
COS 429: Computer Vision 

3D Geometry and 
Camera Calibration 

Acknowledgments: T. Funkhouser,, N. Snavely 



Point Correspondences 

• What can we figure out given correspondences? 

[Snavely] 



Triangulation 

• If we know camera parameters and correspondences 
between points in different images… 
– How do we figure out 3D point positions? 

[Snavely] 



Camera Calibration 

• If we know 3D point positions and correspondences 
between points and pixels… 
– How do we compute the camera parameters? 

[Snavely] 



3D Coordinate Systems 

• Right-handed vs. left-handed 
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2D Coordinate Systems 

• y axis up vs. y axis down 

• Origin at center vs. corner 

• Will often write (u, v) for image coordinates 

u 

v 

u 

u 

v 
v 



3D Geometry Basics 

• 3D points = column vectors 

 

 

• Transformations = pre-multiplied matrices 
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Rotation 

• Rotation about the z axis 

 

 

 

• Rotation about x, y axes similar 
(cyclically permute x, y, z) 
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Arbitrary Rotation 

• Any rotation is a composition of rotations about 
x, y, and z 

• Composition of transformations = 
matrix multiplication (watch the order!) 

• Result: orthonormal matrix 
– Each row, column has unit length 

– Dot product of rows or columns = 0 

– Inverse of matrix = transpose 



Arbitrary Rotation 

• Rotate around x, y, then z: 

 

 

 

• Don’t do this!  It’s probably buggy! 
Compute simple matrices and multiply them… 
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Scale 

• Scale in x, y, z: 
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Shear 

• Shear parallel to xy plane: 
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Translation 

• Can translation be represented by multiplying by a 
3×3 matrix? 

• No. 

• Proof: 

00


=∀ AA :



Homogeneous Coordinates 

• Add a fourth dimension to each point: 

 

 

 

• To get “real” (3D) coordinates, divide by w: 
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Translation in 
Homogeneous Coordinates 

• After divide by w, this is just a translation 
by (tx , ty , tz) 
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Perspective Projection 

• What does 4th row of matrix do? 

 

 

 

• After divide, 
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Perspective Projection 

• This is projection onto the z=1 plane 

 

 

 

 

 

 

• Add scaling, flipping, etc. ⇒ pinhole camera model 

(x,y,z) 

(x/z,y/z,1) 

(0,0,0) 
z=1 



Putting It All Together: 
A Camera Model 

xcamcamcampiximg
TRPST

3D point 
(homogeneous coords) 

Camera 
location 

Camera 
orientation 

Perspective 
projection 

Scale to 
pixel size, 

flip y 

Translate 
to image 
center 

Then perform 
homogeneous 

divide, and 
get (u,v) coords 



Putting It All Together: 
A Camera Model 

xcamcamcampiximg
TRPST

Extrinsics 
Intrinsics 



Putting It All Together: 
A Camera Model 

xcamcamcampiximg
TRPST

World coordinates 

Camera coordinates 
Normalized device coordinates 

Eye coordinates 

Image coordinates 
Pixel coordinates 



More General Camera Model 

• Multiply all these matrices together 

• Don’t care about “z” after transformation 

 

 

 

 

• Scale ambiguity → 11 free parameters 
– 6 extrinsic, 5 intrinsic 
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Radial Distortion 

• Radial distortion is nonlinear: 
cannot be represented by matrix 
 

 

 

• (cu, cv) is image center, 

u*
img= uimg– cu,   v*

img= vimg– cv, 

κ  is first-order radial distortion coefficient 
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Camera Calibration 

• Determining values for camera parameters 

• Necessary for any algorithm that requires 
3D ↔ 2D mapping 

• Method used depends on: 
– What data is available 

– Intrinsics only vs. extrinsics only vs. both 

– Form of camera model 



Camera Calibration 

• General idea:  place 
“calibration object” with 
known geometry in the scene 

• Get correspondences 

• Solve for mapping from 
scene to image 



Camera Calibration 

Chromaglyphs 
Courtesy of Bruce Culbertson, HP Labs 

http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm 



Camera Calibration – Example 1 

• Given: 
– 3D ↔ 2D correspondences 

– General perspective camera model 
(11-parameter, no radial distortion) 

• Write equations: 
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Camera Calibration – Example 1 

• Linear equation 

• Overconstrained (more equations than unknowns) 

• Underconstrained (rank deficient matrix – any multiple 
of a solution, including 0, is also a solution) 
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Camera Calibration – Example 1 

• Standard linear least squares methods for 
Ax=0 will give the solution x=0 

• Instead, look for a solution with |x|= 1 

• That is, minimize |Ax|2 subject to |x|2=1 



Camera Calibration – Example 1 

• Minimize |Ax|2 subject to |x|2=1 

• |Ax|2 = (Ax)T(Ax) = (xTAT)(Ax) = xT(ATA)x 

• Expand x in terms of eigenvectors of ATA: 
  x = µ1e1+ µ2e2+… 
  xT(ATA)x = λ1µ1

2+λ2µ2
2+… 

   |x|2 = µ1
2+µ2

2+… 



Camera Calibration – Example 1 

• To minimize 
   λ1µ1

2+λ2µ2
2+… 

subject to 
    µ1

2+µ2
2+… = 1 

set µmin= 1 and all other µi=0 

 

• Thus, least squares solution is eigenvector of ATA 
corresponding to minimum (nonzero) eigenvalue 



Camera Calibration – Example 2 

• Incorporating radial distortion 
• Option 1: 

– Find distortion first (straight lines in 
calibration target) 

– Warp image to eliminate distortion 

– Run (simpler) perspective calibration 

• Option 2: nonlinear least squares 
– Usually gradient descent or Levenberg-Marquardt 

– Common implementations available 
(e.g. Matlab optimization toolbox) 



Camera Calibration – Example 3 

• Incorporating additional constraints 
into camera model 
– No shear 

– Square pixels 

– Camera projection center = image center 

– etc. 

• These impose nonlinear constraints on 
camera parameters 



Camera Calibration – Example 3 

• Option 1: solve for general perspective model, then 
find closest solution that satisfies constraints 

 

• Option 2: constrained nonlinear least squares 



Camera Calibration – Example 4 

• What if 3D points are not known? 

• Structure from motion problem! 

• As we saw, can often be solved since 
# of knowns > # of unknowns 



Structure from Motion (SfM) 

• Minimize sum of squared reprojection errors: 

 

 

 

 

 

• Minimizing this function is called bundle adjustment 
– Optimized using non-linear least squares 

predicted  
image location 

observed 
image location 

indicator variable: 
is point i visible in image j ? 

[Snavely] 



Structure from Motion 

[Snavely] 



Problem Size 

• What are the variables?  

• How many variables per camera? 

• How many variables per point? 

 

• Trevi Fountain collection 
    466 input photos 

 + > 100,000 3D points 

      = very large optimization problem  

[Snavely] 



Structure from Motion 

[Snavely] 



Multi-Camera Geometry 

• Epipolar geometry – relationship between observed 
positions of points in multiple cameras 

• Assume: 
– 2 cameras 

– Known intrinsics and extrinsics 



Epipolar Geometry 
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p2 
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Epipolar Geometry 
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C1 C2 

p2 
p1 

l2 



Epipolar Geometry 

P 

C1 C2 

p2 
p1 

l2 

Epipolar line 

Epipoles 



Epipolar Geometry 

• Goal: derive equation for l2 

• Observation: P, C1, C2 determine a plane 

P 

C1 C2 

p2 p1 
l2 



Epipolar Geometry 

• Work in coordinate frame of C1 

• Normal of plane is T × Rp2, where T is relative 
translation, R is relative rotation 
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Epipolar Geometry 

• p1 is perpendicular to this normal: 
        p1 • (T × Rp2) = 0 
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Epipolar Geometry 

• Write cross product as matrix multiplication 

P 

C1 C2 

p2 p1 
l2 
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Epipolar Geometry 

• p1 • T× R p2 = 0     ⇒     p1
T E p2 = 0  

• E is the essential matrix 
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Essential Matrix 

• E depends only on camera geometry 

• Given E, can derive equation for line l2 
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p2 p1 
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Fundamental Matrix 

• Can define fundamental matrix F analogously, 
operating on pixel coordinates instead of camera 
coordinates 
   u1

T F u2 = 0 

• Advantage: can sometimes estimate F without 
knowing camera calibration 
– Given a few good correspondences, can get epipolar lines 

and estimate more correspondences, all without 
calibrating cameras 
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