Matching and Recognition in 3D

Based on slides by Tom Funkhouser and Misha Kazhdan

From 2D to 3D: Some Things Easier

No occlusion (but sometimes missing data instead) Segmenting objects often simpler

From 2D to 3D: Many Things Harder

Rigid transform has 6 degrees of freedom vs. 3

Brute-force algorithms much less practical

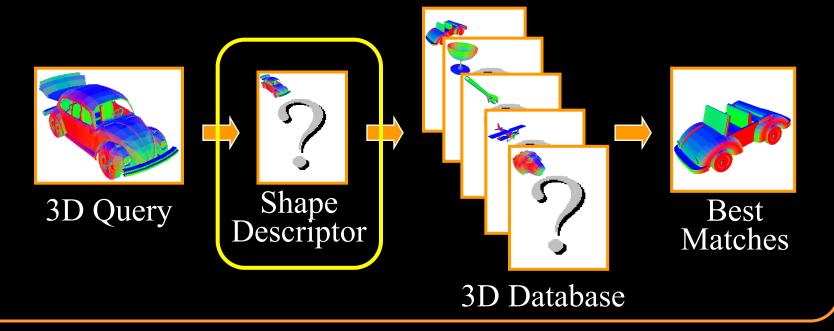
Rotations do not commute

Difficult to parameterize, search over

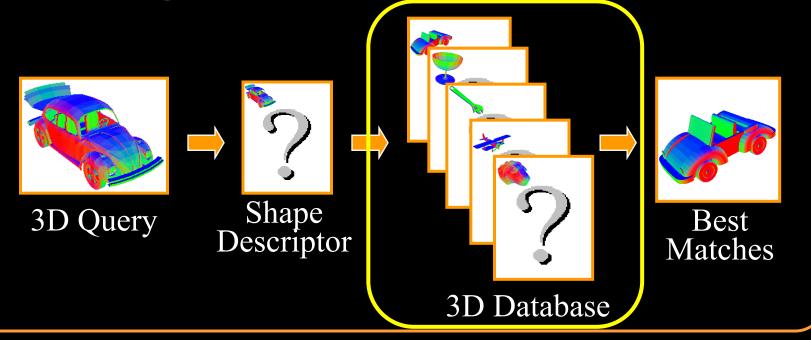
No natural parameterization for surfaces in 3D

- Hard to do FFT, convolution, PCA
- Exception: range images (which are view dependent)

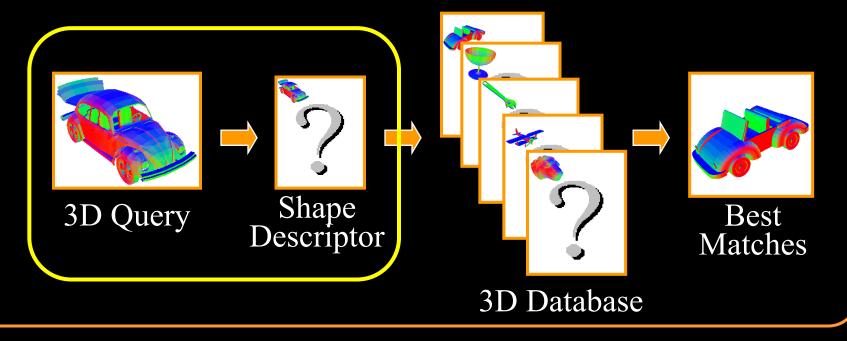
- Concise to store
- Quick to compute
- Efficient to match
- Discriminating



- Concise to store
- Quick to compute
- Efficient to match
- Discriminating



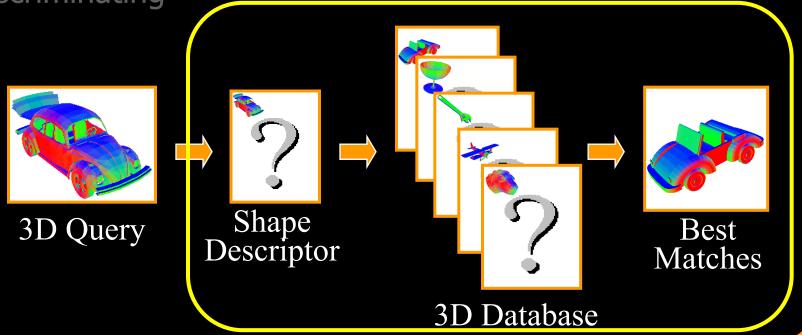
- Concise to store
- Quick to compute
- Efficient to match
- Discriminating



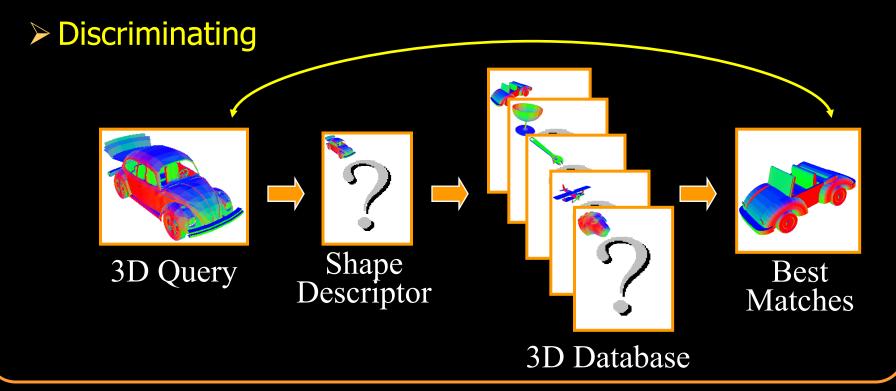
Need shape descriptor & matching method that is:

- Concise to store
- Quick to compute
- > Efficient to match

Discriminating

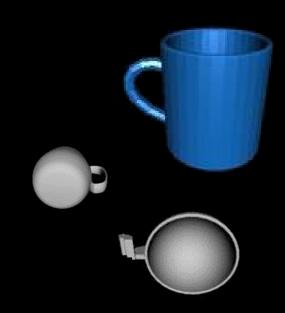


- Concise to store
- Quick to compute
- Efficient to match



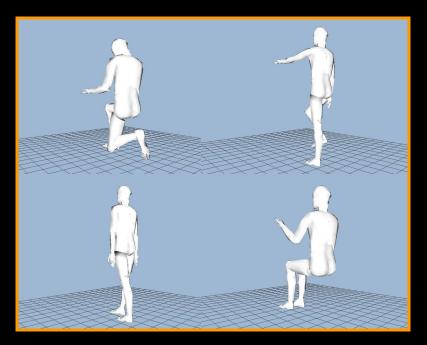
Need shape descriptor & matching method that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- > Invariant to transformations
- Invariant to deformations
- Insensitive to noise
- Insensitive to topology
- Robust to degeneracies



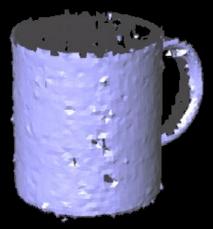
Different Transformations (translation, scale, rotation, mirror)

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- Invariant to transformations
- ➤ Invariant to deformations
- Insensitive to noise
- Insensitive to topology
- Robust to degeneracies

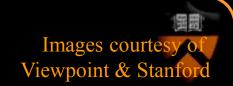


Different Articulated Poses

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- Invariant to transformations
- Invariant to deformations
- > Insensitive to noise
- Insensitive to topology
- Robust to degeneracies

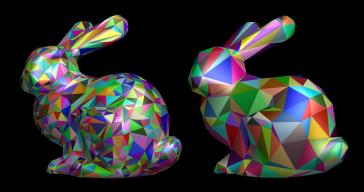


Scanned Surface



- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- Invariant to transformations
- Invariant to deformations
- Insensitive to noise
- > Insensitive to topology
- Robust to degeneracies

Different Genus



Different Tessellations

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- Invariant to transformations
- Invariant to deformations
- Insensitive to noise
- Insensitive to topology
- > Robust to degeneracies

No Bottom!

&*Q?@#A%!

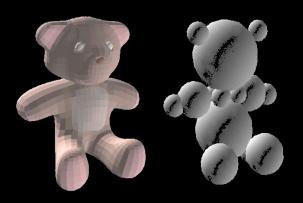
Taxonomy of 3D Matching Methods Osada

Structural representations

- Skeletons
- Part-based methods
- Feature-based methods

Statistical representations

- Attribute feature vectors
- Volumetric methods
- Surface-based methods
- View-based methods



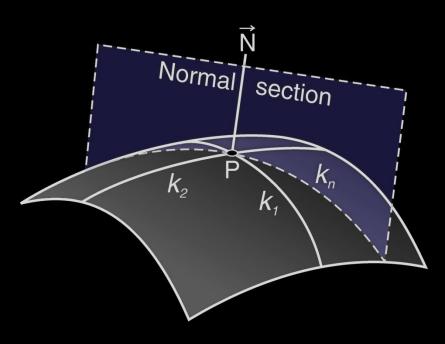
Features on Surfaces

Can construct edge and corner detectors

Analogue of 1st derivative: surface normal

Analogue of 2nd derivative: curvature

- Curvature at each point in each direction
- Minimum and maximum: "principal curvatures"
- Can threshold or do nonmaximum suppression



Using Curvatures for Recognition/Matching

Curvature histograms: compute κ_1 and κ_2 throughout surface, create 2D histograms

Invariant to translation, rotation

Alternative: use κ_2 / κ_1 – also invariant to scale

• Shape index: $S = \frac{1}{2} - \frac{1}{\pi} \tan^{-1} \frac{\kappa_1 + \kappa_2}{\kappa_1 - \kappa_2} \in [0..1]$

Curvatures sensitive to noise (2nd derivative...), so sometimes just use sign of curvatures

Using Curvatures for Segmentation

Sharp creases in surface (i.e., where $|\kappa_1|$ is large) tend to be good places to segment

Option #1: look for maxima of curvature in the first principal direction

- Much like Canny edge detection
- Nonmaximum suppression, hysteresis thresholding

Option #2: optimize for both high curvature and smoothness using graph cuts, snakes, etc.

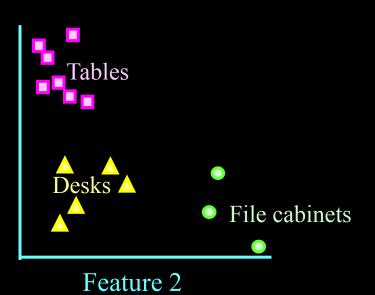
Structural representations

- Skeletons
- Part-based methods
- Feature-based methods

Statistical representations

- Attribute feature vectors
- Volumetric methods
- Surface-based methods
- View-based methods

Feature 1



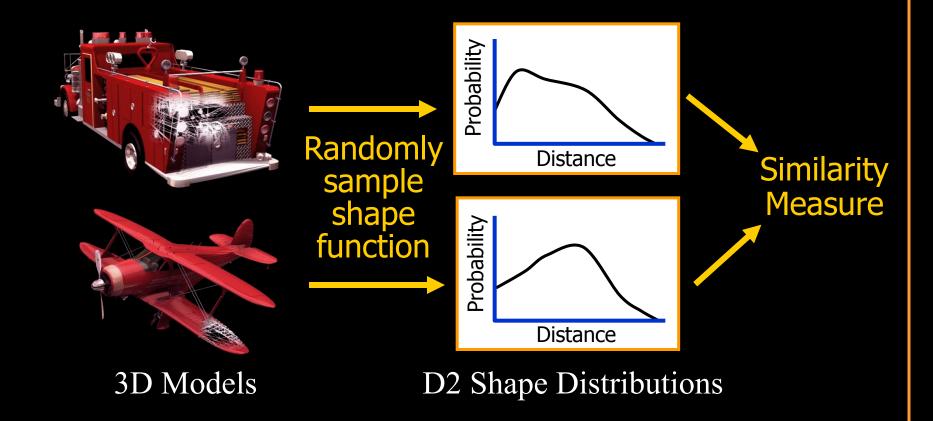
Example

Shape distributions

- Shape representation: probability distributions
- Distance measure: difference between distributions
- Evaluation method: classification performance

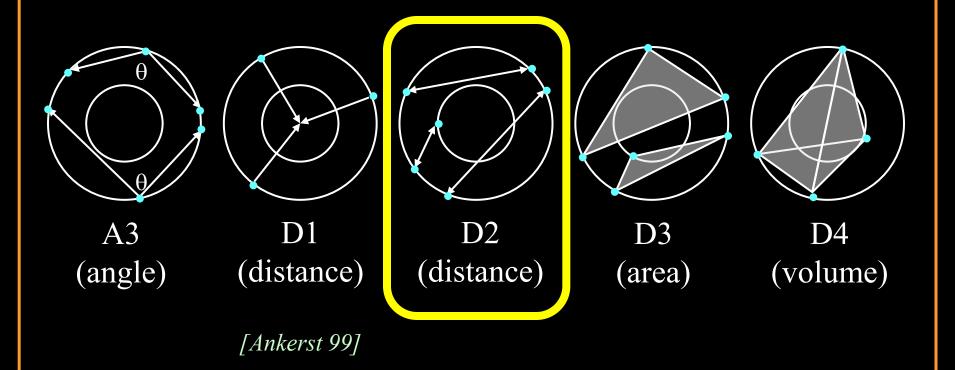
Shape Distributions

Key idea: map 3D surfaces to common parameterization by randomly sampling shape function



Which Shape Function?

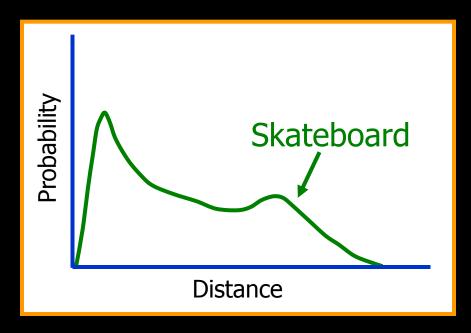
Implementation: simple shape functions based on angles, distances, areas, and volumes



- Concise to store?
- Quick to compute?
- Invariant to transforms?
- Efficient to match?
- Insensitive to noise?
- Insensitive to topology?
- Robust to degeneracies?
- Invariant to deformations?
- Discriminating?

Properties

- > Concise to store?
- Quick to compute?
- Invariant to transforms?
- Efficient to match?
- Insensitive to noise?
- Insensitive to topology?
- Robust to degeneracies?
- Invariant to deformations?
- Discriminating?



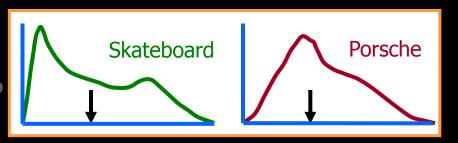
512 bytes (64 values)

 $0.5 \text{ seconds } (10^6 \text{ samples})$

Properties

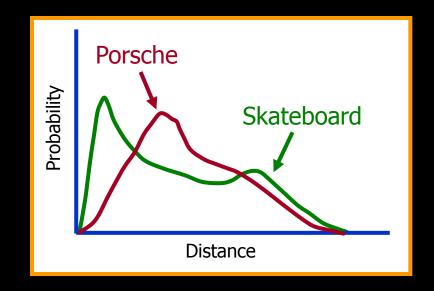
- ✓ Concise to store
- ✓ Quick to compute
- > Invariant to transforms?
- Efficient to match?
- Insensitive to noise?
- Insensitive to topology?
- Robust to degeneracies?
- Invariant to deformations?
- Discriminating?

- ✓ Translation
- ✓ Rotation
- ✓ Mirror
- ✓Scale (w/ normalization)

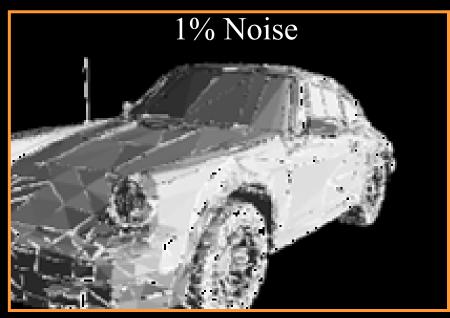


Normalized Means

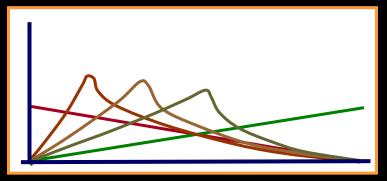
- ✓ Concise to store
- ✓ Quick to compute
- ✓ Invariant to transforms
- > Efficient to match?
- Insensitive to noise?
- Insensitive to topology?
- Robust to degeneracies?
- Invariant to deformations?
- Discriminating?



- ✓ Concise to store
- ✓ Quick to compute
- ✓ Invariant to transforms
- ✓ Efficient to match
- > Insensitive to noise?
- ➤ Insensitive to topology?
- ➤ Robust to degeneracies?
- Invariant to deformations?
- Discriminating?

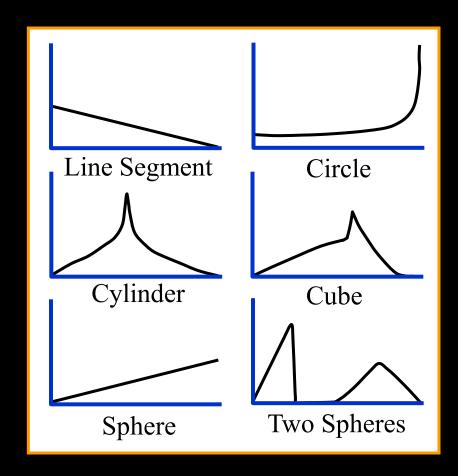


- ✓ Concise to store
- Quick to compute
- ✓ Invariant to transforms
- ✓ Efficient to match
- ✓ Insensitive to noise
- ✓ Insensitive to topology
- ✓ Robust to degeneracies
- ➤ Invariant to deformations?
- Discriminating?



Ellipsoids with Different Eccentricities

- ✓ Concise to store
- ✓ Quick to compute
- ✓ Invariant to transforms
- ✓ Efficient to match
- ✓ Insensitive to noise
- ✓ Insensitive to topology
- ✓ Robust to degeneracies
- Invariant to deformations
- Discriminating?



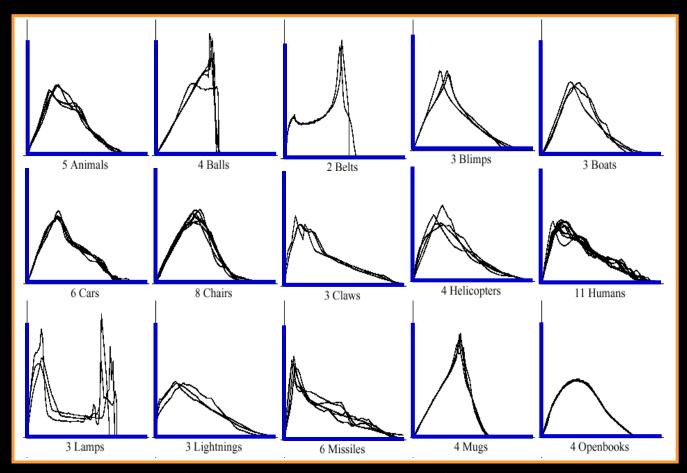
Question

How discriminating are D2 shape distributions?

Test database

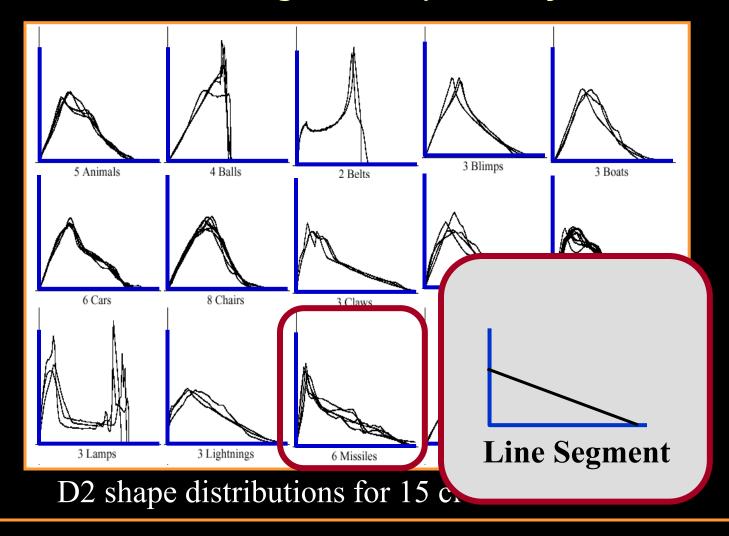
- 133 polygonal models
- 25 classes

D2 distributions are different across classes

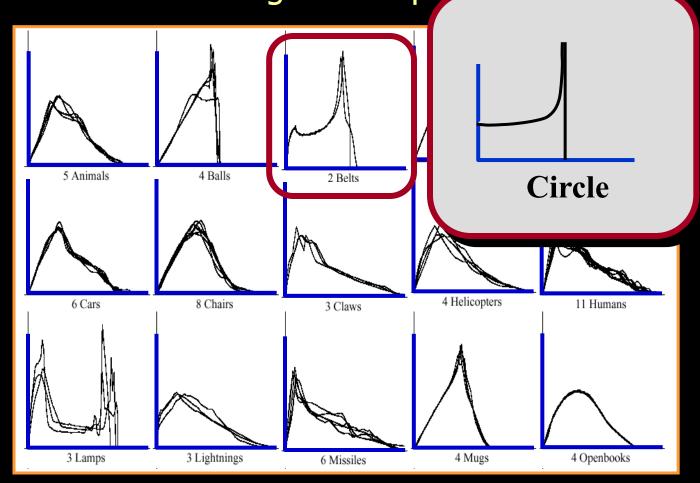


D2 shape distributions for 15 classes of objects

D2 distributions reveal gross shape of object

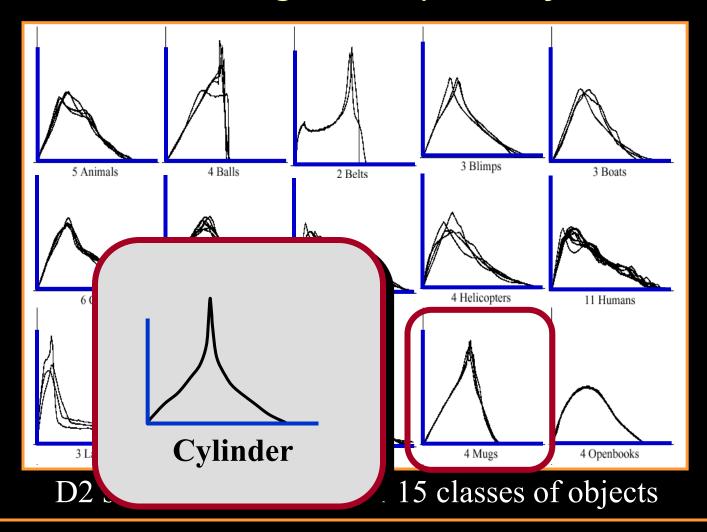


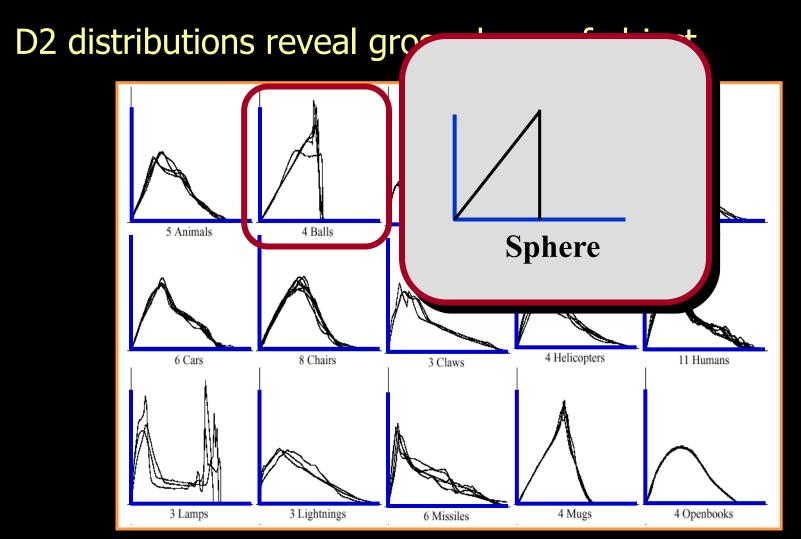
D2 distributions reveal gross shape of object



D2 shape distributions for 15 classes of objects

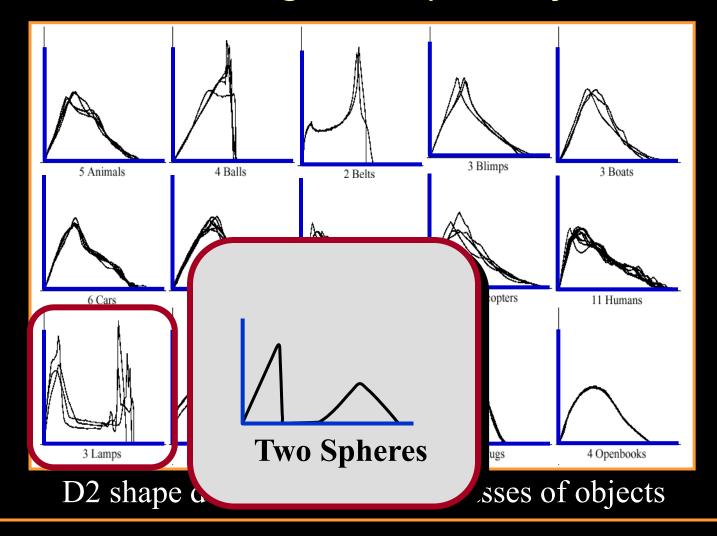
D2 distributions reveal gross shape of object



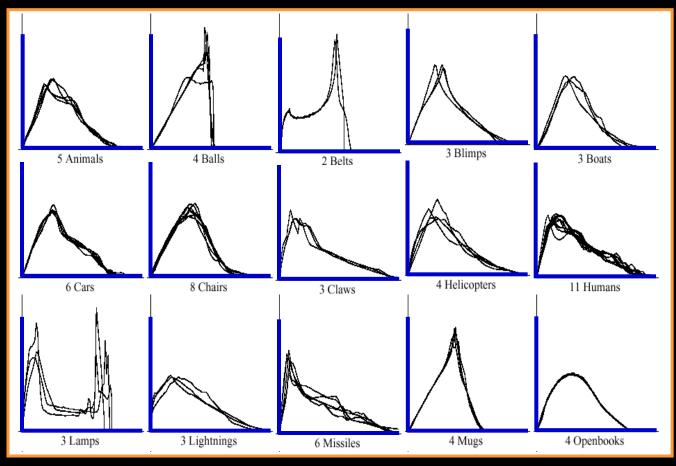


D2 shape distributions for 15 classes of objects

D2 distributions reveal gross shape of object

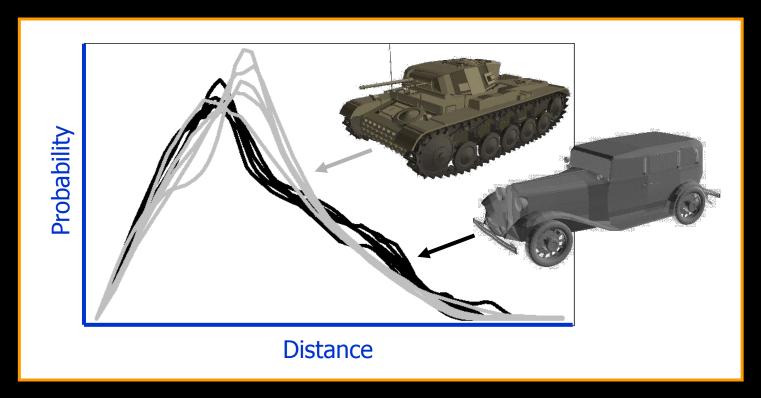


But ... are D2 distributions discriminating?



D2 shape distributions for 15 classes of objects

D2 Shape Distribution Results



D2 distributions for 5 tanks (gray) and 6 cars (black)

For each model (the query):

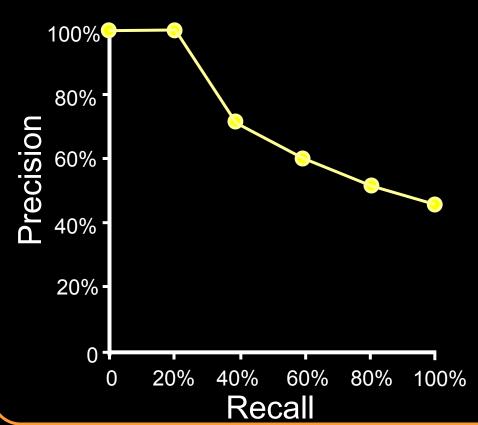
- Compute match score for all models
- Rank matches from best to worst

 Measure how often models in same class as query appear near top of ranked list

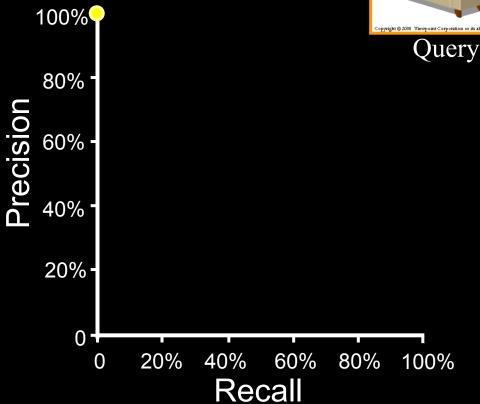
Ranked Matches

Precision-recall curves

- Precision = retrieved_in_class / total_retrieved
- Recall = retrieved_in_class / total_in_class

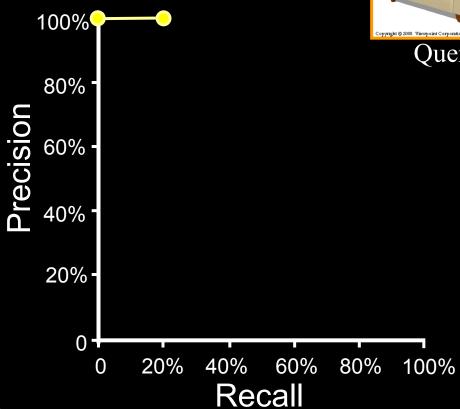


- Precision = 0/0
- Recall = 0 / 5



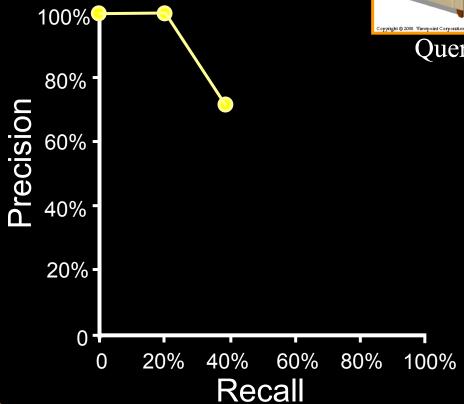
Ranked Matches

- Precision = 1 / 1
- Recall = 1/5



Ranked Matches

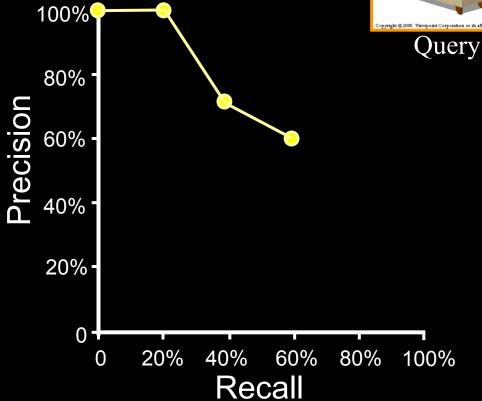
- Precision = 2/3
- Recall = 2 / 5



Query

Ranked Matches

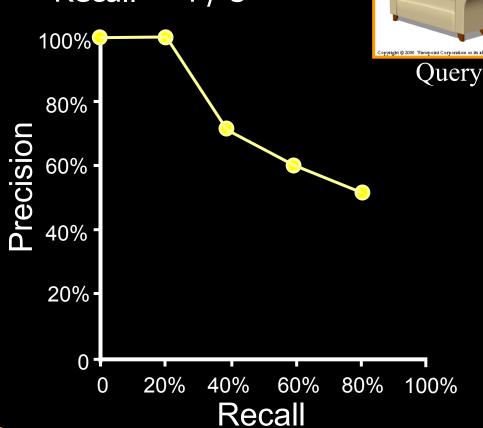
- Precision = 3 / 5
- Recall = 3 / 5



Ranked Matches

Precision-recall curve example

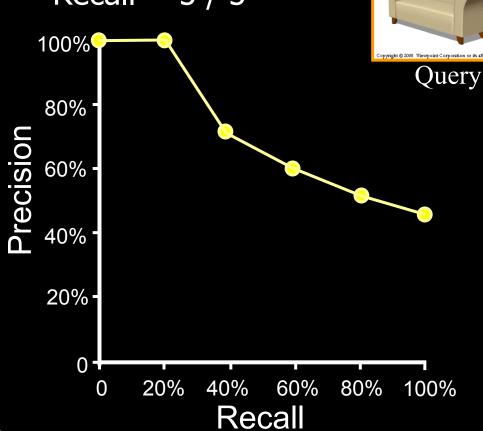
• Recall = 4 / 5



Ranked Matches

Precision-recall curve example

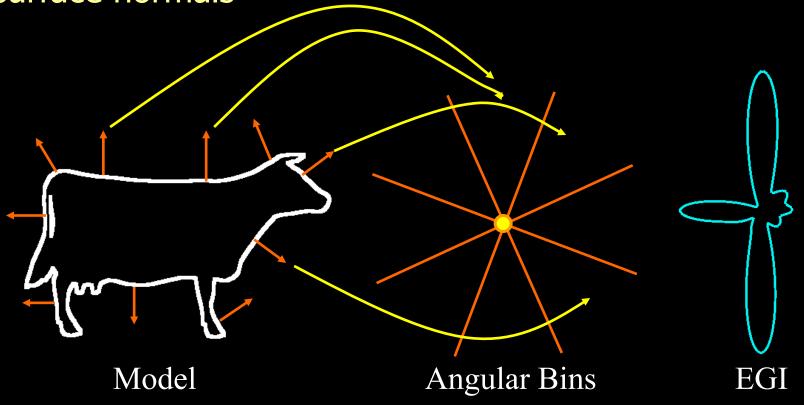
• Recall = 5 / 5



Ranked Matches

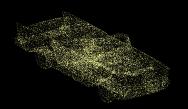


Represent a model by a spherical function by binning surface normals



Properties:

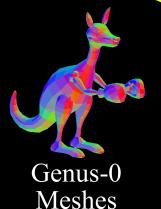
- Invertible for convex shapes
- Can be defined for most models
- 2D array of information



Point Clouds

Polygon Soups

Closed Meshes



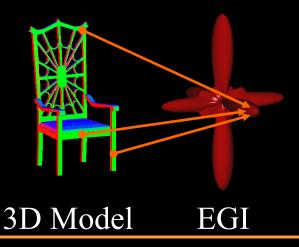
Shape Spectrum

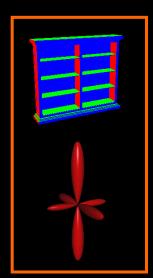
Properties:

- Invertible for convex shapes
- Can be defined for most models
- 2D array of information

Limitations:

- In general, shapes are not convex
- Normals are sensitive to noise





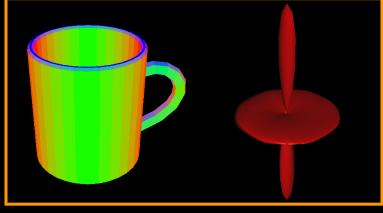


Properties:

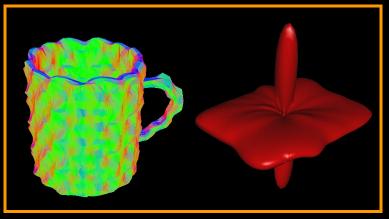
- Invertible for convex shapes
- Can be defined for most models
- 2D array of information

Limitations:

- In general, shapes are not convex
- Normals are sensitive to noise



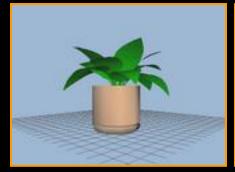
Initial Model



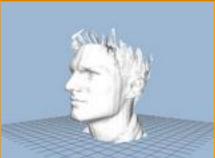
Noisy Model

Retrieval Results

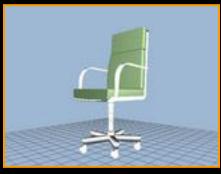
Princeton Shape Benchmark



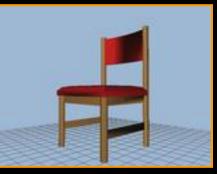
51 potted plants



33 faces



15 desk chairs



22 dining chairs

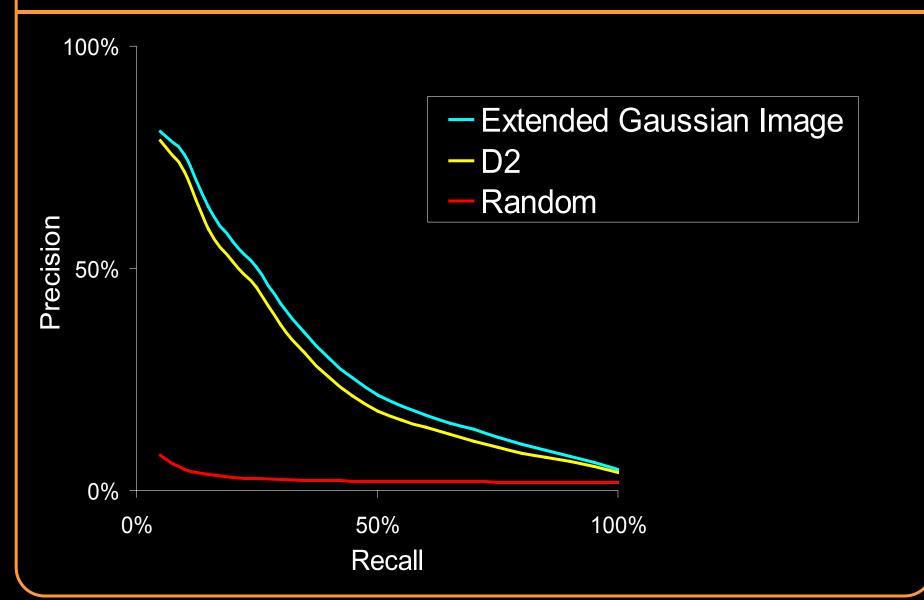
100 humans

28 biplanes

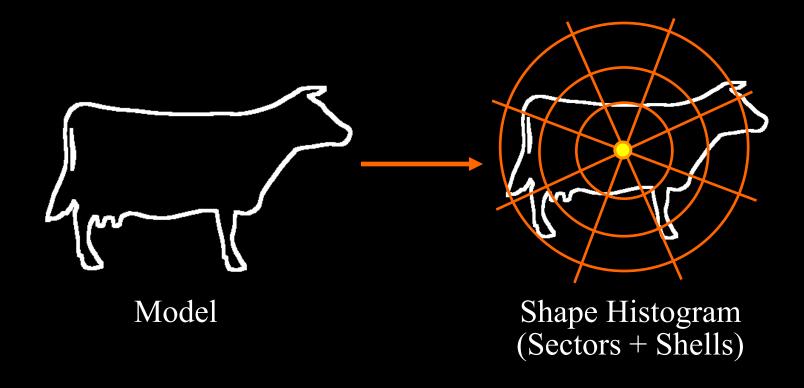
14 flying birds

11 ships

Retrieval Results



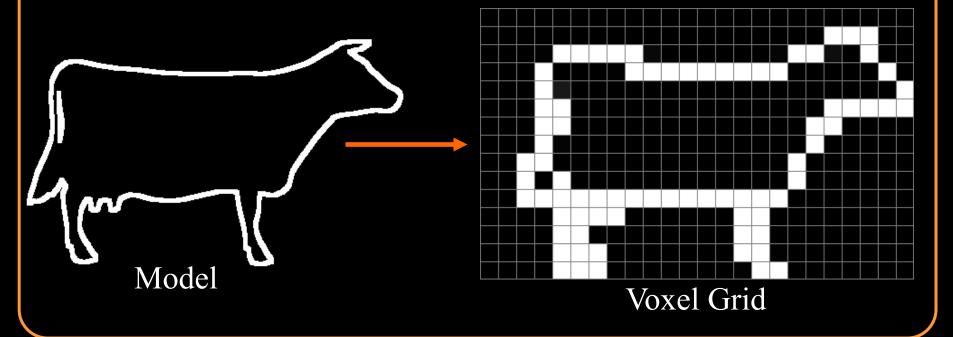
Shape descriptor stores a histogram of how much surface resides at different bins in space



Boundary Voxel Representation

Represent a model as the (anti-aliased) rasterization of its surface into a regular grid:

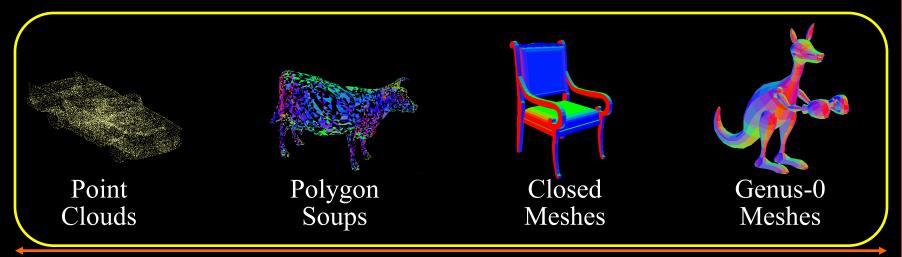
- A voxel has value 1 (or area of intersection) if it intersects the boundary
- A voxel has value 0 if it doesn't intersect



Boundary Voxel Representation

Properties:

- Can be defined for any model
- Invertible
- 3D array of information



Shape Spectrum

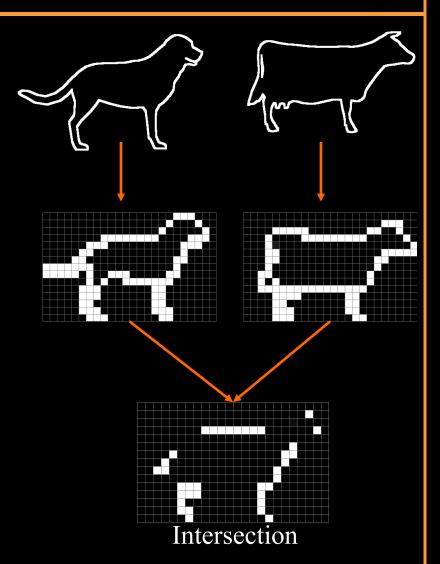
Boundary Voxel Representation

Properties:

- Can be defined for any model
- Invertible
- 3D array of information

Limitations:

Difficult to match
 If the resolution is too high:
 most voxels miss
 If the resolution is too low:
 representation is too coarse



Retrieval Results



Histogram Representations

Challenge:

 If shape properties are mapped to nearby bins, they will not be compared

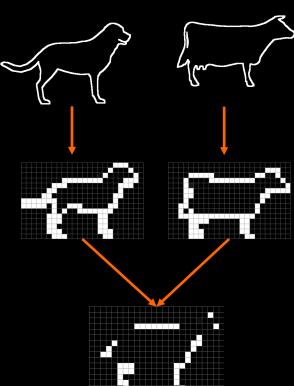
Solutions:

Match across adjacent bins:

Earth Mover's Distance

• Low-pass filter:

Convolution with a Gaussian



Earth Mover's distance

[Rubner *et al.* 1998]

Match by computing the minimal amount of work needed to transform one distribution into the other

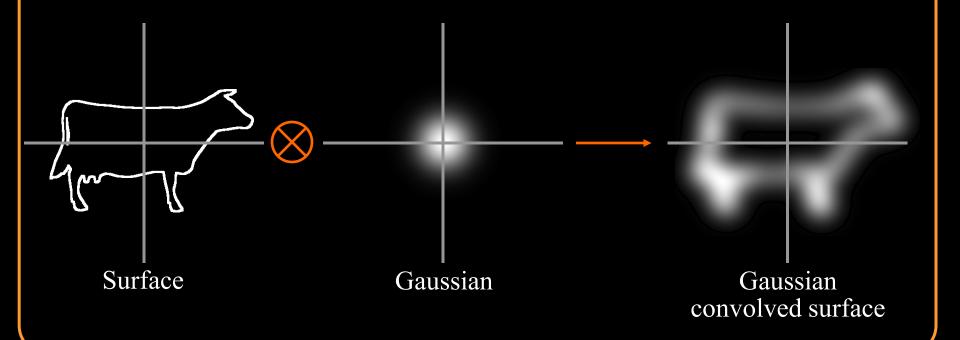
Computing the distance:

- For 1D histograms can use the CDF to compare efficiently
- In general, need to solve the transportation problem which is inefficient for large numbers of bins

Convolving with a Gaussian

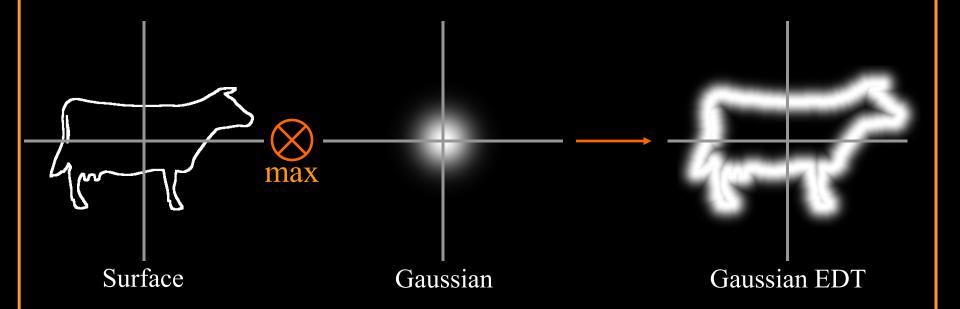
The value at a point is obtained by summing Gaussians distributed over the surface of the model

- Distributes the surface into adjacent bins
- Blurs the model, loses high frequency information



The value at a point is Gaussian applied to distance to closest point on the surface

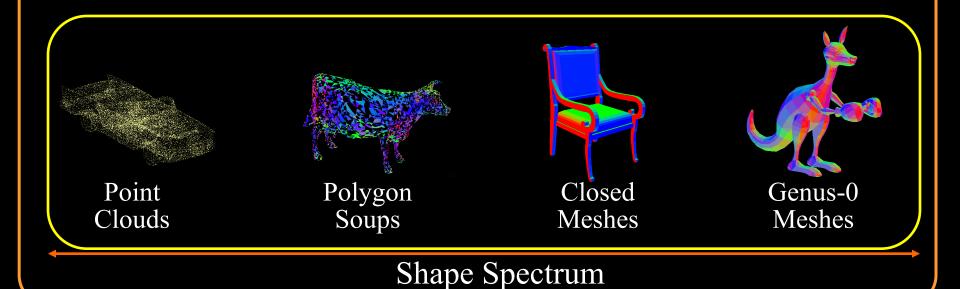
- ✓ Distributes the surface into adjacent bins
- ✓ Maintains high-frequency information



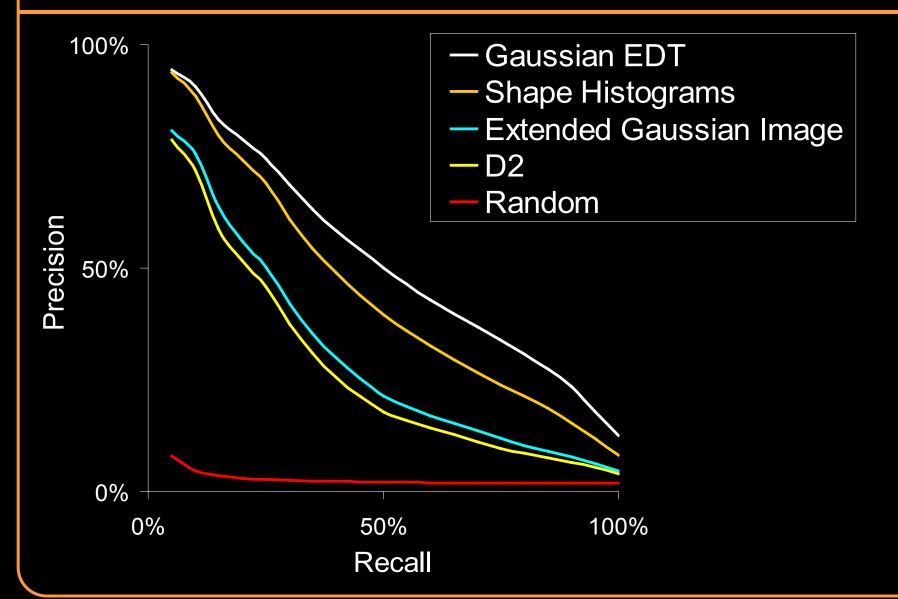
Gaussian EDT

Properties:

- Can be defined for any model
- Invertible
- 3D array of information
- Difference measures proximity between surfaces



Retrieval Results



Handling Transformations

Key difficulty:

locating objects under any rigid-body transformation

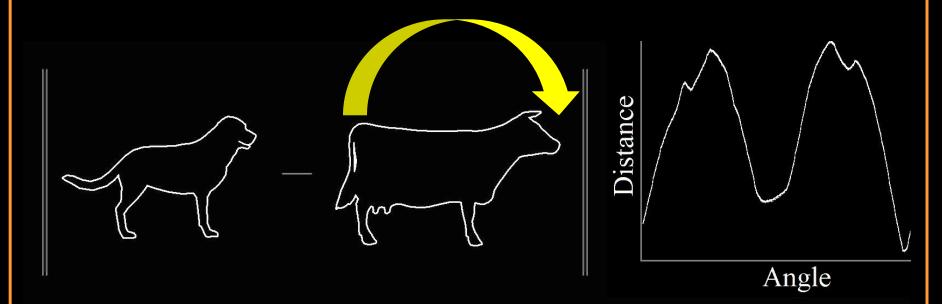
Approaches:

- Exhaustive search: try all possibilities
- Invariance: use descriptors that do not change under transformations
- Normalization: align objects to canonical coordinate frame

Exhaustive Search

Search for the best aligning transformation:

- Compare at all alignments
- Match at the alignment for which models are closest

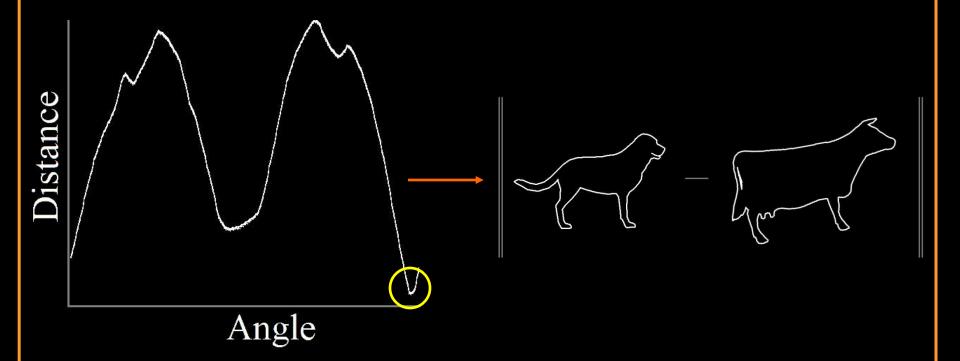


Exhaustive search for optimal rotation

Exhaustive Search

Search for the best aligning transformation:

- Compare at all alignments
- Match at the alignment for which models are closest



Exhaustive Search

Search for the best aligning transformation:

- Use signal processing for efficient correlation
- Represent model at many different transformations

Search for the best aligning transformation:

- Gives the correct answer
- Is hard to do efficiently

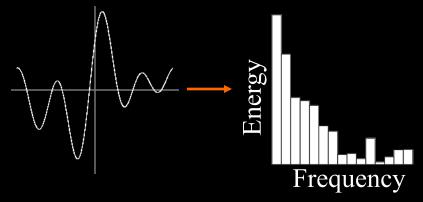
Invariance

Represent a model with information that is independent of the transformation

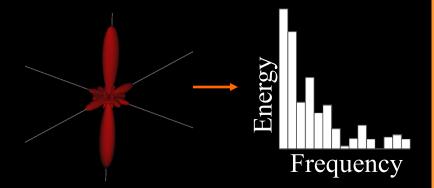
Power spectrum representation

Fourier Transform for translation and 2D rotations

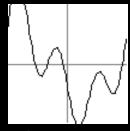
Spherical Harmonic Transform for 3D rotations



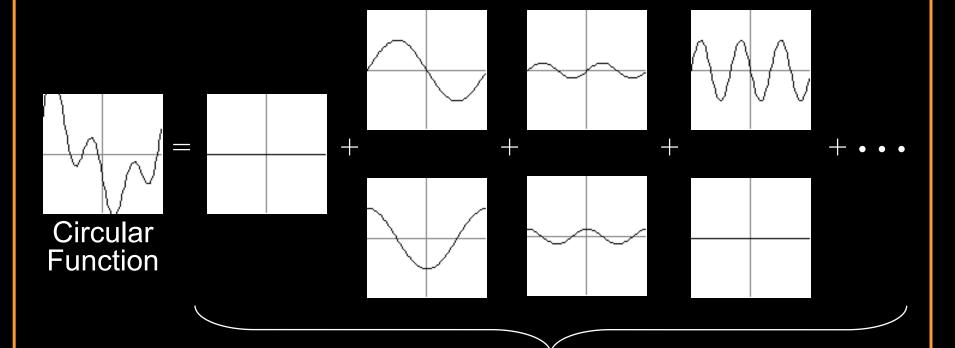
Circular Power Spectrum



Spherical Power Spectrum

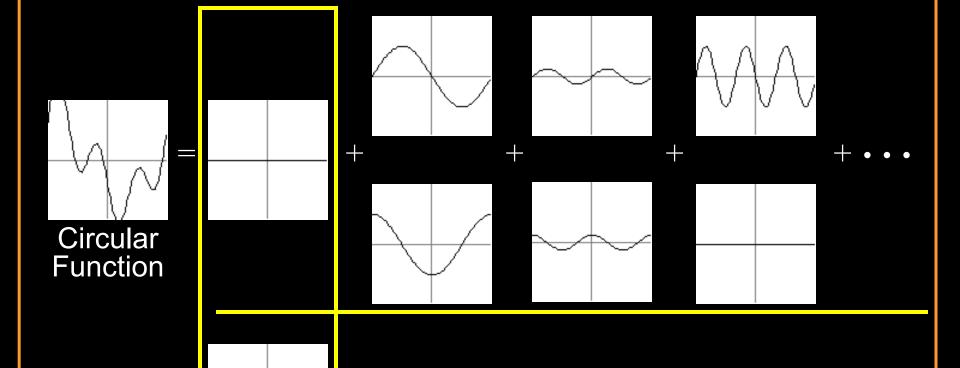


Circular Function

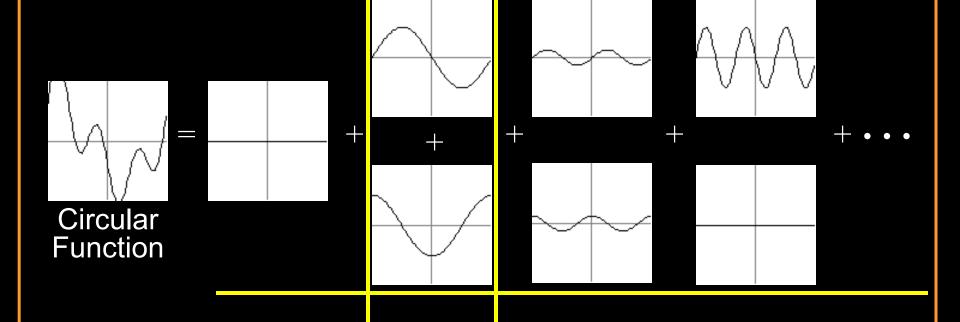


Cosine/Sine Decomposition

Constant

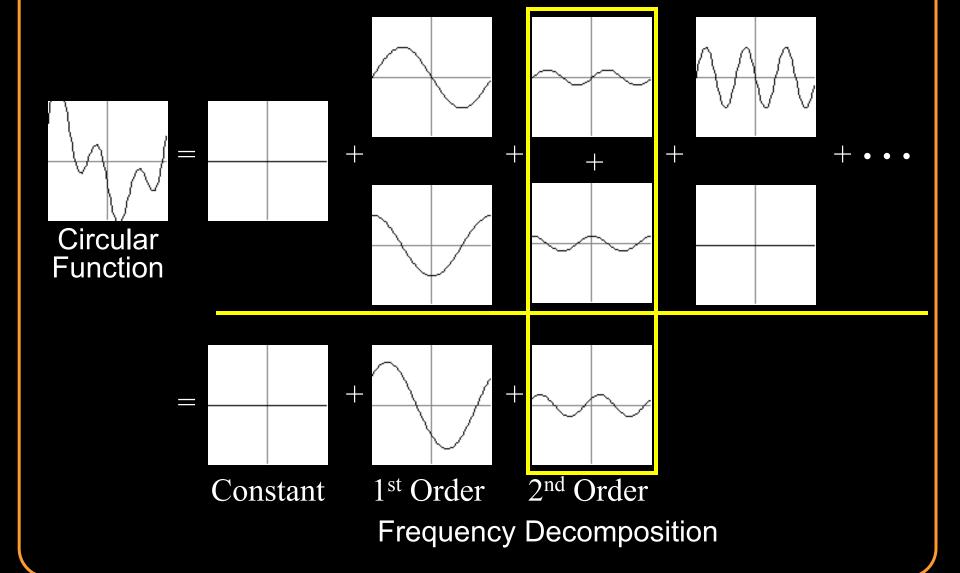


Frequency Decomposition

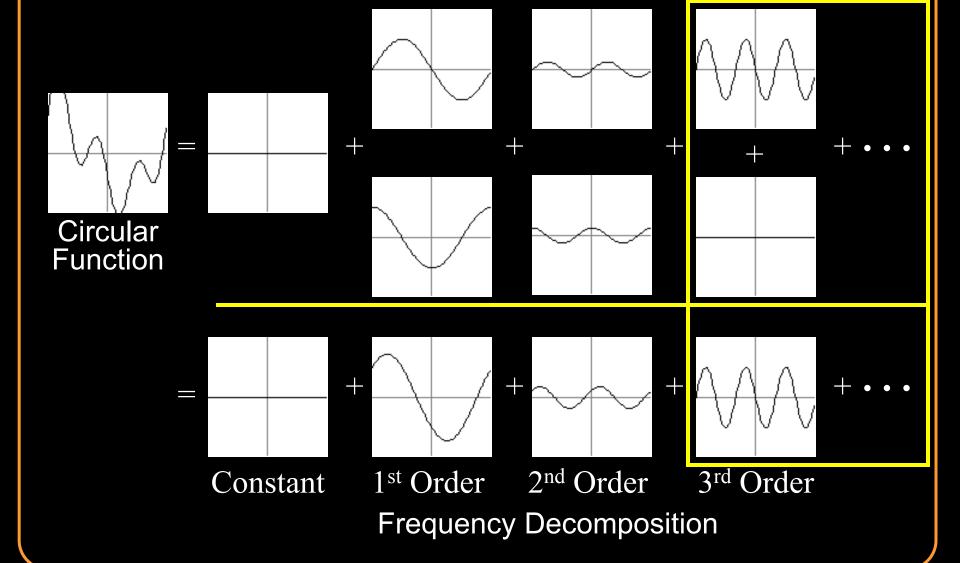


Frequency Decomposition

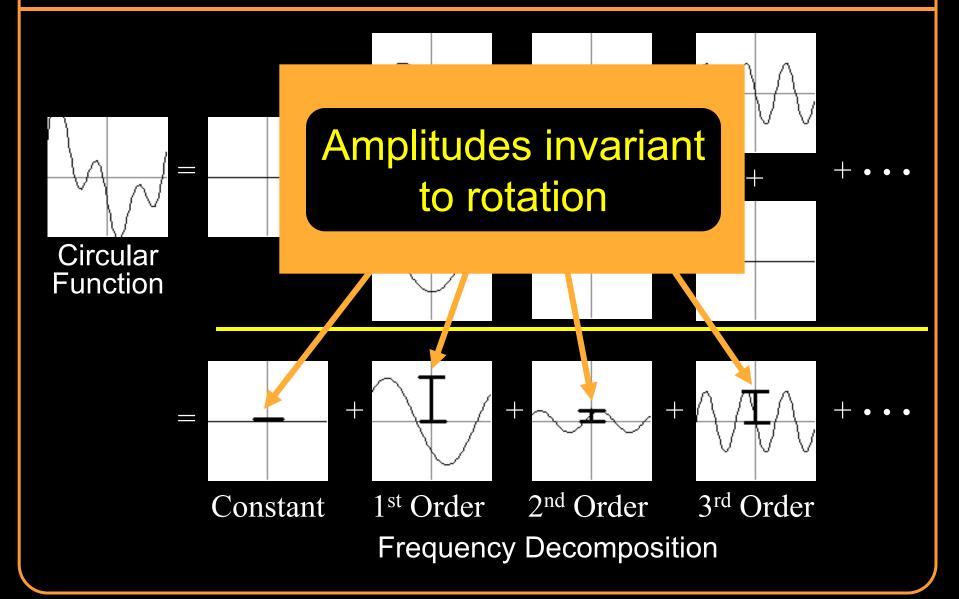
Circular Power Spectrum



Circular Power Spectrum

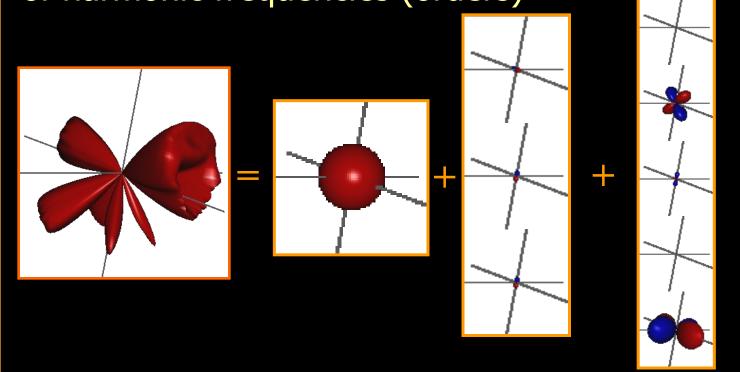


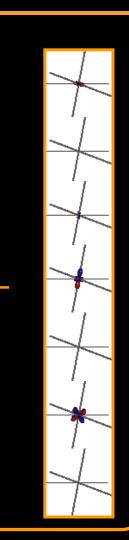
Circular Power Spectrum



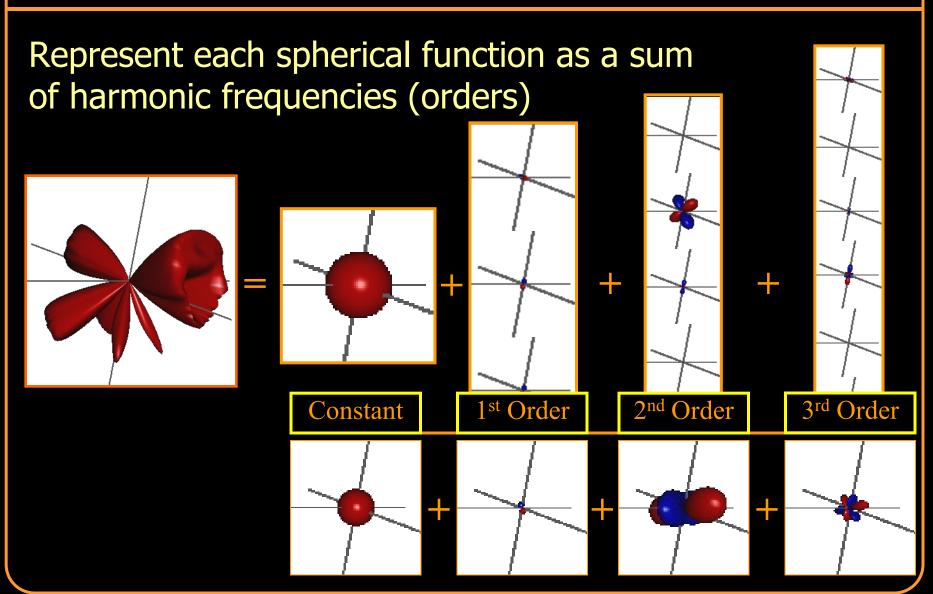
Spherical Power Spectrum

Represent each spherical function as a sum of harmonic frequencies (orders)



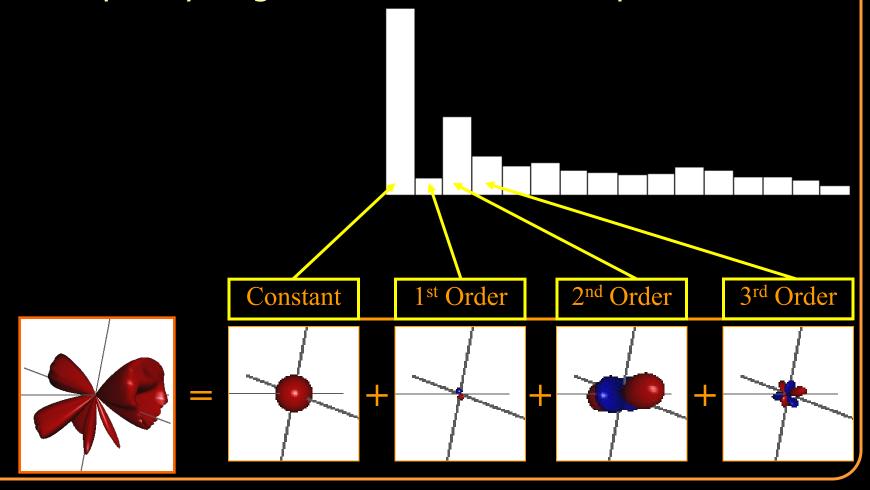


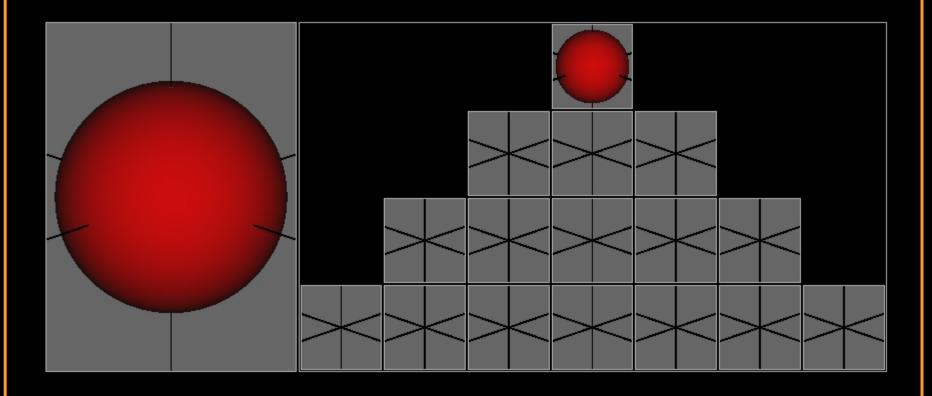
Spherical Power Spectrum

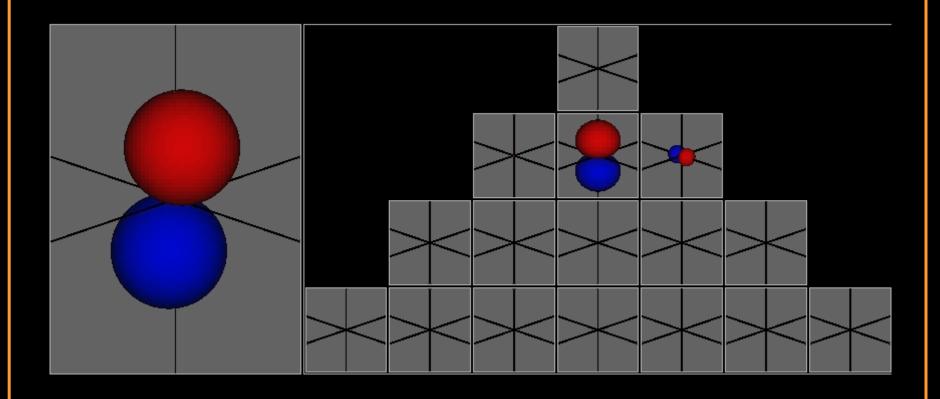


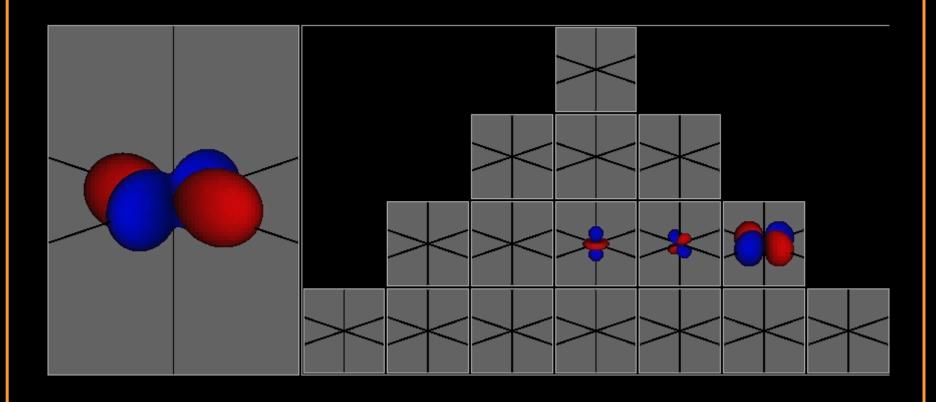
Spherical Power Spectrum

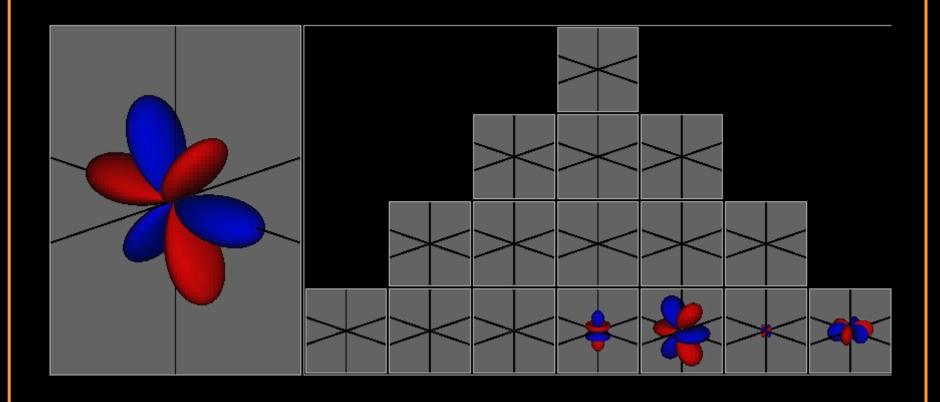
Store "how much" (L₂-norm) of the shape resides at each frequency to get rotation invariant representation





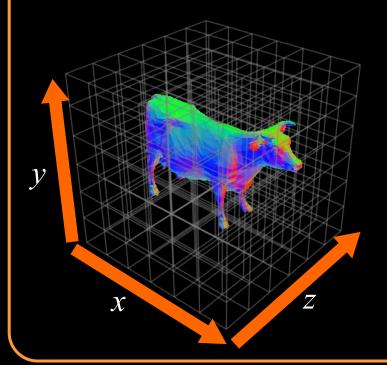






Translation-invariance:

- Represent the model in a Cartesian coordinate system
- Compute the 3D Fourier transform
- Store the amplitudes of the frequency components

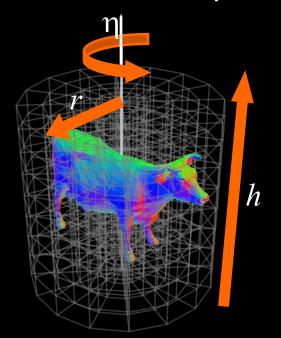


Cartesian Coordinates
$$f(x, y, z) = \sum_{l,m,n} f_{l,m,n} e^{i(lx+my+zn)}$$

$${\left\|f_{l,m,n}\right\|}_{l,m,n}$$
Translation Invariant Representation

Single axis rotation-invariance:

- Represent the model in a cylindrical coordinate system
- Compute the Fourier transform in the angular direction
- Store the amplitudes of the frequency components

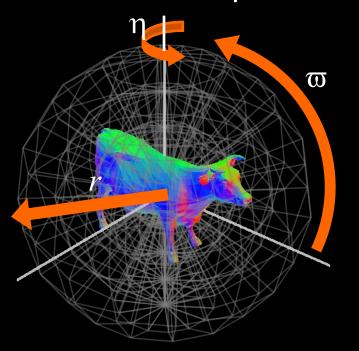


Cylindrical Coordinates $f(r,h,\theta) = \sum_{k} f_{k}(r,h)e^{i(k\theta)}$

$$\left\|f_k(r,h)\right\|_k^2$$
Rotation Invariant Representation

Full rotation-invariance:

- Represent the model in a spherical coordinate system
- Compute the spherical harmonic transform
- Store the amplitudes of the frequency components



Spherical Coordinates
$$f(r, \theta, \phi) = \sum_{l} \sum_{|m| \le l} f_{l,m}(r) Y_l^m(\theta, \phi)$$

$$\left\{ \sqrt{\sum_{|m| \le l} \left\| f_l^m(r) \right\|^2} \right\}_l$$
Rotation Invariant
Representation

Power spectrum representations

- Are invariant to transformations
- Give a lower bound for the best match
- Tend to discard too much information

```
Translation invariant: n^3 data -> n^3/2 data
```

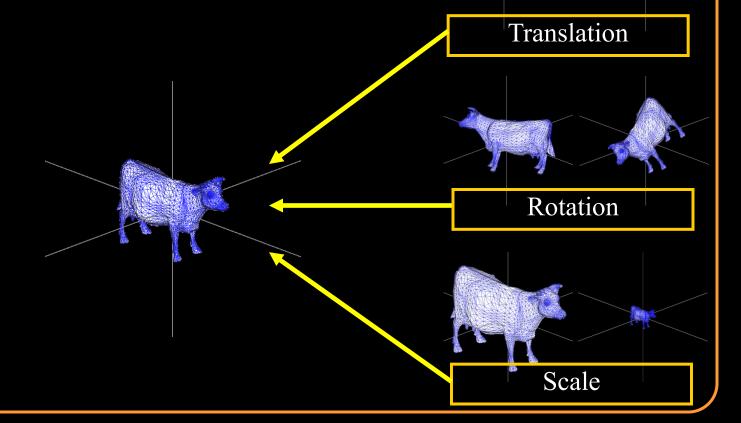
Single-axis rotation invariant: n^3 data -> $n^3/2$ data

Full rotation invariant: n^3 data $-> n^2$ data

Normalization

Place a model into a canonical coordinate frame by normalizing for:

- translation
- scale
- rotation



Alignment of Point Sets

[Horn et al., 1988]

Given two point sets $P=\{p_1,...,p_n\}$ and $Q=\{q_1,...,q_n\}$, what is the transformation T minimizing the sum of squared distances:

$$d(P,Q) = \sum_{i=1}^{n} \|p_i - T(q_i)\|^2$$

$$p_i \qquad p_i \qquad q_i \qquad q_i \qquad q_i \qquad q_2 \qquad$$

Translation

 Align the models so that their center of mass is at the origin.

$$\sum_{i=1}^{p} p_i = 0 \quad \text{and} \quad \sum_{i=1}^{q} q_i = 0$$

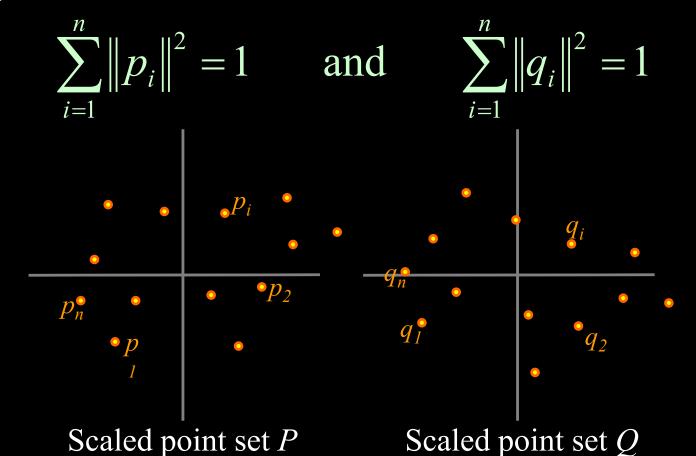
$$p_i \quad p_2 \quad q_i \quad q_i \quad q_2 \quad q_2 \quad q_2 \quad q_2 \quad q_2 \quad q_2 \quad q_3 \quad q_4 \quad q_4 \quad q_4 \quad q_5 \quad$$

Alignment of Point Sets

[Horn *et al.*, 1988]

Scale

Align the models so that their mean variance is 1.



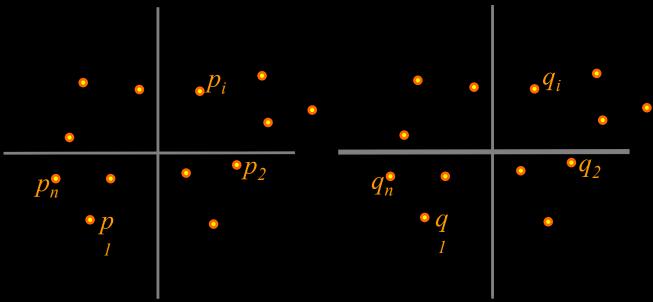
Alignment of Point Sets

[Horn et al., 1988]

Rotation

SVD on cross covariance matrix:

$$M = (p_1|...|p_n) \cdot (q_1|...|q_n)^T$$



Rotationally aligned point sets P and Q

Normalization

Place a model into a canonical coordinate frame:

Translation: center of mass

$$\sum_{i=1}^{n} p_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} q_i = 0$$

Can be done on a per-model basis

• Scale: mean variance

$$\sum_{i=1}^{n} ||p_i||^2 = 1 \quad \text{and} \quad \sum_{i=1}^{n} ||q_i||^2 = 1$$

Can be done on a per-model basis

Rotation: SVD on cross covariance matrix

$$M = (p_1|...|p_n) \cdot (q_1|...|q_n)^t$$

Need to know the correspondences between models

Rotation

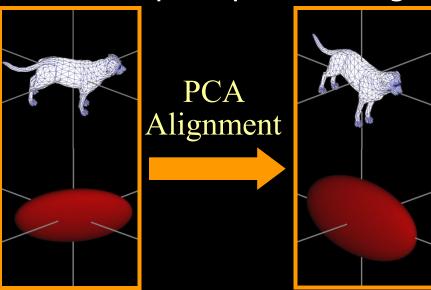
Challenge:

We want to normalize for rotation on a per-model basis

Solution:

Align the model so that the principal axes align with the

coordinate axes



Rotation

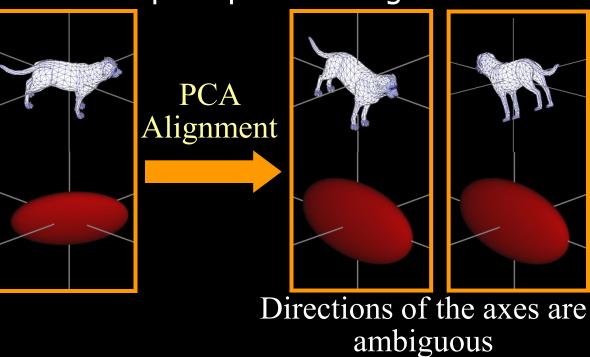
Challenge:

We want to normalize for rotation on a per-model basis

Solution:

Align the model so that the principal axes align with the

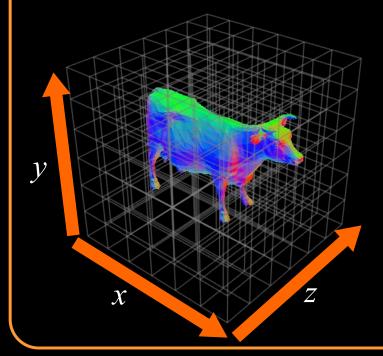
coordinate axes



Normalization (PCA)

PCA defines a coordinate frame up to reflection in the coordinate axes.

- Make descriptor invariant to the eight reflections
 - Reflections fix the cosine term
 - Reflections multiply the sine term by -1



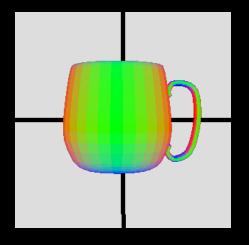
$$f(\theta) = \sum_{k} a_{k} \cos(k\theta) + b_{k} \sin(k\theta)$$

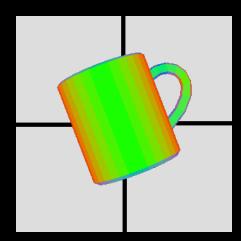
$$\{a_k, |b_k|\}_k$$

Translation Invariant Representation

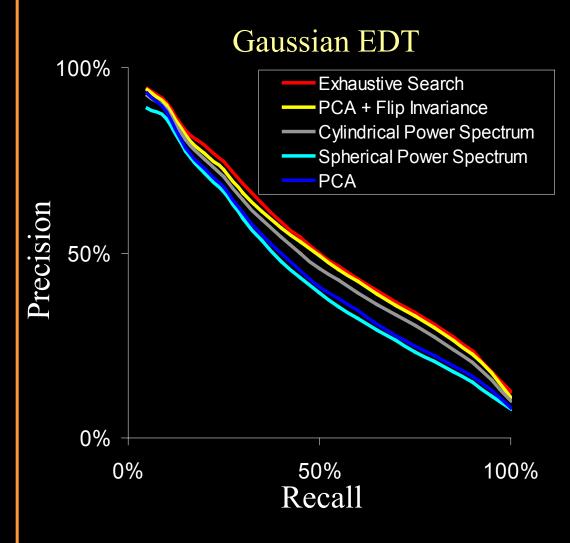
Problem with PCA-Based Alignment

If singular values are close, axes unstable





Retrieval Results (Rotation)



Size:

Method	Floats
Exhaustive Search	8192
PCA + Flip Invariance	8192
PCA	8192
Cylindrical PS	4352
Spherical PS	512

Time:

Method	Secs.
Exhaustive Search	20.59
PCA + Flip Invariance	.67
PCA	.67
Cylindrical PS	.32
Spherical PS	.03