolution is too high: 
  most voxels miss 
If the resolution is too low: 
  representation is too coarse 

Intersection 



Retrieval Results 
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Histogram Representations 

Challenge: 
• If shape properties are mapped to nearby bins, they will not be 

compared 

Solutions: 
• Match across adjacent bins: 

Earth Mover’s Distance 
• Low-pass filter: 

Convolution with a Gaussian 



Earth Mover’s distance 

Match by computing the minimal amount of work 
needed to transform one distribution into the other 

 

Computing the distance: 
• For 1D histograms can use the CDF to compare efficiently 
• In general, need to solve the transportation problem 

which is inefficient for large numbers of bins 

[Rubner et al. 1998] 



Convolving with a Gaussian 

The value at a point is obtained by summing Gaussians 
distributed over the surface of the model 
 Distributes the surface into adjacent bins 
 Blurs the model, loses high frequency information 

Surface Gaussian Gaussian 
convolved surface 



Gaussian EDT 

The value at a point is Gaussian applied to 
distance to closest point on the surface 
 Distributes the surface into adjacent bins 
 Maintains high-frequency information 

Surface Gaussian Gaussian EDT 

max 

[Kazhdan et al., 2003] 



Gaussian EDT 

Properties: 
• Can be defined for any model 
• Invertible 
• 3D array of information 
• Difference measures proximity between surfaces  
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Retrieval Results 
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Handling Transformations 
Key difficulty: 

      locating objects under any rigid-body transformation 

 

Approaches: 
• Exhaustive search: try all possibilities 
• Invariance: use descriptors that do not change under 

transformations 
• Normalization: align objects to canonical coordinate frame 



Exhaustive Search 

Search for the best aligning transformation: 
• Compare at all alignments 
• Match at the alignment for which models are closest 

 

Exhaustive search for optimal rotation 



Exhaustive Search 

Search for the best aligning transformation: 
• Compare at all alignments 
• Match at the alignment for which models are closest 

 



Exhaustive Search 

Search for the best aligning transformation: 
• Use signal processing for efficient correlation 
• Represent model at many different transformations 
 

Search for the best aligning transformation: 
• Gives the correct answer 
• Is hard to do efficiently 

 



Invariance 

Represent a model with information that is independent 
of the transformation 
• Power spectrum representation 

Fourier Transform for translation and 2D rotations 
Spherical Harmonic Transform for 3D rotations 

Frequency 
Frequency 

Circular Power Spectrum Spherical Power Spectrum 



Circular Power Spectrum 

Circular 
Function 



Circular Power Spectrum 
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Circular Power Spectrum 

= + + + 

Constant 1st Order 2nd Order 3rd Order 

+ … 

Frequency Decomposition 

= Amplitudes invariant 
to rotation 

Circular 
Function 



Spherical Power Spectrum 

Represent each spherical function as a sum  
of harmonic frequencies (orders) 

Harmonic Decomposition 

+ + = + 



Spherical Power Spectrum 

Represent each spherical function as a sum  
of harmonic frequencies (orders) 

+ + = 

+ + + 

Constant 1st Order 2nd Order 3rd Order 
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Spherical Power Spectrum 

Store “how much” (L2-norm) of the shape resides at 
each frequency to get rotation invariant representation 

+ + + 

Constant 1st Order 2nd Order 3rd Order 

= 



Invariant to transforms? 

 Frequency subspaces are fixed by rotations: 



Invariant to transforms? 

 Frequency subspaces are fixed by rotations: 



Invariant to transforms? 

 Frequency subspaces are fixed by rotations: 



Invariant to transforms? 

 Frequency subspaces are fixed by rotations: 



Power Spectrum 

Translation-invariance: 
• Represent the model in a Cartesian coordinate system 
• Compute the 3D Fourier transform 
• Store the amplitudes of the frequency components 
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Power Spectrum 

Single axis rotation-invariance: 
• Represent the model in a cylindrical coordinate system 
• Compute the Fourier transform in the angular direction 
• Store the amplitudes of the frequency components 
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Power Spectrum 

Full rotation-invariance: 
• Represent the model in a spherical coordinate system 
• Compute the spherical harmonic transform  
• Store the amplitudes of the frequency components 
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Power Spectrum 

Power spectrum representations 
• Are invariant to transformations 
• Give a lower bound for the best match 
• Tend to discard too much information 

Translation invariant:             n3 data -> n3/2 data 
Single-axis rotation invariant: n3 data -> n3/2 data 
Full rotation invariant:            n3 data -> n2    data 
 



Normalization 

Place a model into a canonical coordinate frame by 
normalizing for: 
• translation 
• scale 
• rotation 

Translation 

Scale 

Rotation 



Alignment of Point Sets 

Given two point sets P={p1,…,pn} and Q={q1,…,qn}, 
what is the transformation T minimizing the sum of 
squared distances: 

 

[Horn et al., 1988] 
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Alignment of Point Sets 

Translation 
• Align the models so that their center of mass is at the 

origin. 

 

[Horn et al., 1988] 
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Alignment of Point Sets 

Scale 
• Align the models so that their mean variance is 1. 

[Horn et al., 1988] 
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Alignment of Point Sets 

Rotation 
• SVD on cross covariance matrix: 

[Horn et al., 1988] 
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Normalization 
Place a model into a canonical coordinate frame: 
• Translation: center of mass 

 
 
Can be done on a per-model basis 

• Scale: mean variance 
 
 
Can be done on a per-model basis 

• Rotation: SVD on cross covariance matrix 
 
 
Need to know the correspondences between models 
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Rotation 

Challenge: 
• We want to normalize for rotation on a per-model basis 

Solution: 
• Align the model so that the principal axes align with the 

coordinate axes 

PCA 
Alignment 



Rotation 

Challenge: 
• We want to normalize for rotation on a per-model basis 

Solution: 
• Align the model so that the principal axes align with the 

coordinate axes 

PCA 
Alignment 

Directions of the axes are 
ambiguous 



Normalization (PCA) 

PCA defines a coordinate frame up to reflection in the 
coordinate axes. 
• Make descriptor invariant to the eight reflections 

Reflections fix the cosine term 
Reflections multiply the sine term by -1 
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Problem with PCA-Based Alignment 

If singular values are close, axes unstable 



Retrieval Results (Rotation) 

Method Floats 

Exhaustive Search 8192 

PCA + Flip Invariance 8192 

PCA 8192 

Cylindrical PS 4352 

Spherical PS 512 

Time: 
Method Secs. 

Exhaustive Search 20.59 

PCA + Flip Invariance .67 

PCA .67 

Cylindrical PS .32 

Spherical PS .03 

Size: 

0%

50%

100%

0% 50% 100%

Exhaustive Search
PCA + Flip Invariance
Cylindrical Power Spectrum
Spherical Power Spectrum
PCA

Recall 

Gaussian EDT 
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