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Tracking

Object Tracking: Learn some representation of the object, and use that
representation to find it in subsequent frames

Future Image Frame

Template




Approaches to Object Tracking

* Motion model (translation, translation+scale, affine, non-rigid, ...)

* Image representation (gray/color pixel, edge image, histogram, HOG,
wavelet...)

* Distance metric (L1, L2, normalized correlation, Chi-Squared, ...)

* Method of optimization (gradient descent, naive search, combinatoric
search...)

* What is tracked: whole object or selected features

Template
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LK Problem: Change in Brightness

Possible Solutions:

« Subtract mean intensity (based on current estimate before iteration)
» Transform gray values into some features that are not effected by
brightness

« Any filter that is zero-mean
« Example: vertical, horizontal edge filters
« Example: Non-parametric filters (Rank, Census Transforms)

6:C0OS429 : .13 :27.10.16 : Andras Ferencz Slide Credit;



.
More Problems

* Qutliers: bright strong features that are wrong




Feature Tracking

* Similar to feature matching, but track instead of match:
— Track small, good features using translation only (u,v)
— Use RANSAC to solve more complex motion model
(Scale, Rotation, Similarity, Affine, Homography, ...
Articulated, non-rigid)

150




Can any of these techniques handle this?

Template

Motion blur




Robert Collins

crret Appearance via Color Histograms

‘ G7_ Color distribution (1D histogram
discretize normalized to have unit weight)
R’ = R << (8 - nbits) Total histogram size is (2(8-nbits))"3
G’ = G << (8 - nbits)
B’ = B << (8-nbits) example, 4-bit encoding of R,G and B channels

yields a histogram of size 16*16*16 = 4096.




Robert Collins

CSE598C, PSU Norm alized COlOl‘

(r',g’,b") = (r,g,b) / (rtgtb)

Normalized color divides out pixel luminance (brightness),
leaving behind only chromaticity (color) information. The
result is less sensitive to variations due to illumination/shading.




Robert Collins
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Comparing Color Distributions
Bhattacharya Distance:

Given an n-bucket model histogram {m, | 1=1,...,n} and data histogram
{d;|1=1,...,n}, we follow Comanesciu, Ramesh and Meer * to use the
distance function:

A(m,d) = \/1—2le Xdz‘
i=1

Similarity Function
F(»)=r15(»)4]

Why?

1) it shares optimality properties with the notion of Bayes error
2) it imposes a metric structure

3) it is relatively invariant to object size (number of pixels)

4) it is valid for arbitrary distributions (not just Gaussian ones)

*Dorin Comanesciu, V. Ramesh and Peter Meer, “Real-time Tracking of Non-Rigid
Objects using Mean Shift,” IEEE Conference on Computer Vision and Pattern
Recognition, Hilton Head, South Carolina, 2000 (best paper award).



How to optimize histogram agreement?

Recall: Mean Shift
Finding modes in a set of data samples, manifesting an
underlying probability density function (PDF) in RY

PDF in feature space
* Color space
* Scale space

Non-parametric
Density GRADIENT Estimatio
(Mean Shift)

PDF Analysis
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Non-Parametric Density
Estimation

Assumption : The data points are sampled from an underlying PDF

Data point density
implies PDF value !

A

Assumed Underlying PDF Real Data Samples



Kernel Density Estimation
——Various Kermets ———————————

1 n
P(x) =—Z K(x-x,) A function of some finite number of data points
s X,...X
L

n

Examples:
« Epanechn el ) =
panechnikov Kernel K (Xx) =[]
g 0 otherwise
| 1c [y =
* Uniform Kernel K, (x) =

1 0 otherwise

1
 Normal Kernel K, (x) =C&P§5”X”2§




Robert Collins

et Using Mean-Shift on Color Models

Two approaches:

1) Create a color “likelihood™ image, with pixels
weighted by similarity to the desired color (best
for unicolored objects)

2) Represent color distribution with a histogram. Use
mean-shift to find region that has most similar
distribution of colors.




Robert Collins
CSES98C, PSU

Mean-shift on Weight Images

Ideally, we want an indicator function that returns 1 for pixels on the
object we are tracking, and O for all other pixels

Instead, we compute likelihood maps where the value at a pixel is
proportional to the likelihood that the pixel comes from the object we
are tracking.

Computation of likelihood can be based on
* color
¢ texture
» shape (boundary)
» predicted location

24 : COS429 : L.13: 27.10.16 : Andras Ferencz Slide Credit:



Robert Collins
SERE U Example: Face Tracking using Mean -Shift

Gray Bradski, “Computer Vision Face Tracking for use in a
Perceptual User Interface,” IEEE Workshop On Applications of
Computer Vision, Princeton, NJ, 1998, pp.214-219.

Figure 7: Orientation of the flesh probability
distribution marked on the source video image

IFj:rs’[ 4 tracked degrees of freedom | Head

Video Camera

Figure 8: First four head tracked degrees
of freedom: X, Y, Z location, and head roll

25:C0S429 : L.13: 27.10.16 : Andras Ferencz Slide Credit:



Robert Collins

CSES98C, PSU Bradski’s CamShift

X,Y location of mode found by mean-shift.
Z, Roll angle determined by fitting an ellipse
to the mode found by mean-shift algorithm.



Robert Collins

et Using Mean-Shift on Color Models

Two approaches:

1) Create a color “likelihood™ image, with pixels
weighted by similarity to the desired color (best
for unicolored objects)

2) Represent color distribution with a histogram. Use
mean-shift to find region that has most similar
distribution of colors.




Target Localization Algorithm

Start from
the position _
of the the model’s candidate by
model in the neighborhoo maximizing
current d in next a similarity
frame
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CSESIRC, ST Mean-Shift Object Tracking

CSES598C, PSU
PDF Representation
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(centered at y)
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(centered at 0)
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Ukrainitz&Sarel, Weizmann
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CSES98C, PSU GlOSSing over the Details

Spatial smoothing of similarity function by
introducing a spatial kernel (Gaussian, box filter)

Take derivative of similarity with respect to colors.
This tells what colors we need more/less of to
make current hist more similar to reference hist.

Result is weighted mean shift we used before. However,

the color weights are now computed “on-the-fly”, and
change from one iteration to the next.

30 : COS429 : L.13: 27.10.16 : Andras Ferencz Slide Credit;



Problem:
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Results

Feature space: 16xX16x16 quantized RGB
Target: manually selected on 1st frame
Average mean-shift iterations: 4



Results

Distraction Motion blur




Tracking a Sequence

Original Template
(t_0)

(t_N)

Later Frame
(t_10)

Which previous frame to use as
Template for Current frame?

- update allows handling changes
in appearance

- update may produce drift




Visual Tracking with
Online Multiple Instance
Learning

Boris Babenko?!, Ming-Hsuan Yang?, Serge Belongie!

: 1. University of California, San Diego
2. University of California, Merced

35:C0OS429 : .13 :27.10.16 : Andras Ferencz Slide Credit: Babenko, Yang, Belongie




Tracking by Detection

* Recent tracking work

o Focus on appearance model
o Borrow techniques from obj. detection

* Slide a discriminative classifier around image

o Adaptive appearance model




Tracking by Detection

 First frame is labeled




Tracking by Detection

 First frame is labeled

WGBS <€¢— Online classifier (i.e. Online AdaBoost)



Tracking by Detection

* Grab one positive patch, and some
negative patch, and train/update the
model.




Tracking by Detection

e Get next frame




Tracking by Detection

e Evaluate classifier in some search window

aAL

\4

41 : COS429 : 1L13:27.10.16 : Andras Ferencz Slide Credit: Babenko, Yang, Belongie




Tracking by Detection

e Evaluate classifier in some search window

eSoul

aAL

old location
Vv

42 : COS429 : 1LL13:27.10.16 : Andras Ferencz Slide Credit: Babenko, Yang, Belongie



Tracking by Detection

* Find max response

eSoul

aAL

old location
Vv

43 : COS429 : 1L13:27.10.16 : Andras Ferencz Slide Credit: Babenko, Yang, Belongie



Tracking by Detection




e
Problems with Adaptive Appearance Models

« What if classifier is a bit off?

o Tracker starts to drift

* How to choose training examples?



How to Get Training EmepIes

46 : COS429 : 1L13: 27.10.16 : Andras Ferencz

Babenko, Yang, |

Belongie



Multiple Instance Learning (MIL)

 Ambiguity in training data

* Instead of instance/label pairs, get bag of
instances/label pairs

* Bag is positive if one or more of it's
members is positive




e
Object Detection

 Problem:

o Labeling with rectangles is inherently ambiguous

o Labeling is sloppy
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MIL for Object Detection

 Solution:

o Take all of these patches, put into positive bag

o At least one patch in bag is “correct”




Multiple Instance Learning (MIL)

* Supervised Learning Training Input
{xl,...,xn},xi c X
{y17'°°7yn}7yi S y

* MIL Training Input
{Xl,.. X}X—{CEM,...
{yla' . 7y’n}7yi - {07 1}
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Multiple Instance Learning (MIL)

* Positive bag contains at least one
positive instance

i = Mmax; i -
 Goal: Iearni%g instahcé classifier

h: X —{0,1}
 Classifier is same format as standard
learning



How to Get Training EmepIes

52 : C0OS429 : .13 :27.10.16 : Andras Ferencz

Babenko, Yang, |

Belongie



How to Get Training Examples

{<X17 )7 <X27 0)7 (X37 0)}

v

MIL
Classifier

53 : C0OS429 :1.13:27.10.16 : Andras Ferencz Slide Credit: Babenko, Yang, Belongie
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Online MILBoost

* Need an online MIL algorithm

e Combine ideas from MILBoost and
Online Boosting




Boosting

 Train classifier of the form:

Hy(z) = » hy(z)

h, . .
where IS a weak classifier

* Can make binary predictions usisign(H (x))




.
MILBoost

* Objective to maximize: Log likelihood of
bags:
LH) =) yilog(p;) + (1 — y;)log(1 — p;)

1

where
Pij = P(yz‘j = 1|377jj) =0 (H(a:’)) (as in LogitBoost)

Pi — P(y,,; — 1‘X7ﬁ) =1- H(1 _pij) (Noisy-OR)
J

ol io Eicconnia 00



.
MILBoost

* Train weak classifier in a greedy fashion

hj 1 = argmax L(Hy + h)
heH

* For batch MILBoost can optimize using
functional gradient descent.

e We need an online version...

57 : COS429 : .13 : 27.10.16 : Andras Ferencz Slide Credit: Babenko, Yang, Belongie
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Online MILBoost

* At all times, keep a pool df >> K  weak
classifier candidates
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Updating Online MILBoost

* At time ¢ get more training data

o Update all candidate classifiers
o Pick best K in a greedy fashion

hy,y = argmax L(Hg + h)
he{h1,ha,...har}




Online MILBoost

Frame ¢ Frame 7+1

Get data (bags)

Update all classifiers
in pool

< <

5 5

Greedily add best K to 5 5
strong classifier N ©
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MiLTrack

 MILTrack =

o Online MILBoost +
o Stumps for weak classifiers +

A

o Randomized Haar features +

o Simple motion model + greedy local search




Alternate Method: Tracking-Learning-Detection

Object
state

Tracking

update
tracker

----------------------------------------

Video
frame

Integrator

Detection

[“Tracking-Learning-Detection” Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas]
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Alternate Method: Tracking-Learning-Detection

Learns 2 types of “experts”:
P-expert : identifies only false negatives
N-expert : identifies only false positives
Both of the experts make errors themselves

However, their independence enables mutual
compensation of their errors

[“Tracking-Learning-Detection” Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas]




Alternate Method 2: Struck Tracker

Classification

@ R
(&)
Sampler ‘1
\_ v E
~
Labeller
Structured
output m
prediction + h Supervised
v Semi-
é ) supervised
Learner
. r )

Struck: Structured Output Tracking with Kernels
Sam Hare, Amir Saffari, Philip H. S. Torr
International Conference on Computer Vision (ICCV), 2011

64 : COS429 : .13 : 27.10.16 : Andras Ferencz Slide Credit;



Relative Performance

Struck
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Figure 6. Performance summary for the trackers initialized with different size of bounding box. AVG (the last one) illustrates the average
performance over all trackers for each scale.

Y Wu, J Lim, MH Yang “Online Object Tracking: A Benchmark”, Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on
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