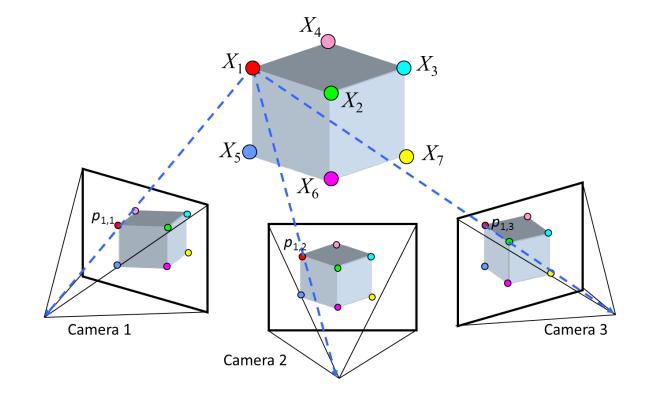
3D Geometry and Camera Calibration

COS 429: Computer Vision

Acknowledgments: T. Funkhouser,, N. Snavely

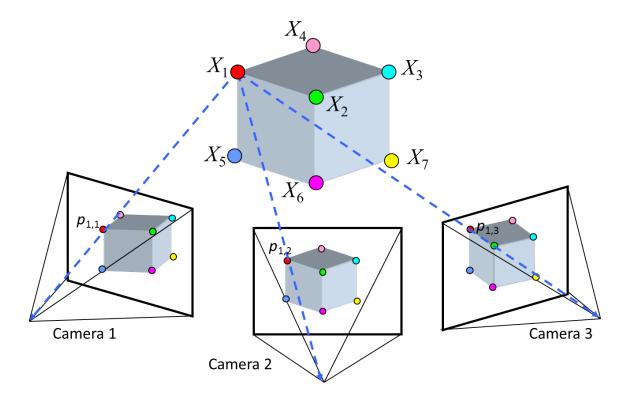
Point Correspondences

• What can we figure out given correspondences?

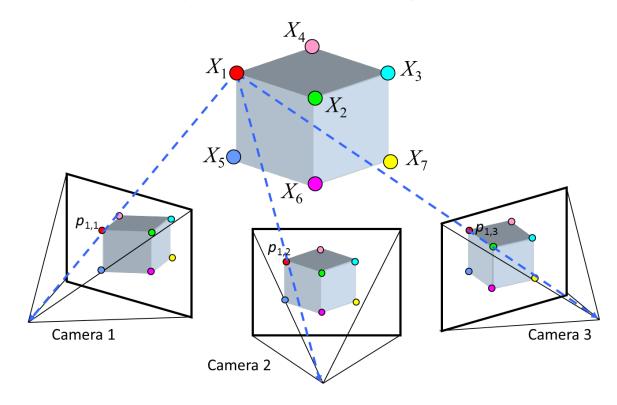


Triangulation

- If we know camera parameters and correspondences between points in different images...
 - How do we figure out 3D point positions?

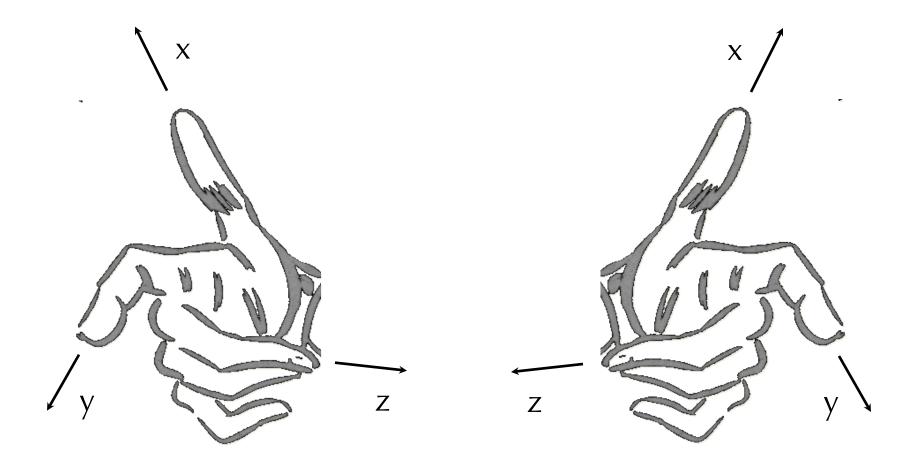


- If we know 3D point positions and correspondences between points and pixels...
 - How do we compute the camera parameters?



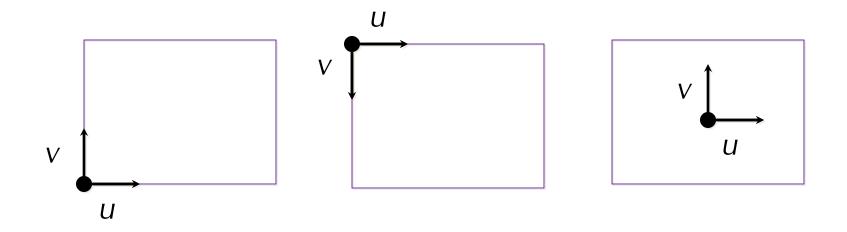
3D Coordinate Systems

• Right-handed vs. left-handed



2D Coordinate Systems

- y axis up vs. y axis down
- Origin at center vs. corner
- Will often write (*u*, *v*) for image coordinates



3D Geometry Basics

• 3D points = column vectors

$$\vec{p} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

()

• Transformations = pre-multiplied matrices

$$\mathbf{T}\vec{p} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Rotation

Rotation about the z axis

$$\mathbf{R}_{z} = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 Rotation about x, y axes similar (cyclically permute x, y, z)

Arbitrary Rotation

- Any rotation is a composition of rotations about x, y, and z
- Composition of transformations = matrix multiplication (watch the order!)
- Result: orthonormal matrix
 - Each row, column has unit length
 - Dot product of rows or columns = 0
 - Inverse of matrix = transpose

Arbitrary Rotation

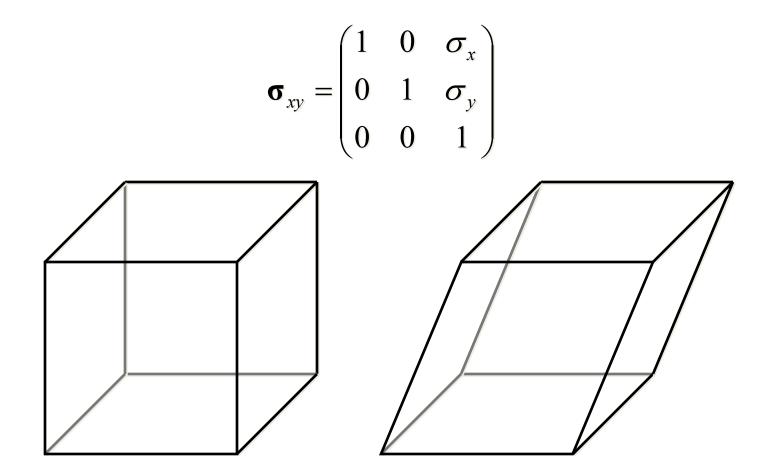
• Rotate around *x*, *y*, then *z*:

$$\mathbf{R} = \begin{pmatrix} \cos\theta_y \cos\theta_z & -\cos\theta_x \sin\theta_z + \sin\theta_x \sin\theta_y \cos\theta_z & \sin\theta_x \sin\theta_z + \cos\theta_x \sin\theta_y \cos\theta_z \\ \cos\theta_y \sin\theta_z & \cos\theta_x \cos\theta_z + \sin\theta_x \cos\theta_y \sin\theta_z & -\sin\theta_x \cos\theta_z + \cos\theta_x \sin\theta_y \sin\theta_z \\ -\sin\theta_y & \sin\theta_x \cos\theta_y & \cos\theta_x \cos\theta_y \end{pmatrix}$$

• Don't do this! It's probably buggy! Compute simple matrices and multiply them...

$$\mathbf{S} = \begin{pmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z} \end{pmatrix}$$

• Shear parallel to xy plane:



Translation

- Can translation be represented by multiplying by a 3×3 matrix?
- No.
- Proof:

 $\forall \mathbf{A}: \quad \mathbf{A}\vec{\mathbf{0}} = \vec{\mathbf{0}}$

Homogeneous Coordinates

• Add a fourth dimension to each point:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

• To get "real" (3D) coordinates, divide by w:

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \rightarrow \begin{pmatrix} x/w \\ /w \\ y/w \\ /w \\ z/w \end{pmatrix}$$

Translation in Homogeneous Coordinates

$$\begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x + t_x w \\ y + t_y w \\ z + t_z w \\ w \end{pmatrix}$$

 After divide by w, this is just a translation by (t_x, t_y, t_z)

Perspective Projection

• What does 4th row of matrix do?

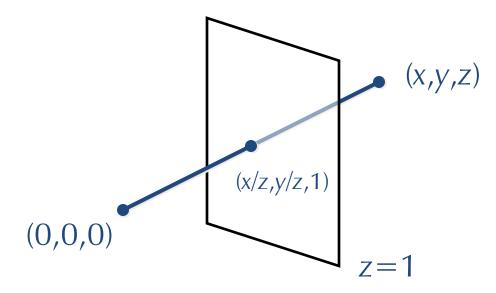
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ z \\ z \end{pmatrix}$$

• After divide,

$$\begin{pmatrix} x \\ y \\ z \\ z \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x/z \\ /z \\ y/z \\ 1 \\ 1 \end{pmatrix}$$

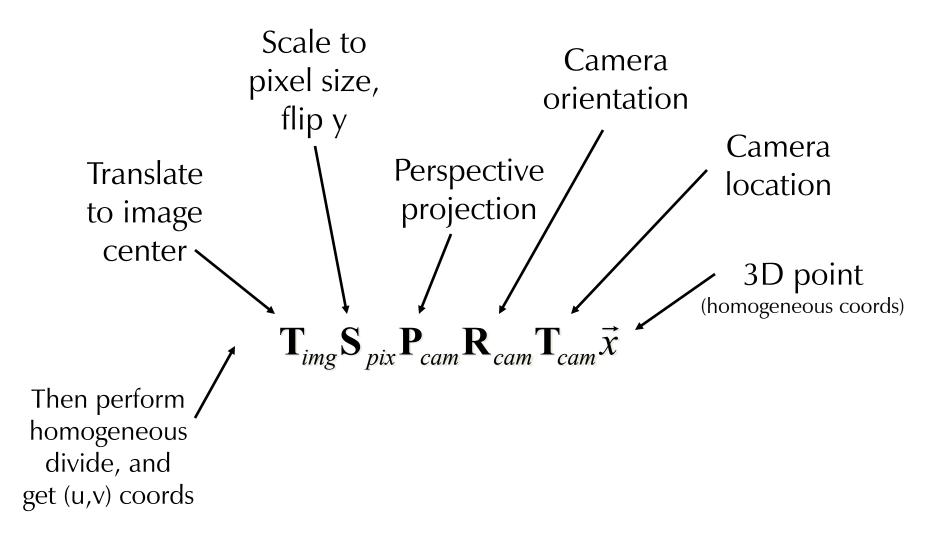
Perspective Projection

• This is projection onto the z=1 plane

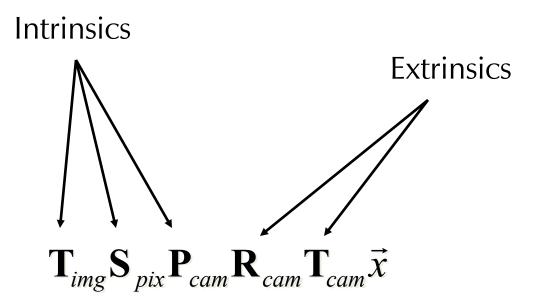


• Add scaling, flipping, etc. \Rightarrow pinhole camera model

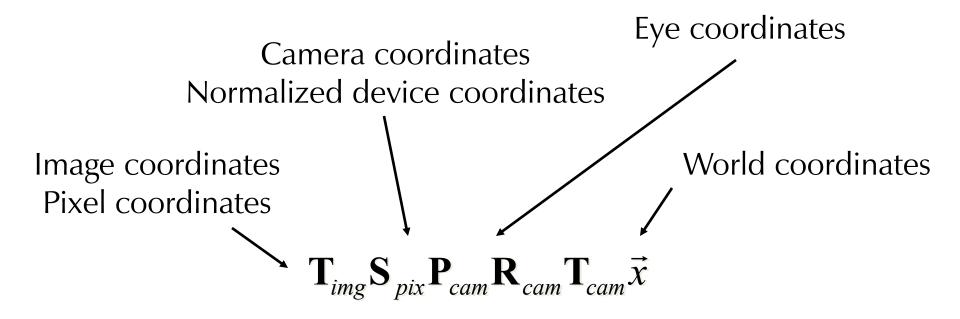
Putting It All Together: A Camera Model



Putting It All Together: A Camera Model

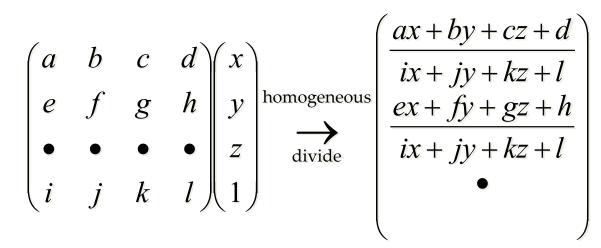


Putting It All Together: A Camera Model



More General Camera Model

- Multiply all these matrices together
- Don't care about "z" after transformation



- Scale ambiguity \rightarrow 11 free parameters
 - 6 extrinsic, 5 intrinsic

Radial Distortion

 Radial distortion is nonlinear: cannot be represented by matrix

$$u_{img} \to c_u + u_{img}^* \left(1 + \kappa (u_{img}^{*2} + v_{img}^{*2}) \right)$$
$$v_{img} \to c_v + v_{img}^* \left(1 + \kappa (u_{img}^{*2} + v_{img}^{*2}) \right)$$

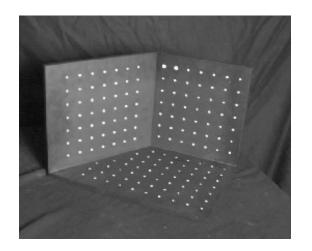
• (c_u, c_v) is image center,

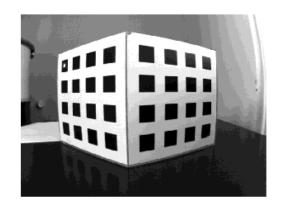
$$u_{img}^{*} = u_{img}^{-} - C_{u}^{*}, \quad v_{img}^{*} = v_{img}^{-} - C_{v}^{*},$$

 κ is first-order radial distortion coefficient

- Determining values for camera parameters
- Necessary for any algorithm that requires
 3D ↔ 2D mapping
- Method used depends on:
 - What data is available
 - Intrinsics only vs. extrinsics only vs. both
 - Form of camera model

- General idea: place
 "calibration object" with
 known geometry in the scene
- Get correspondences
- Solve for mapping from scene to image





The Opti-CAL Calibration Target Image

Chromaglyphs Courtesy of Bruce Culbertson, HP Labs http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

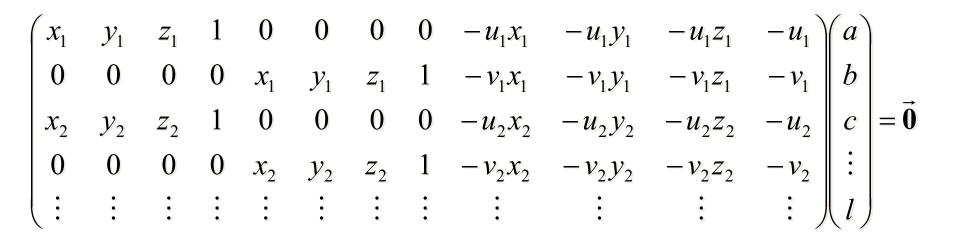
• Given:

- 3D \leftrightarrow 2D correspondences
- General perspective camera model (11-parameter, no radial distortion)
- Write equations:

$$\frac{ax_1 + by_1 + cz_1 + d}{ix_1 + jy_1 + kz_1 + l} = u_1$$

$$\frac{ex_1 + fy_1 + gz_1 + h}{ix_1 + jy_1 + kz_1 + l} = v_1$$

$$\vdots$$



- Linear equation
- Overconstrained (more equations than unknowns)
- Underconstrained (rank deficient matrix any multiple of a solution, including 0, is also a solution)

- Standard linear least squares methods for Ax=0 will give the solution x=0
- Instead, look for a solution with |x| = 1
- That is, minimize $|Ax|^2$ subject to $|x|^2=1$

- Minimize $|Ax|^2$ subject to $|x|^2=1$
- $|Ax|^2 = (Ax)^T (Ax) = (x^T A^T) (Ax) = x^T (A^T A) x$
- Expand x in terms of eigenvectors of A^TA:

 $\begin{aligned} x &= \mu_1 e_1 + \mu_2 e_2 + \dots \\ x^T (A^T A) x &= \lambda_1 \mu_1^2 + \lambda_2 \mu_2^2 + \dots \\ &|x|^2 &= \mu_1^2 + \mu_2^2 + \dots \end{aligned}$

To minimize

$$\lambda_1\mu_1^2 + \lambda_2\mu_2^2 + \dots$$

subject to

$$\mu_1^2 + \mu_2^2 + \dots = 1$$

set $\mu_{min} = 1$ and all other $\mu_i = 0$

Thus, least squares solution is eigenvector of A^TA corresponding to minimum (nonzero) eigenvalue

- Incorporating radial distortion
- Option 1:
 - Find distortion first (straight lines in calibration target)
 - Warp image to eliminate distortion
 - Run (simpler) perspective calibration
- Option 2: nonlinear least squares
 - Usually gradient descent or Levenberg-Marquardt
 - Common implementations available
 (e.g. Matlab optimization toolbox)

- Incorporating additional constraints into camera model
 - No shear
 - Square pixels
 - Camera projection center = image center
 - etc.
- These impose *nonlinear* constraints on camera parameters

• Option 1: solve for general perspective model, then find closest solution that satisfies constraints

• Option 2: constrained nonlinear least squares

- What if 3D points are not known?
- Structure from motion problem!
- As we saw, can often be solved since
 # of knowns > # of unknowns

Structure from Motion (SfM)

• Minimize sum of squared reprojection errors:

$$g(\mathbf{X}, \mathbf{R}, \mathbf{T}) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| \mathbf{P}(\mathbf{x}_i, \mathbf{R}_j, \mathbf{t}_j) - \begin{bmatrix} u_{i,j} \\ v_{i,j} \end{bmatrix} \right\|^2$$

$$predicted \qquad \text{image location image l$$

- Minimizing this function is called bundle adjustment
 - Optimized using non-linear least squares

Structure from Motion

[Snavely]

Problem Size

- What are the variables?
- How many variables per camera?
- How many variables per point?

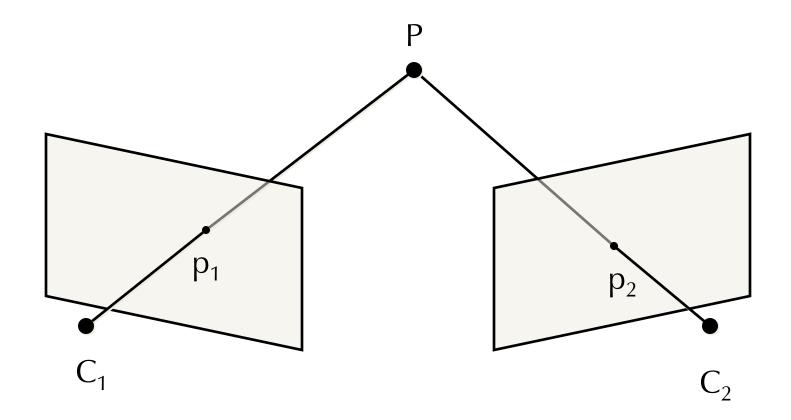
- Trevi Fountain collection
 - 466 input photos
 - + > 100,000 3D points
 - = very large optimization problem

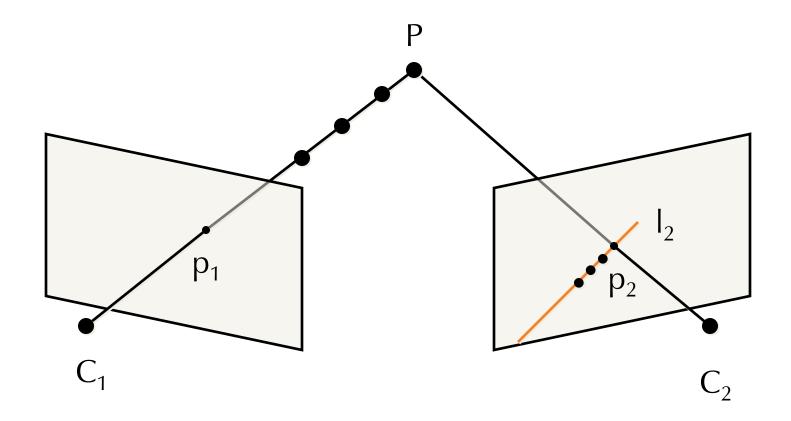
Structure from Motion

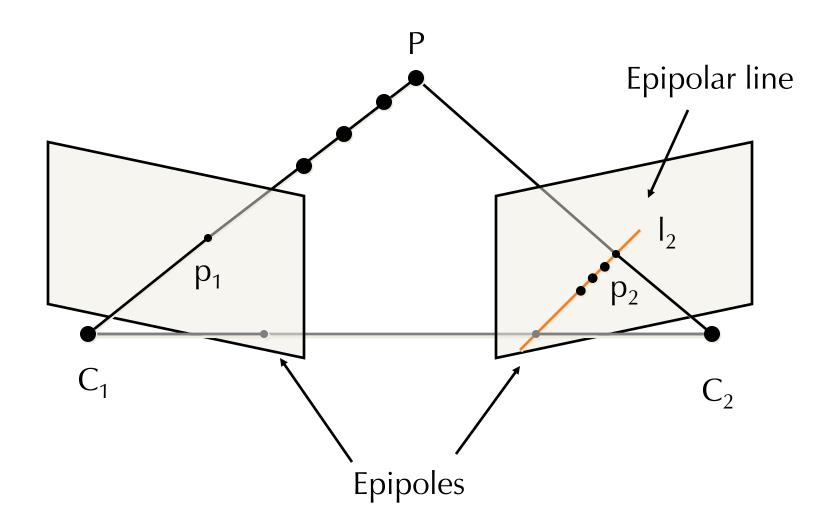
[Snavely]

Multi-Camera Geometry

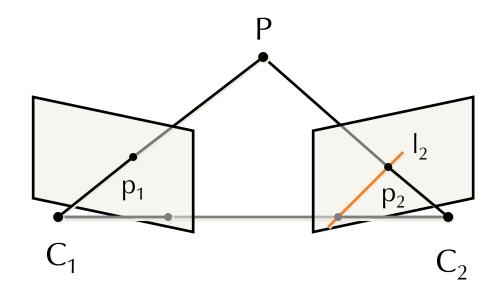
- Epipolar geometry relationship between observed positions of points in multiple cameras
- Assume:
 - 2 cameras
 - Known intrinsics and extrinsics



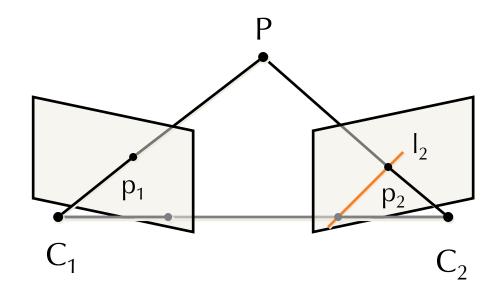




- Goal: derive equation for I_2
- Observation: P, C₁, C₂ determine a plane

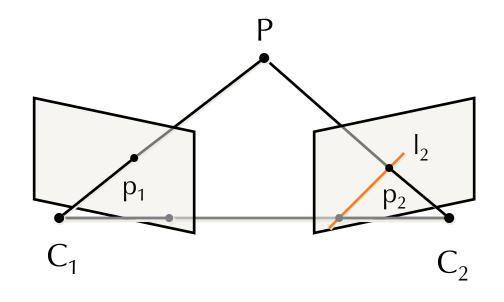


- Work in coordinate frame of C₁
- Normal of plane is T × Rp₂, where T is relative translation, R is relative rotation



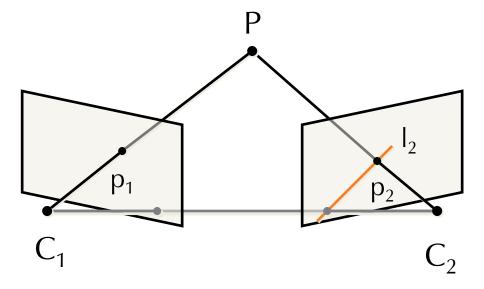
• p₁ is perpendicular to this normal:

$$\mathbf{p}_1 \bullet (\mathsf{T} \times \mathsf{R}\mathbf{p}_2) = \mathbf{0}$$



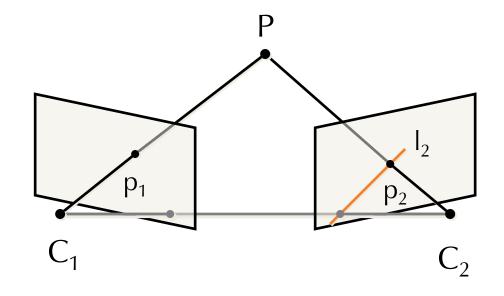
Write cross product as matrix multiplication

$$\vec{T} \times x = \mathbf{T}^{\times} x, \qquad \mathbf{T}^{\times} = \begin{pmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{pmatrix}$$



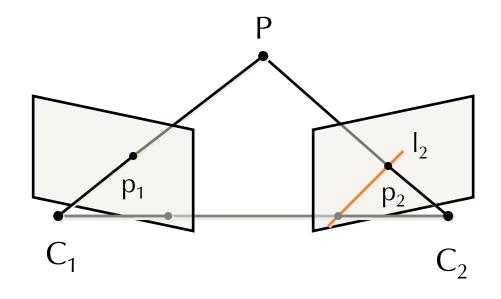
•
$$p_1 \bullet T^* R p_2 = 0 \implies p_1^T E p_2 = 0$$

• E is the essential matrix



Essential Matrix

- E depends only on camera geometry
- Given E, can derive equation for line I_2



Fundamental Matrix

 Can define fundamental matrix F analogously, operating on pixel coordinates instead of camera coordinates

$$u_1^{T} F u_2 = 0$$

- Advantage: can sometimes estimate F without knowing camera calibration
 - Given a few good correspondences, can get epipolar lines and estimate more correspondences, all without calibrating cameras