Lecture 13 Tracking

COS 429: Computer Vision

Slides credit:

Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski, Martial Hebert, Mark Pollefeys, and others

COS429 : 25.10.16 : Andras Ferencz

The goal

2 : COS429 : L13 : 27.10.16 : Andras Ferencz

Slide Credit:

Tracking

Object Tracking: Learn some representation of the object, and use that representation to find it in subsequent frames

Approaches to Object Tracking

- Motion model (translation, translation+scale, affine, non-rigid, ...)
- Image representation (gray/color pixel, edge image, histogram, HOG, wavelet...)
- Distance metric (L1, L2, normalized correlation, Chi-Squared, ...)
- Method of optimization (gradient descent, naive search, combinatoric search...)
- What is tracked: whole object or selected features

Template

Schematic of Lucas-Kanade

LK Problem: Change in Brightness

Possible Solutions:

- Subtract mean intensity (based on current estimate before iteration)
- Transform gray values into some features that are not effected by brightness
 - Any filter that is zero-mean
 - Example: vertical, horizontal edge filters
 - Example: Non-parametric filters (Rank, Census Transforms)

More Problems

Outliers: bright strong features that are wrong

Complex, high dimensional, or non-rigid motion

Feature Tracking

- Similar to feature matching, but track instead of match:
 - Track small, good features using translation only (u,v)
 - Use RANSAC to solve more complex motion model (Scale, Rotation, Similarity, Affine, Homography, ... Articulated, non-rigid)

Can any of these techniques handle this?

Template

Partial occlusion

Distraction

Motion blur

Appearance via Color Histograms

$$R' = R << (8 - nbits)$$

$$G' = G << (8 - nbits)$$

$$B' = B \ll (8-nbits)$$

Total histogram size is (2^(8-nbits))^3

example, 4-bit encoding of R,G and B channels yields a histogram of size 16*16*16 = 4096.

Normalized Color

Normalized color divides out pixel luminance (brightness), leaving behind only chromaticity (color) information. The result is less sensitive to variations due to illumination/shading.

Comparing Color Distributions

Bhattacharya Distance:

Given an n-bucket model histogram $\{m_i \mid i=1,...,n\}$ and data histogram $\{d_i \mid i=1,...,n\}$, we follow Comanesciu, Ramesh and Meer * to use the distance function:

$$\Delta(m,d) = \sqrt{1 - \sum_{i=1}^{n} \sqrt{m_i \times d_i}}$$
 Similarity Function
$$f(y) = f[\vec{p}(y), \vec{q}]$$

Why?

- 1) it shares optimality properties with the notion of Bayes error
- 2) it imposes a metric structure
- 3) it is relatively invariant to object size (number of pixels)
- 4) it is valid for arbitrary distributions (not just Gaussian ones)

*Dorin Comanesciu, V. Ramesh and Peter Meer, "Real-time Tracking of Non-Rigid Objects using Mean Shift," IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, South Carolina, 2000 (best paper award).

How to optimize histogram agreement?

Recall: Mean Shift

Finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in R^N

PDF in feature space

- Color space
- Scale space
- Actually any feature space you can conceive

•

F Representation

Data

Non-parametric
Density **GRADIENT** Estimation
(Mean Shift)

Slide Credit:

PDF Analysis

14 : COS429 : L13 : 27.10.16 : Andras Ferencz

Slide Credit: Y. Ukrainitz & B. Sarel

15 : COS429 : L13 : 27.10.16 : Andras Ferencz Slide Credit:

Y. Ukrainitz & B. Sarel

16: COS429: L13: 27.10.16: Andras Ferencz

Slide Credit: Y. Ukrainitz & B. Sarel

18 : COS429 : L13 : 27.10.16 : Andras Ferencz

Slide Credit: Y. Ukrainitz & B. Sarel

19 : COS429 : L13 : 27.10.16 : Andras Ferencz

Slide Credit: Y. Ukrainitz & B. Sarel

Objective: Find the densest region
Distribution of identical billiard balls

20: COS429: L13: 27.10.16: Andras Ferencz Slide Credit: Y. Ukrainitz & B. Sarel

Non-Parametric Density Estimation

Assumption: The data points are sampled from an underlying PDF

Assumed Underlying PDF

Real Data Samples

Kernel Density Estimation

Various Kernels

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_{i})$$

A function of some finite number of data points

 $X_1...X_n$

Examples:

• Epanechnikov Kernel
$$K_E(\mathbf{x}) = \begin{bmatrix} c(1 - \|\mathbf{x}\|^2) & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

Uniform Kernel

$$K_{U}(\mathbf{x}) = \begin{bmatrix} c & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

Normal Kernel

$$K_N(\mathbf{x}) = c \exp \left(\frac{1}{2} \|\mathbf{x}\|^2 \right)$$

Using Mean-Shift on Color Models

Two approaches:

- 1) Create a color "likelihood" image, with pixels weighted by similarity to the desired color (best for unicolored objects)
- 2) Represent color distribution with a histogram. Use mean-shift to find region that has most similar distribution of colors.

Mean-shift on Weight Images

Ideally, we want an indicator function that returns 1 for pixels on the object we are tracking, and 0 for all other pixels

Instead, we compute likelihood maps where the value at a pixel is proportional to the likelihood that the pixel comes from the object we are tracking.

Computation of likelihood can be based on

- color
- texture
- shape (boundary)
- predicted location

Example: Face Tracking using Mean -Shift

Gray Bradski, "Computer Vision Face Tracking for use in a Perceptual User Interface," *IEEE Workshop On Applications of Computer Vision*, Princeton, NJ, 1998, pp.214-219.

Figure 7: Orientation of the flesh probability distribution marked on the source video image

Figure 8: First four head tracked degrees of freedom: X, Y, Z location, and head roll

Bradski's CamShift

X,Y location of mode found by mean-shift. Z, Roll angle determined by fitting an ellipse to the mode found by mean-shift algorithm.

Using Mean-Shift on Color Models

Two approaches:

- 1) Create a color "likelihood" image, with pixels weighted by similarity to the desired color (best for unicolored objects)
- 2) Represent color distribution with a histogram. Use mean-shift to find region that has most similar distribution of colors.

Mean-Shift Object Tracking

Target Localization Algorithm

28 : COS429 : L13 : 27.10.16 : Andras Ferencz

Slide Credit: Y. Ukrainitz & B. Sarel

Mean-Shift Object Tracking

PDF Representation

Ukrainitz&Sarel, Weizmann

Glossing over the Details

Spatial smoothing of similarity function by introducing a spatial kernel (Gaussian, box filter)

Take derivative of similarity with respect to colors. This tells what colors we need more/less of to make current hist more similar to reference hist.

Result is weighted mean shift we used before. However, the color weights are now computed "on-the-fly", and change from one iteration to the next.

Mean-Shift Object Tracking

Adaptive Scale

Problem:

Solution:

Mean-Shift Object Tracking Results

Feature space: 16×16×16 quantized RGB

Target: manually selected on 1st frame

Average mean-shift iterations: 4

Mean-Shift Object Tracking

Results

Partial occlusion

Distraction

Motion blur

33 : COS429 : L13 : 27.10.16 : Andras Ferencz

Slide Credit: Y. Ukrainitz & B. Sarel

Tracking a Sequence

Original Template (t_0)

Later Frame (t_10)

- - -

Current Frame (t_N)

Which previous frame to use as Template for Current frame?

- update allows handling changes in appearance
- update may produce drift

Visual Tracking with Online Multiple Instance Learning

Boris Babenko¹, Ming-Hsuan Yang², Serge Belongie¹

- 1. University of California, San Diego
- 2. University of California, Merced

35 : COS429 : L13 : 27.10.16 : Andras Ferencz Slide Credit:

Tracking by Detection

- Recent tracking work
 - Focus on appearance model
 - Borrow techniques from obj. detection
 - Slide a discriminative classifier around image
 - Adaptive appearance model

[Collins et al. '05, Grabner et al. '06, Ross et al. '08] 36: COS429: L13: 27.10.16: Andras Ferencz

Babenko, Yang, Belongie Slide Credit:

First frame is labeled

• First frame is labeled

Online classifier (i.e. Online AdaBoost)

 Grab one positive patch, and some negative patch, and train/update the model.

Get next frame

Evaluate classifier in some search window

Evaluate classifier in some search window

Find max response

Repeat...

Problems with Adaptive Appearance Models

- What if classifier is a bit off?
 - Tracker starts to drift

How to choose training examples?

How to Get Training Examples

Multiple Instance Learning (MIL)

- Ambiguity in training data
- Instead of instance/label pairs, get bag of instances/label pairs
- Bag is positive if one or more of it's members is positive

[Keeler '90, Dietterich et al. '97] COS429: L13: 27.10.16: Andras Ferencz

Object Detection

• Problem:

- Labeling with rectangles is inherently ambiguous
- Labeling is sloppy

[Viola et al. '05] COS429 : L13 : 27.10.16 : Andras Ferencz Babenko, Yang, Belongie Slide Credit:

MIL for Object Detection

Solution:

- Take all of these patches, put into positive bag
- At least one patch in bag is "correct"

Multiple Instance Learning (MIL)

Supervised Learning Training Input

$$\{x_1, \dots, x_n\}, x_i \in \mathcal{X}$$

 $\{y_1, \dots, y_n\}, y_i \in \mathcal{Y}$

MIL Training Input

$$\{X_1, \dots, X_n\}, X_i = \{x_{i1}, \dots, x_{im}\}$$

 $\{y_1, \dots, y_n\}, y_i \in \{0, 1\}$

Multiple Instance Learning (MIL)

- Positive bag contains at least one positive instance
- Goal: learning instance classifier

$$h: \mathcal{X} \to \{0, 1\}$$

Classifier is same format as standard learning

How to Get Training Examples

How to Get Training Examples

Online MILBoost

- Need an online MIL algorithm
- Combine ideas from MILBoost and **Online Boosting**

Boosting

Train classifier of the form:

$$\mathbf{H}_K(x) = \sum_{k=1}^K \mathbf{h}_k(x)$$

where \mathbf{h}_k is a weak classifier

• Can make binary predictions using $\mathbf{q} \mathbf{n}(\mathbf{H}_K(x))$

Babenko, Yang, Belongie Slide Credit:

MILBoost

 Objective to maximize: Log likelihood of bags:

$$\mathcal{L}(\mathbf{H}) = \sum_{i} y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$

where
$$p_{ij} = \mathbb{P}(y_{ij} = 1 | x_{ij}) \equiv \sigma\left(\mathbf{H}(x)\right)$$
 (as in LogitBoost)

$$p_i = \mathbb{P}(y_i = 1|X_i) \equiv 1 - \prod_i (1 - p_{ij})$$
 (Noisy-OR)

[Viola et al. '05, Friedman et al. '00] 56: COS429: L13: 27.10.16: Andras Ferencz Slide Credit: Babenko, Yang, Belongie

MILBoost

Train weak classifier in a greedy fashion

$$\mathbf{h}_{k+1} = \operatorname*{argmax}_{\mathbf{h} \in \mathcal{H}} \mathcal{L}(\mathbf{H}_k + \mathbf{h})$$

- For batch MILBoost can optimize using functional gradient descent.
- We need an **online** version...

Online MILBoost

• At all times, keep a pool M >> K weak classifier candidates

[Grabner et al. '06]

Slide Credit: Babenko, Yang, Belongie

Updating Online MILBoost

- At time t get more training data
 - Update all candidate classifiers
 - Pick best K in a greedy fashion

Online MILBoost

Frame *t*

Get data (bags)

Update all classifiers in pool

Greedily add best *K* to strong classifier

MILTrack

MILTrack =

- Online MILBoost +
- Stumps for weak classifiers +

Simple motion model + greedy local search

Alternate Method: Tracking-Learning-Detection

["Tracking-Learning-Detection" Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas]

Alternate Method: Tracking-Learning-Detection

Learns 2 types of "experts":

- P-expert : identifies only false negatives
- N-expert: identifies only false positives

Both of the experts make errors themselves

However, their independence enables mutual compensation of their errors

["Tracking-Learning-Detection" Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas]

Alternate Method 2: Struck Tracker

Struck: Structured Output Tracking with Kernels Sam Hare, Amir Saffari, Philip H. S. Torr International Conference on Computer Vision (ICCV), 2011

Relative Performance

Figure 6. Performance summary for the trackers initialized with different size of bounding box. AVG (the last one) illustrates the average performance over all trackers for each scale.

Y Wu, J Lim, MH Yang "Online Object Tracking: A Benchmark", Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on