Matching and Recognition in 3D

Based on slides by Tom Funkhouser and Misha Kazhdan

From 2D to 3D: Some Things Easier

No occlusion (but sometimes missing data instead) Segmenting objects often simpler

From 2D to 3D: Many Things Harder

Rigid transform has 6 degrees of freedom vs. 3

- Brute-force algorithms much less practical

Rotations do not commute

- Difficult to parameterize, search over

No natural parameterization for surfaces in 3D

- Hard to do FFT, convolution, PCA
- Exception: range images (which are view dependent)

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating

Shape Matching Challenge

Need shape descriptor \& matching method that is:
> Concise to store

- Quick to compute
- Efficient to match
- Discriminating

3D Query

Best
Matches

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
> Quick to compute
- Efficient to match
- Discriminating

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
- Quick to compute
$>$ Efficient to match
- Discriminating

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
- Quick to compute
- Efficient to match
> Discriminating

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
$>$ Invariant to transformations
- Invariant to deformations
- Insensitive to noise
- Insensitive to topology
- Robust to degeneracies

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- Invariant to transformations
> Invariant to deformations
- Insensitive to noise
- Insensitive to topology
- Robust to degeneracies

Different Articulated Poses

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- Invariant to transformations
- Invariant to deformations
> Insensitive to noise
- Insensitive to topology
- Robust to degeneracies

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating
- Invariant to transformations

Different Genus

- Invariant to deformations
- Insensitive to noise
> Insensitive to topology
- Robust to degeneracies

Different Tessellations

Shape Matching Challenge

Need shape descriptor \& matching method that is:

- Concise to store
- Quick to compute
- Efficient to match
- Discriminating

No Bottom!

\&*Q?@\#A\%!

Taxonomy of 3D Matching Methiodso

Structural representations

- Skeletons
- Part-based methods
- Feature-based methods

Statistical representations

- Attribute feature vectors
- Volumetric methods
- Surface-based methods
- View-based methods

Features on Surfaces

Can construct edge and corner detectors

Analogue of $1^{\text {st }}$ derivative: surface normal
Analogue of $2^{\text {nd }}$ derivative: curvature

- Curvature at each point in each direction
- Minimum and maximum: "principal curvatures"
- Can threshold or do nonmaximum suppression

Using Curvatures for Recognition/Matching

Curvature histograms: compute κ_{1} and κ_{2} throughout surface, create 2D histograms

Invariant to translation, rotation

Alternative: use $\kappa_{2} / \kappa_{1}-$ also invariant to scale

- Shape index: $S=\frac{1}{2}-\frac{1}{\pi} \tan ^{-1} \frac{\kappa_{1}+\kappa_{2}}{\kappa_{1}-\kappa_{2}} \in[0 . .1]$

Curvatures sensitive to noise (2 ${ }^{\text {nd }}$ derivative...), so sometimes just use sign of curvatures

Using Curvatures for Segmentation

Sharp creases in surface (i.e., where $\left|\kappa_{1}\right|$ is large) tend to be good places to segment

Option \#1: look for maxima of curvature in the first principal direction

- Much like Canny edge detection
- Nonmaximum suppression, hysteresis thresholding

Option \#2: optimize for both high curvature and smoothness using graph cuts, snakes, etc.

Taxonomy of 3D Matching Methods.

Structural representations

- Skeletons
- Part-based methods
- Feature-based methods

Statistical representations

- Attribute feature vectors
- Volumetric methods
- Surface-based methods
- View-based methods

Feature 2

Example

Shape distributions

- Shape representation: probability distributions
- Distance measure: difference between distributions
- Evaluation method: classification performance

Shape Distributions

Key idea: map 3D surfaces to common parameterization by randomly sampling shape function

Which Shape Function?

Implementation: simple shape functions based on angles, distances, areas, and volumes

D2 Shape Distribution

Properties

- Concise to store?
- Quick to compute?
- Invariant to transforms?
- Efficient to match?
- Insensitive to noise?
- Insensitive to topology?
- Robust to degeneracies?
- Invariant to deformations?
- Discriminating?

D2 Shape Distribution

Properties

$>$ Concise to store?
$>$ Quick to compute?

- Invariant to transforms?
- Efficient to match?
- Insensitive to noise?
- Insensitive to topology?
- Robust to degeneracies?
- Invariant to deformations?
- Discriminating?

512 bytes (64 values)
0.5 seconds (10^{6} samples)

D2 Shape Distribution

Properties

\checkmark Concise to store
\checkmark Quick to compute
$>$ Invariant to transforms?

- Efficient to match?
- Insensitive to noise?
- Insensitive to topology?
- Robust to degeneracies?
- Invariant to deformations?
- Discriminating?

Normalized Means

D2 Shape Distribution

Properties

\checkmark Concise to store
\checkmark Quick to compute
\checkmark Invariant to transforms
> Efficient to match?

- Insensitive to noise?
- Insensitive to topology?
- Robust to degeneracies?
- Invariant to deformations?

- Discriminating?

D2 Shape Distribution

Properties

\checkmark Concise to store
\checkmark Quick to compute
\checkmark Invariant to transforms
\checkmark Efficient to match
$>$ Insensitive to noise?
$>$ Insensitive to topology?
$>$ Robust to degeneracies?

- Invariant to deformations?
- Discriminating?

D2 Shape Distribution

Properties

\checkmark Concise to store
\checkmark Quick to compute
\checkmark Invariant to transforms
\checkmark Efficient to match
\checkmark Insensitive to noise
\checkmark Insensitive to topology
\checkmark Robust to degeneracies
$>$ Invariant to deformations?

- Discriminating?

D2 Shape Distribution

Properties

\checkmark Concise to store
\checkmark Quick to compute
\checkmark Invariant to transforms
\checkmark Efficient to match
\checkmark Insensitive to noise
\checkmark Insensitive to topology
\checkmark Robust to degeneracies
※ Invariant to deformations
> Discriminating?

D2 Shape Distribution Results

Question

- How discriminating are D2 shape distributions?
Test database
- 133 polygonal models
- 25 classes

D2 Shape Distribution Results

D2 distributions are different across classes

D2 shape distributions for 15 classes of objects

D2 Shape Distribution Results

D2 distributions reveal gross shape of object

D2 Shape Distribution Results

D2 distributions reveal gross shape nf nhiont

D2 shape distributions for 15 classes of objects

D2 Shape Distribution Results

D2 distributions reveal gross shape of object

D2
15 classes of objects

D2 Shape Distribution Results

D2 distributions reveal grof

D2 shape distributions for 15 classes of objects

D2 Shape Distribution Results

D2 distributions reveal gross shape of object

D2 Shape Distribution Results

But ... are D2 distributions discriminating?

D2 shape distributions for 15 classes of objects

D2 Shape Distribution Results

D2 distributions for 5 tanks (gray) and 6 cars (black)

Evaluation Methods

For each model (the query):

- Compute match score for all models
- Rank matches from best to worst
- Measure how often models in same class as query appear near top of ranked list

Ranked Matches

Evaluation Methods

Precision-recall curves

- Precision = retrieved_in_class / total_retrieved
- Recall = retrieved_in_class / total_in_class

Evaluation Methods

Precision-recall curve example

- Precision $=0 / 0$
- Recall $=0 / 5$

Ranked Matches

Evaluation Methods

Precision-recall curve example

- Precision = 1 / 1
- Recall = 1 / 5

Evaluation Methods

Precision-recall curve example

- Precision = 2 / 3
- Recall = 2 / 5

Evaluation Methods

Precision-recall curve example

- Precision = 3 / 5
- Recall = 3 / 5

Ranked Matches

Evaluation Methods

Precision-recall curve example

- Precision = 4 / 7
- Recall = 4 / 5

Ranked Matches

Evaluation Methods

Precision-recall curve example

- Precision $=5 / 9$
- Recall = 5 / 5

Ranked Matches

Evaluation Methods

Extended Gaussian Image

Represent a model by a spherical function by binning surface normals

Extended Gaussian Image

Properties:

- Invertible for convex shapes
- Can be defined for most models
- 2D array of information

Shape Spectrum

Extended Gaussian Image

Properties:

- Invertible for convex shapes
- Can be defined for most models
- 2D array of information

Limitations:

- In general, shapes are not convex
- Normals are sensitive to noise

3D Model
EGI

Extended Gaussian Image

Properties:

- Invertible for convex shapes
- Can be defined for most models
- 2D array of information

Limitations:

- In general, shapes are not convex
- Normals are sensitive to noise

Initial Model

Noisy Model

Retrieval Results

Princeton Shape Benchmark

51 potted plants

33 faces

15 desk chairs

14 flying birds

22 dining chairs

100 humans

28 biplanes

11 ships

Retrieval Results

Shape Histograms

Shape descriptor stores a histogram of how much surface resides at different bins in space

Boundary Voxel Representation

Represent a model as the (anti-aliased) rasterization of its surface into a regular grid:

- A voxel has value 1 (or area of intersection) if it intersects the boundary
- A voxel has value 0 if it doesn't intersect

Boundary Voxel Representation

Properties:

- Can be defined for any model
- Invertible
- 3D array of information

Shape Spectrum

Boundary Voxel Representation

Properties:

- Can be defined for any model
- Invertible
- 3D array of information

Limitations:

- Difficult to match

If the resolution is too high:
most voxels miss
If the resolution is too low:
representation is too coarse

Retrieval Results

Histogram Representations

Challenge:

- If shape properties are mapped to nearby bins, they will not be compared
Solutions:
- Match across adjacent bins:

Earth Mover's Distance

- Low-pass filter:

Convolution with a Gaussian

Earth Mover's distance

Match by computing the minimal amount of work needed to transform one distribution into the other

Computing the distance:

- For 1D histograms can use the CDF to compare efficiently
- In general, need to solve the transportation problem which is inefficient for large numbers of bins

Convolving with a Gaussian

The value at a point is obtained by summing Gaussians distributed over the surface of the model
\checkmark Distributes the surface into adjacent bins
x Blurs the model, loses high frequency information

Surface

Gaussian

Gaussian
convolved surface

Gaussian EDT

The value at a point is Gaussian applied to distance to closest point on the surface
\checkmark Distributes the surface into adjacent bins
\checkmark Maintains high-frequency information

Surface

Gaussian

Gaussian EDT

Gaussian EDT

Properties:

- Can be defined for any model
- Invertible
- 3D array of information
- Difference measures proximity between surfaces

Shape Spectrum

Retrieval Results

Handling Transformations

Key difficulty:
locating objects under any rigid-body transformation

Approaches:

- Exhaustive search: try all possibilities
- Invariance: use descriptors that do not change under transformations
- Normalization: align objects to canonical coordinate frame

Exhaustive Search

Search for the best aligning transformation:

- Compare at all alignments
- Match at the alignment for which models are closest

Exhaustive search for optimal rotation

Exhaustive Search

Search for the best aligning transformation:

- Compare at all alignments
- Match at the alignment for which models are closest

Exhaustive Search

Search for the best aligning transformation:

- Use signal processing for efficient correlation
- Represent model at many different transformations

Search for the best aligning transformation:

- Gives the correct answer
- Is hard to do efficiently

Invariance

Represent a model with information that is independent of the transformation

- Power spectrum representation

Fourier Transform for translation and 2D rotations
Spherical Harmonic Transform for 3D rotations

Circular Power Spectrum

Spherical Power Spectrum

Circular Power Spectrum

Circular
Function

Circular Power Spectrum

Circular Function

Cosine/Sine Decomposition

Circular Power Spectrum

Frequency Decomposition

Circular Power Spectrum

Circular Power Spectrum

Circular Power Spectrum

Circular Function

Constant

$1{ }^{\text {st }}$ Order
Frequency Decomposition

Circular Power Spectrum

Spherical Power Spectrum

Represent each spherical function as a sum of harmonic frequencies (orders)

Harmonic Decomposition

Spherical Power Spectrum

Represent each spherical function as a sum of harmonic frequencies (orders)

\qquad $3^{\text {rd }}$ Order

Spherical Power Spectrum

Store "how much" (L_{2}-norm) of the shape resides at each frequency to get rotation invariant representation

Invariant to transforms?

- Frequency subspaces are fixed by rotations:

Invariant to transforms?

- Frequency subspaces are fixed by rotations:

Invariant to transforms?

- Frequency subspaces are fixed by rotations:

Invariant to transforms?

- Frequency subspaces are fixed by rotations:

Power Spectrum

Translation-invariance:

- Represent the model in a Cartesian coordinate system
- Compute the 3D Fourier transform
- Store the amplitudes of the frequency components

$$
\begin{gathered}
\text { Cartesian Coordinates } \\
f(x, y, z)=\sum_{l, m, n} f_{l, m, n} e^{i(l x+m y+z n)}
\end{gathered}
$$

$$
\left\{\left\|f_{l, m, n}\right\|\right\}_{l, m, n}
$$

Translation Invariant Representation

Power Spectrum

Single axis rotation-invariance:

- Represent the model in a cylindrical coordinate system
- Compute the Fourier transform in the angular direction
- Store the amplitudes of the frequency components

$$
\begin{gathered}
\text { Cylindrical Coordinates } \\
f(r, h, \theta)=\sum_{k} f_{k}(r, h) e^{i(k \theta)}
\end{gathered}
$$

Rotation Invariant Representation

Power Spectrum

Full rotation-invariance:

- Represent the model in a spherical coordinate system
- Compute the spherical harmonic transform
- Store the amplitudes of the frequency components

$$
\begin{gathered}
\qquad f(r, \theta, \phi)=\sum_{l}^{\text {Spherical Coordinates }} \sum_{|m| \leq l} f_{l, m}(r) Y_{l}^{m}(\theta, \phi) \\
\left\{\begin{array}{c}
\left.\sqrt{\sum_{|m| \leq l}\left\|f_{l}^{m}(r)\right\|^{2}}\right\}_{l} \\
\text { Rotation Invariant } \\
\text { Representation }
\end{array}\right. \\
\end{gathered}
$$

Power Spectrum

Power spectrum representations

- Are invariant to transformations
- Give a lower bound for the best match
- Tend to discard too much information

Translation invariant:
n^{3} data -> $\mathrm{n}^{3} / 2$ data
Single-axis rotation invariant: n^{3} data $->n^{3} / 2$ data
Full rotation invariant: $\quad n^{3}$ data $->n^{2}$ data

Normalization

Place a model into a canonical coordinate frame by normalizing for:

- translation
- scale
- rotation

Alignment of Point Sets

Given two point sets $\mathrm{P}=\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$ and $\mathrm{Q}=\left\{\mathrm{q}_{1}, \ldots, \mathrm{q}_{n}\right\}$, what is the transformation T minimizing the sum of squared distances:

Alignment of Point Sets

Translation

- Align the models so that their center of mass is at the origin.

$$
\sum_{i=1}^{n} p_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} q_{i}=0
$$

Alignment of Point Sets

Scale

- Align the models so that their mean variance is 1.

$$
\sum_{i=1}^{n}\left\|p_{i}\right\|^{2}=1 \quad \text { and } \quad \sum_{i=1}^{n}\left\|q_{i}\right\|^{2}=1
$$

Scaled point set P
Scaled point set Q

Alignment of Point Sets

[Horn et al., 1988]

Rotation

- SVD on cross covariance matrix:

$$
\begin{aligned}
& M=\left(p_{1}|\ldots| p_{n}\right) \cdot\left(q_{1}|\ldots| q_{n}\right)^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rotationally aligned point sets } P \text { and } Q
\end{aligned}
$$

Normalization

Place a model into a canonical coordinate frame:

- Translation: center of mass

$$
\sum_{i=1}^{n} p_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} q_{i}=0
$$

Can be done on a per-model basis

- Scale: mean variance

$$
\sum_{i=1}^{n}\left\|p_{i}\right\|^{2}=1 \quad \text { and } \quad \sum_{i=1}^{n}\left\|q_{i}\right\|^{2}=1
$$

Can be done on a per-model basis

- Rotation: SVD on cross covariance matrix

$$
M=\left(p_{1}|\ldots| p_{n}\right) \cdot\left(q_{1}|\ldots| q_{n}\right)^{x}
$$

Need to know the correspondences between models

Rotation

Challenge:

- We want to normalize for rotation on a per-model basis

Solution:

- Align the model so that the principal axes align with the coordinate axes

Rotation

Challenge:

- We want to normalize for rotation on a per-model basis

Solution:

- Align the model so that the principal axes align with the coordinate axes

Directions of the axes are ambiguous

Normalization (PCA)

PCA defines a coordinate frame up to reflection in the coordinate axes.

- Make descriptor invariant to the eight reflections

Reflections fix the cosine term
Reflections multiply the sine term by -1

$$
f(\theta)=\sum_{k} a_{k} \cos (k \theta)+b_{k} \sin (k \theta)
$$

$$
\left\{a_{k},\left|b_{k}\right|\right\}_{k}
$$

Translation Invariant Representation

Problem with PCA-Based Alignment

If singular values are close, axes unstable

Retrieval Results (Rotation)

Size:

Method	Floats
Exhaustive Search	8192
PCA + Flip Invariance	8192
PCA	8192
Cylindrical PS	4352
Spherical PS	512

Time:

Method	Secs.
Exhaustive Search	20.59
PCA + Flip Invariance	.67
PCA	.67
Cylindrical PS	.32
Spherical PS	.03

