Lecture 8 Classification & Part Models

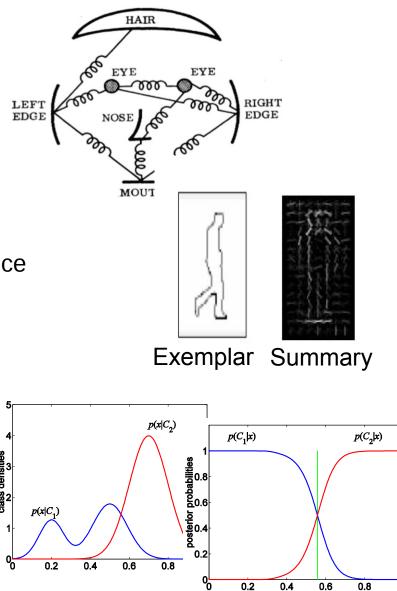
COS 429: Computer Vision

COS429:13.10.16: Andras Ferencz

Review: Typical Components

- Hypothesis generation
 - Sliding window, Segmentation, feature point detection, random, search
- Encoding of (local) image data
 - Colors, Edges, Corners, Histogram of Oriented Gradients, Wavelets, Convolution Filters
- Relationship of different parts to each other
 - Blur or histogram, Tree/Star, Pairwise/Covariance
- Learning from labeled examples
 - Selecting representative examples (templates), Clustering, Building a cascade
 - Classifiers: Bayes, Logistic regression, SVM, Decision Trees, AdaBoost, ...
 - Generative vs. Discriminative
- **Verification** removing redundant, overlaping, incompatible examples
 - Non-Max Suppression, context priors, geometry

2 : COS429 : L9 : 13.10.16 : Andras Ferencz

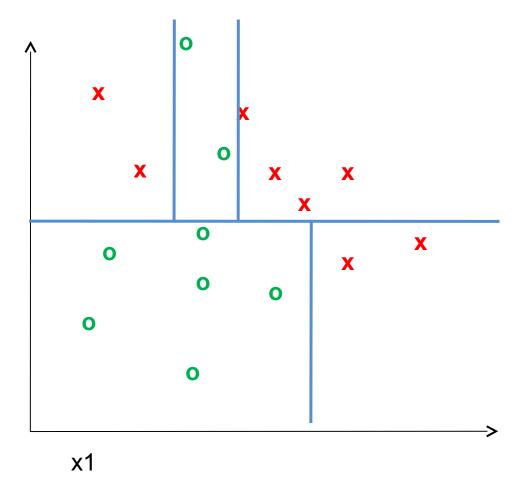


Classifiers: Decision Trees

x2

Given (weighted) labeled examples:

- Select best single feature & threshold that separates classes
- For each branch, recurse
- Stop when
 - some depth is reached
 - Branch is (close to) single-class
 - too few examples left in branch



3 : COS429 : L9 : 13.10.16 : Andras Ferencz

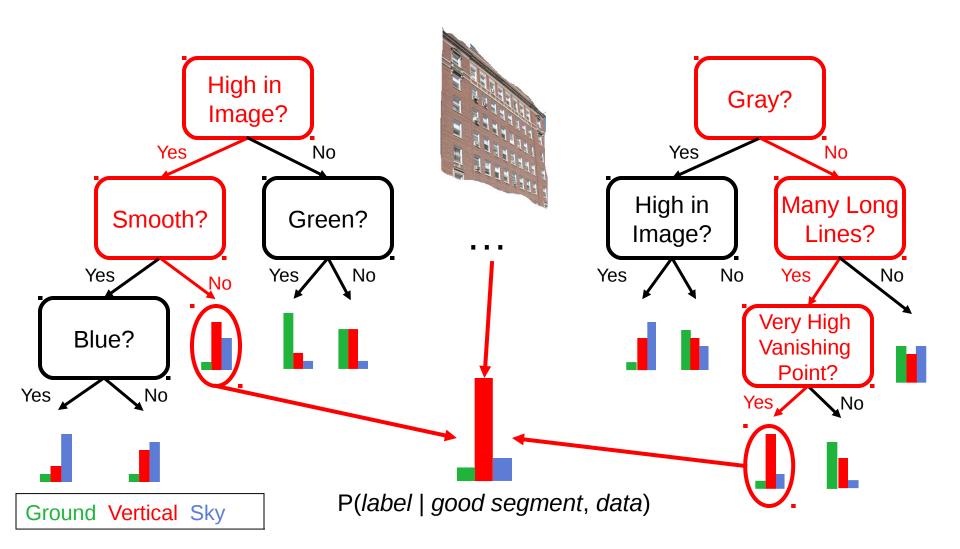
Ensemble Methods: Boosting

Discrete AdaBoost(Freund & Schapire 1996b)

- 1. Start with weights $w_i = 1/N$, i = 1, ..., N.
- 2. Repeat for m = 1, 2, ..., M:
 - (a) Fit the classifier $f_m(x) \in \{-1, 1\}$ using weights w_i on the training data.
 - (b) Compute $err_m = E_w[1_{(y \neq f_m(x))}], c_m = \log((1 err_m)/err_m).$
 - (c) Set $w_i \leftarrow w_i \exp[c_m \cdot 1_{\{y_i \neq f_m(x_i)\}}]$, i = 1, 2, ..., N, and renormalize so that $\sum_i w_i = 1$.
- 3. Output the classifier sign $\left[\sum_{m=1}^{M} c_m f_m(x)\right]$

figure from Friedman et al. 2000 4 : COS429 : L9 : 13.10.16 : Andras Ferencz

Boosted Decision Trees



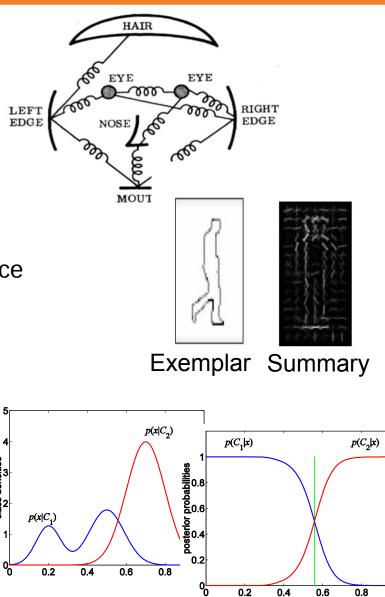
5 : COS429 : L9 : 13.10.16 : Andras Ferencz

Slide Credit[Collins et al. 2002]

Review: Typical Components

- Hypothesis generation
 - Sliding window, Segmentation, feature point detection, random, search
- Encoding of (local) image data
 - Colors, Edges, Corners, Histogram of Oriented Gradients, Wavelets, Convolution Filters
- Relationship of different parts to each other
 - Blur or histogram, Tree/Star, Pairwise/Covariance
- Learning from labeled examples
 - Selecting representative examples (templates), Clustering, Building a cascade
 - Classifiers: Bayes, Logistic regression, SVM, Decision Trees, AdaBoost, ...
 - Generative vs. Discriminative
- **Verification** removing redundant, overlaping, incompatible examples
 - Non-Max Suppression, context priors, geometry

6 : COS429 : L9 : 13.10.16 : Andras Ferencz



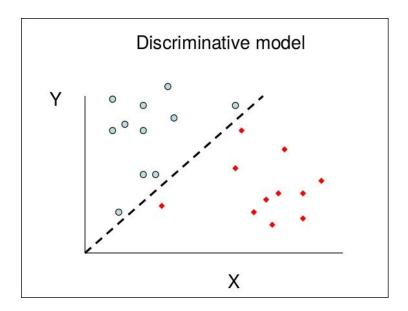
Discriminative vs. Generative Classifiers

Training classifiers involves estimating f: $X \rightarrow Y$, or P(Y|X) "Y given X"

Discriminative Classification:

Find the boundary between classes

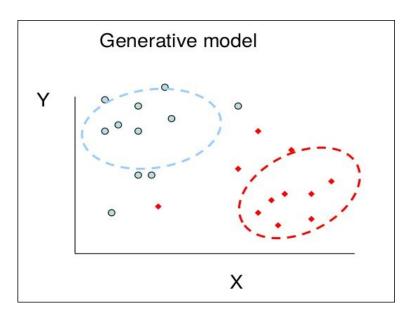
- 1. Assume some functional form for P(Y|X)
- 2. Estimate parameters of P(Y|X) directly from training data



Generative Classification:

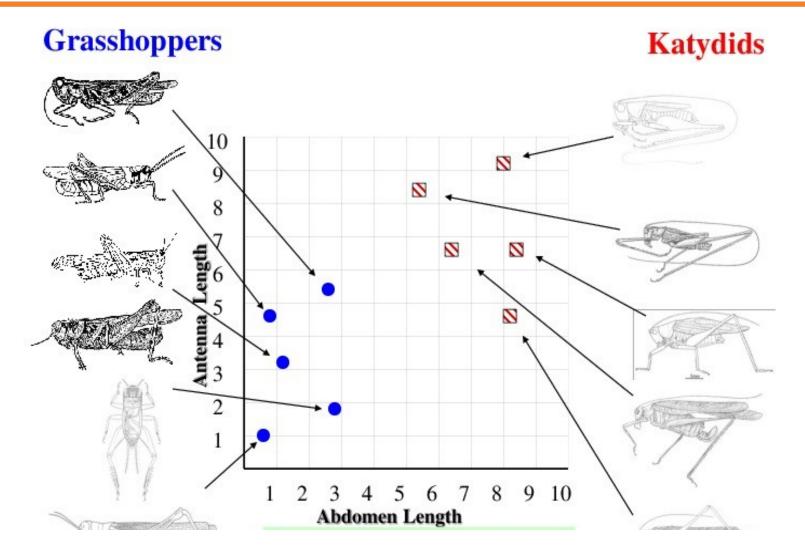
Model each class & see which fits better

- 1. Assume some functional form for P(X|Y), P(X)
- 2. Estimate parameters of P(X|Y), P(X) directly from training data
- 3. Use Bayes rule to calculate $P(Y|X=x_i)$



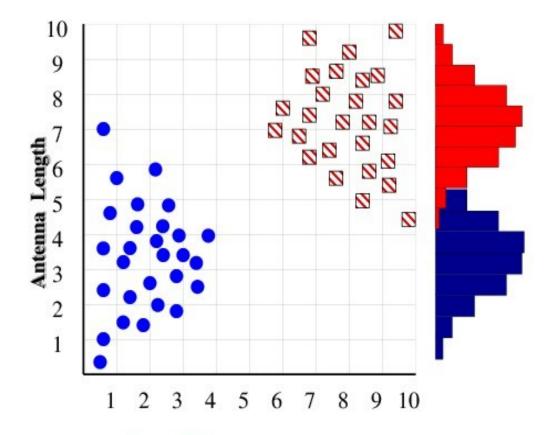
7 : COS429 : L9 : 13.10.16 : Andras Ferencz

Bayesian Classification (Generative Model)

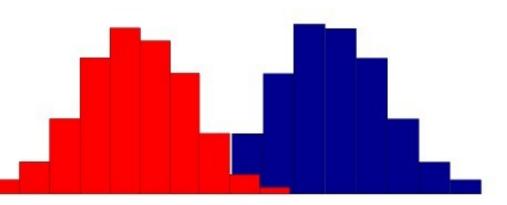


8 : COS429 : L9 : 13.10.16 : Andras Ferencz

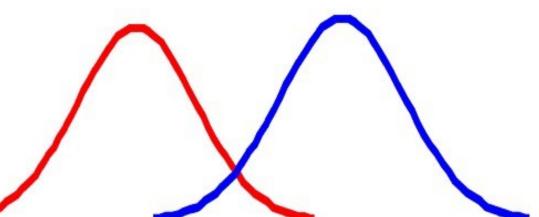
With a lot of data, we can build a histogram. Let us just build one for "Antenna Length" for now....



We can leave the histograms as they are, or we can summarize them with two normal distributions.



Let us us two normal distributions for ease of visualization in the following slides...

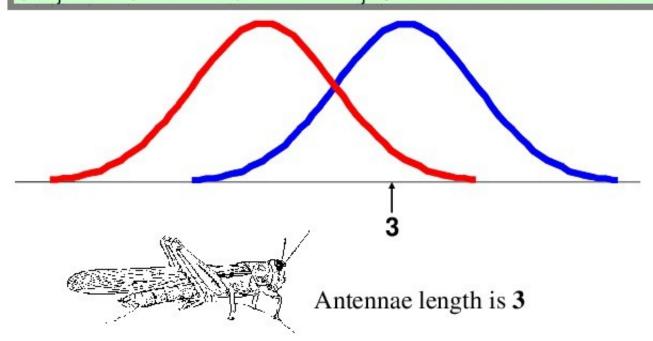


10 : COS429 : L9 : 13.10.16 : Andras Ferencz

• We want to classify an insect we have found. Its antennae are 3 units long. How can we classify it?

We can just ask ourselves, give the distributions of antennae lengths we have seen, is it more probable that our insect is a Grasshopper or a Katydid.
There is a formal way to discuss the most probable classification...

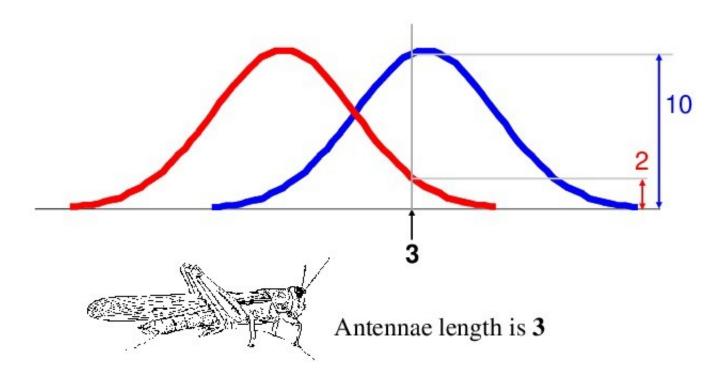
 $p(c_i | d) = probability of class c_i$, given that we have observed d



11 : COS429 : L9 : 13.10.16 : Andras Ferencz

 $p(c_j | d) = probability of class c_j$, given that we have observed d

P(Grasshopper | 3) = 10 / (10 + 2) = 0.833P(Katydid | 3) = 2 / (10 + 2) = 0.166



12 : COS429 : L9 : 13.10.16 : Andras Ferencz

- Bayesian classifiers use **Bayes theorem**, which says $p(c_j | d) = \frac{p(d | c_j) p(c_j)}{p(d)}$
- p(c_j | d) = probability of instance d being in class c_j, This is what we are trying to compute
- p(d | c_j) = probability of generating instance d given class c_j,
 We can imagine that being in class c_j, causes you to have feature d with some probability
- p(c_j) = probability of occurrence of class c_j,
 This is just how frequent the class c_j, is in our database
- p(d) = probability of instance d occurring

This can actually be ignored, since it is the same for all classes

Naïve Bayes Classification

• To simplify the task, **naïve Bayesian classifiers** assume attributes have independent distributions, and thereby estimate

multiplied by ..

14 : COS429 : L9 : 13.10.16 : Andras Ferencz

Naïve Bayes, Odds ratio, and Logit

Assuming independence of features d1 and d2, we can classify between 2 classes $\{C1, C2\}$, by compute the ratio:

$$\frac{P(C_1|d_1,d_2)}{P(C_2|d_1,d_2)} = \frac{P(d_1|C_1)P(d_2|C_1)P(C_1)}{P(d_1|C_2)P(d_2|C_2)P(C_2)} < 1$$

This is called the Odds ratio.

It is often easier to take the log of this, called the Log Odds or Logit:

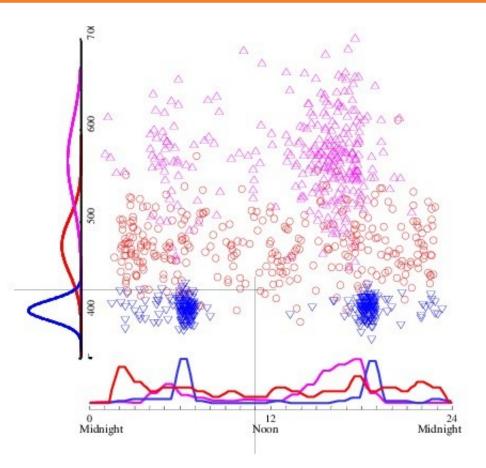
$$\log \frac{P(C_1|d_1, d_2)}{P(C_2|d_1, d_2)}$$

= $\log \frac{P(d_1|C_1)}{P(d_1|C_2)} + \log \frac{P(d_2|C_1)}{P(d_2|C_2)} + \log \frac{P(C_1)}{P(C_2)} < 0$

Naïve Bayes

Suppose I observe an insect with a wingbeat frequency of 420 at 11:00am

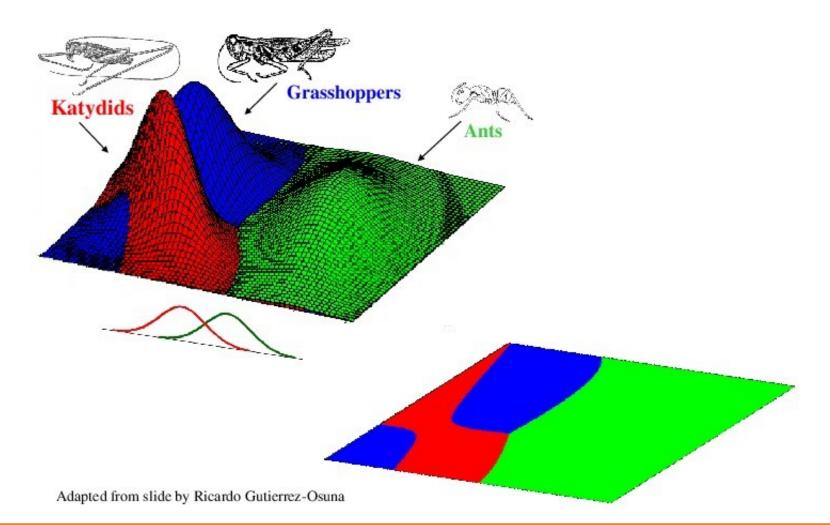
What is it?



16 : COS429 : L9 : 13.10.16 : Andras Ferencz

Naïve Bayes

Naive Bayes with Gaussian densities have piecewise quadratic decision boundary.



17 : COS429 : L9 : 13.10.16 : Andras Ferencz

Graphical Models

Independence assumption of Naive Bayes is the simplest assumption. Often much more complicated relationships needs to be represented.

A good way to do this is a Graphical Model (aka. Byesian Network) Naive Bayes assumes independence of d1,d2,... conditioned on the class c

Animal	Mass>10kg	
Cat	Yes	0.15
	No	0.85
Dog	Yes	0.91
	No	0.09
Pig	Yes	0.99
	No	0.01

 $p(d_1|c_i)$

Animal	Color	
Cat	Black	0.33
	White	0.23
	Brown	0.44
Dog	Black	0.97
	White	0.03
	Brown	0.90
Pig	Black	0.04
	White	0.01

 $p(d_2|c_i)$

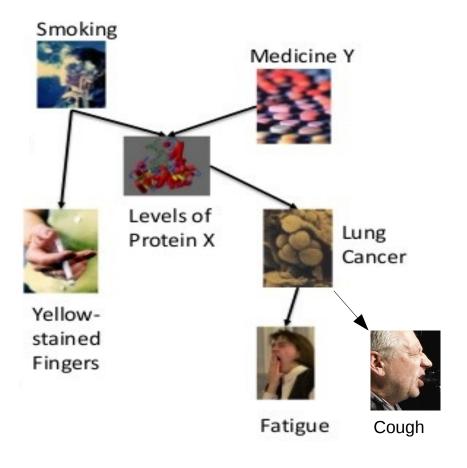
-	
1	Animal
	Cat
	Dog
	Pig

 $p(d_n | c_i)$

18 : COS429 : L9 : 13.10.16 : Andras Ferencz

Graphical Models

More complicated models consider the dependence between different variables.



19 : COS429 : L9 : 13.10.16 : Andras Ferencz

Slide Credit: Ioannis Tsamardinos

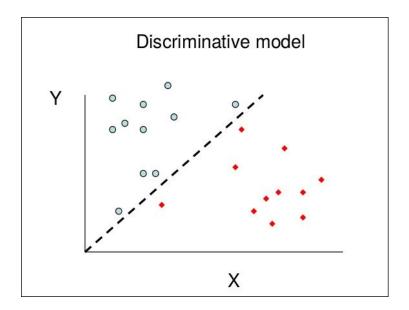
Discriminative vs. Generative Classifiers

Training classifiers involves estimating f: $X \rightarrow Y$, or P(Y|X) "Y given X"

Discriminative Classification:

Find the boundary between classes

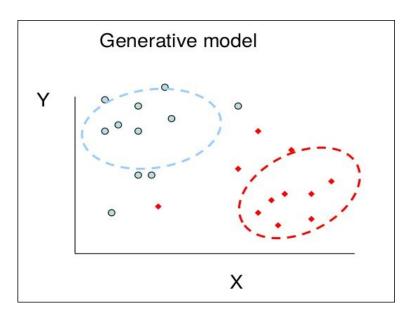
- 1. Assume some functional form for P(Y|X)
- 2. Estimate parameters of P(Y|X) directly from training data



Generative Classification:

Model each class & see which fits better

- 1. Assume some functional form for P(X|Y), P(X)
- 2. Estimate parameters of P(X|Y), P(X) directly from training data
- 3. Use Bayes rule to calculate $P(Y|X=x_i)$



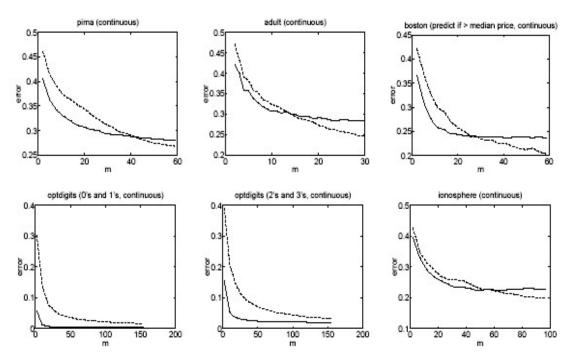
20 : COS429 : L9 : 13.10.16 : Andras Ferencz

Discriminative vs. Generative Classifiers

Discriminative:

- + Model directly what you care about
- + With many examples usually more accurate
- + Often faster to evaluate, can scale well to many examples & classes Generative:
- + Allows more flexibility to model relationships between variables
- + Can handle compositionality, missing & occluded parts (more "object oriented")

+ Often needs less labeled examples



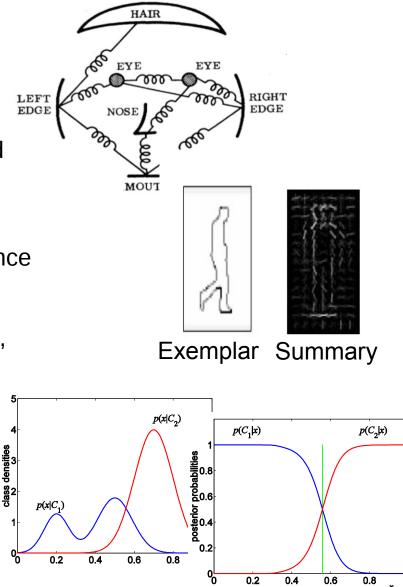
"On Discriminative vs. Generative classifiers: A comparison of logistic regression and naïve Bayes," A. Ng and M. Jordan, NIPS 2002.

21 : COS429 : L9 : 13.10.16 : Andras Ferencz

Review: Typical Components

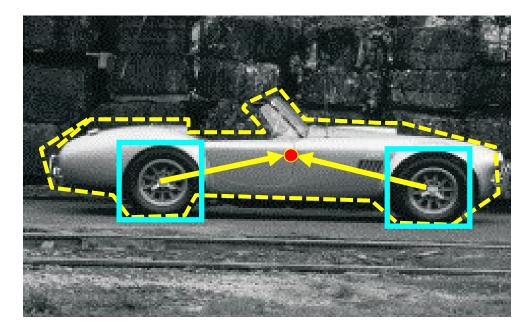
- Hypothesis generation
 - Sliding window, Segmentation, feature point detection, random, search
- Encoding of (local) image data
 - Colors, Edges, Corners, Histogram of Oriented Gradients, Wavelets, Convolution Filters
- Relationships of different parts to each other
 - Blur or histogram, Tree/Star, Pairwise/Covariance
- Learning from labeled examples
 - Selecting representative examples (templates), Clustering, Building a cascade
 - Classifiers: Bayes, Logistic regression, SVM, Decision Trees, AdaBoost, ...
 - Generative vs. Discriminative
- **Verification** removing redundant, overlaping, incompatible examples
 - Non-Max Suppression, context priors, geometry

22 : COS429 : L9 : 13.10.16 : Andras Ferencz



Implicit shape models

 Visual codebook is used to index votes for object position



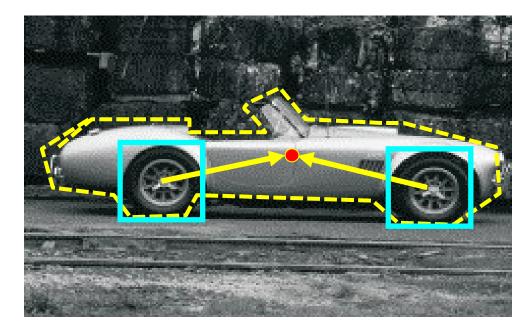
visual codeword with displacement vectors

training image annotated with object localization info

B. Leibe, A. Leonardis, and B. Schiele,
 <u>Combined Object Categorization and Segmentation with an Implicit Shape Model</u>,
 ECCV Workshop on Statistical Learning in Computer Vision 2004
 23: COS4States Log Lana 10/2 to nit A solves a capter from Fei-Fei Li, Rob Fergenal and Antonio Torralba

Implicit shape models

 Visual codebook is used to index votes for object position



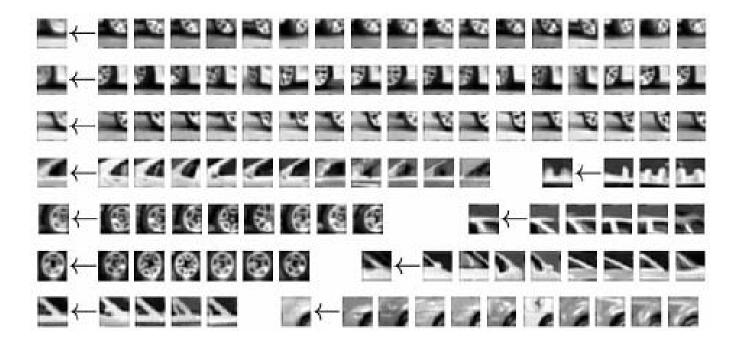
visual codeword with displacement vectors

training image annotated with object localization info

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004
24 : COS429 : L9 : 13.10.16 : Andras Ferencz Slide Credit:

Implicit shape models: Training

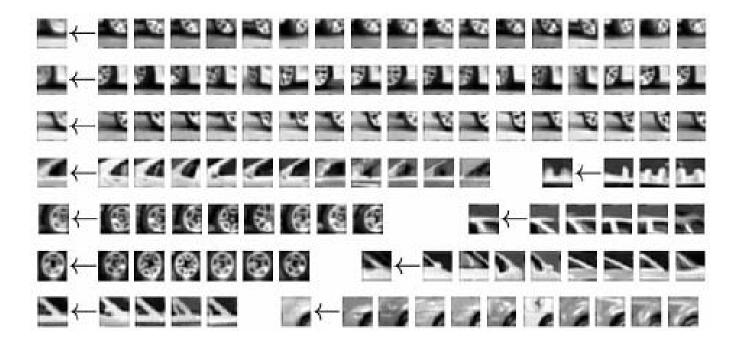
1. Build codebook of patches around extracted interest points using clustering



25 : COS429 : L9 : 13.10.16 : Andras Ferencz

Implicit shape models: Training

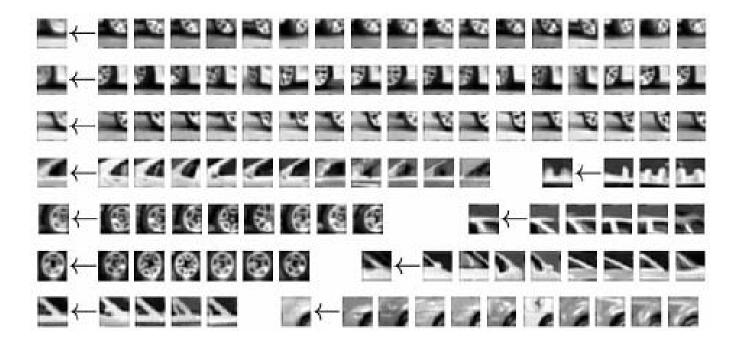
1. Build codebook of patches around extracted interest points using clustering



26 : COS429 : L9 : 13.10.16 : Andras Ferencz

Implicit shape models: Training

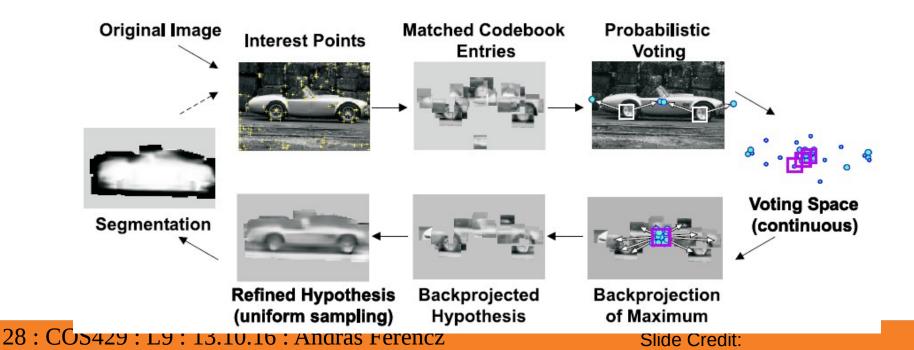
1. Build codebook of patches around extracted interest points using clustering



27 : COS429 : L9 : 13.10.16 : Andras Ferencz

Implicit shape models: Testing

- 1. Given test image, extract patches, match to codebook entry
- 2. Cast votes for possible positions of object center
- 3. Search for maxima in voting space
- 4. Extract weighted segmentation mask based on stored masks for the codebook occurrences



Original image

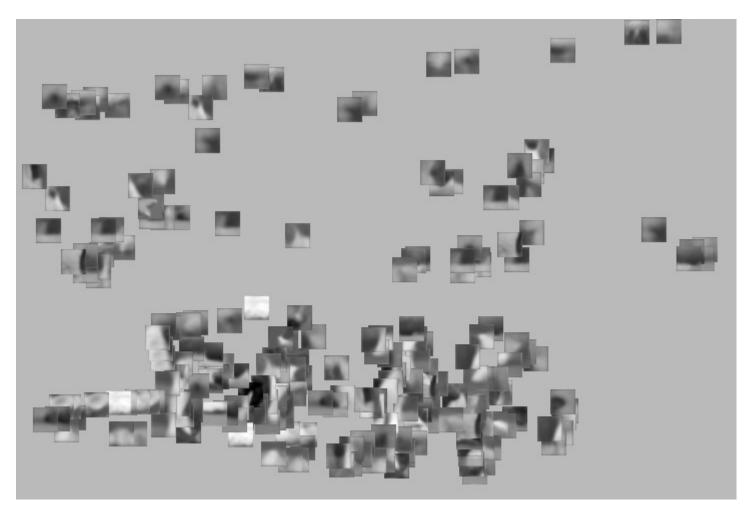
29 : COS429 : L9 : 13.10.16 : Andras Ferencz

Slide Credit:

Interest points

30 : COS429 : L9 : 13.10.16 : Andras Ferencz

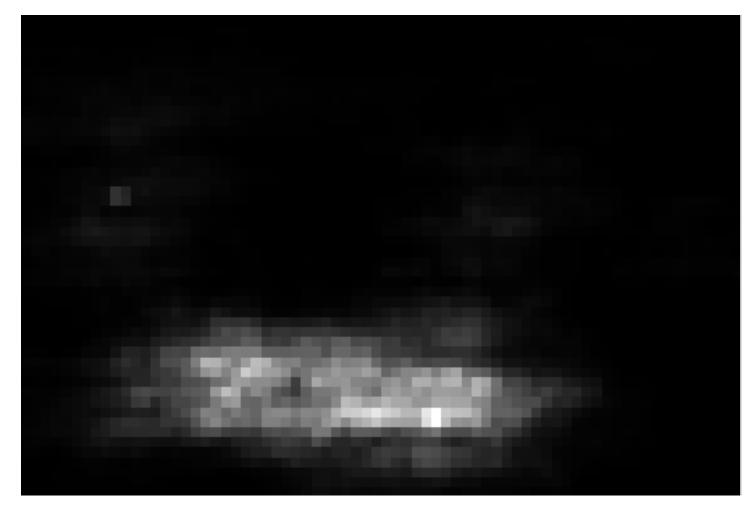
Source: B. Leibe



Matched patches

31 : COS429 : L9 : 13.10.16 : Andras Ferencz

Slide Credit:



Probabilistic votes

32 : COS429 : L9 : 13.10.16 : Andras Ferencz

Slide Credit:

Hypothesis 1

33 : COS429 : L9 : 13.10.16 : Andras Ferencz

Slide Credit:

Hypothesis 1

34 : COS429 : L9 : 13.10.16 : Andras Ferencz

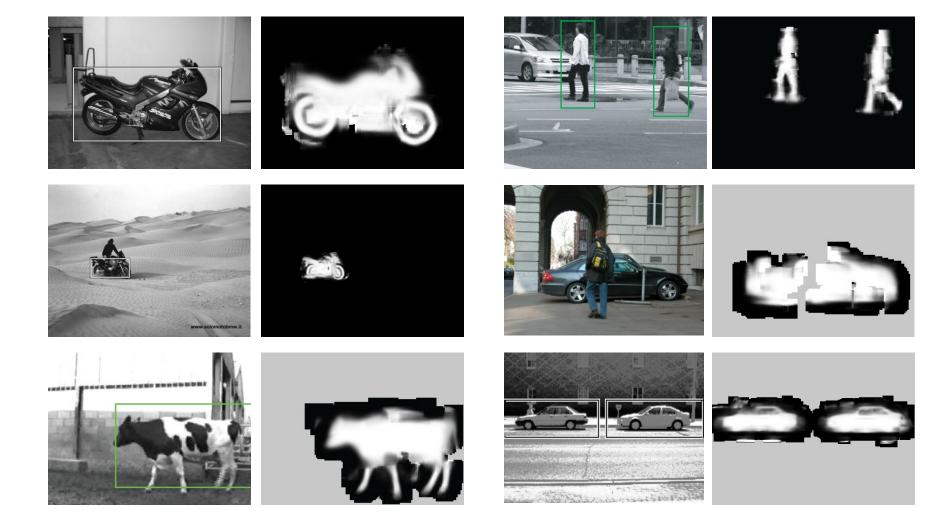
Slide Credit:

Hypothesis 3

35 : COS429 : L9 : 13.10.16 : Andras Ferencz

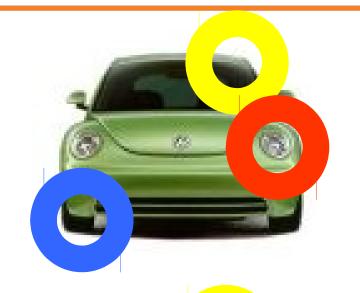
Slide Credit:

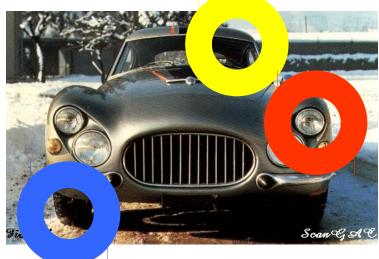
Additional examples



B. Leibe, A. Leonardis, and B. Schiele, <u>Robust Object Detection with Interleaved Categorization and Segmentation</u>, IJCV 36 : COS429, :PP9 259-2696 2008 Ferencz Slide Credit:

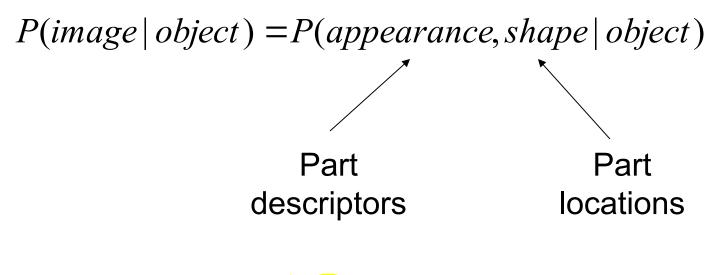
Generative part-based models





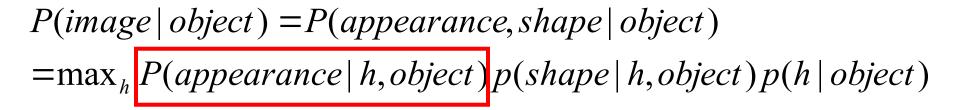
R. Fergus, P. Perona and A. Zisserman, Object Class Recognition by Unsupervised Scale-Invariant Learning, CVPR 2003

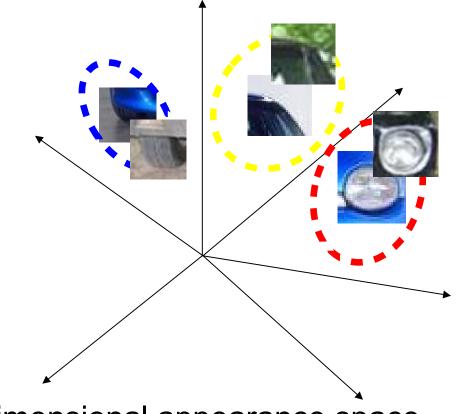
37 : COS429 : L9 : 13.10.16 : Andras Ferencz



Candidate parts

38 : COS429 : L9 : 13.10.16 : Andras Ferencz





Distribution over patch descriptors

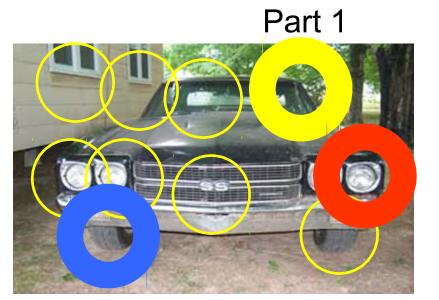
High-dimensional appearance space

39 : COS429 : L9 : 13.10.16 : Andras Ferencz

P(image | object) = P(appearance, shape | object)

 $=\max_{h} P(appearance | h, object) p(shape | h, object) p(h | object)$

h: assignment of features to parts

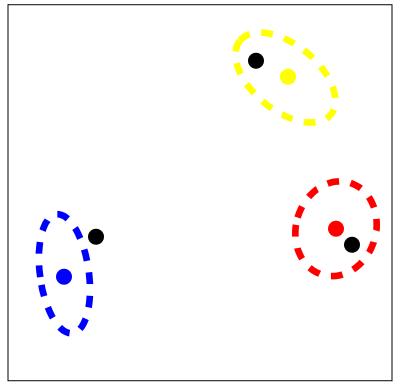


Part 3

Part 2

40 : COS429 : L9 : 13.10.16 : Andras Ferencz

P(image | object) = P(appearance, shape | object)=max_h P(appearance | h, object) p(shape | h, object) p(h | object)

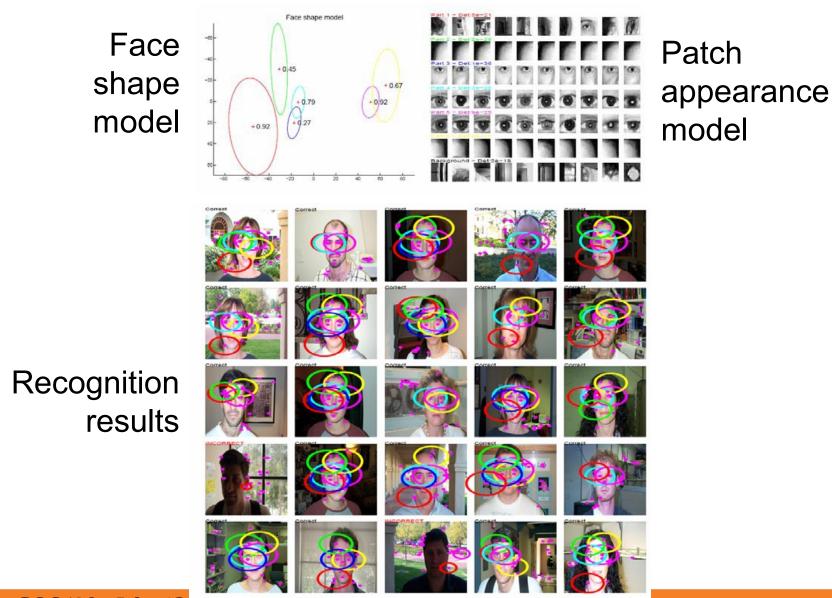


Distribution over joint part positions

2D image space

41 : COS429 : L9 : 13.10.16 : Andras Ferencz

Results: Faces



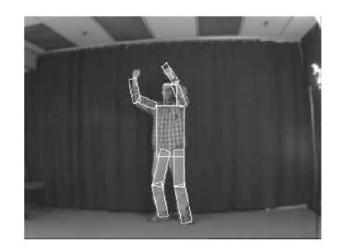
42 : COS429 : L9 : 13.10.10 : Andras Ferencz

Results: Motorbikes and airplanes

43 : COS429 : L9 : 13.10.16 : Andras Ferencz

Pictorial structures

- Set of parts (oriented rectangles) connected by edges
- Recognition problem: find the most probable part layout l₁, ..., l_n in the image



P. Felzenszwalb and D. Huttenlocher, <u>Pictorial Structures for Object Recognition</u>, 44 : COS429 : L9 : 13.10.16 : Andras Felzenszwalb 61(1), 2005 Slide Credit: Felzenszwalb

Pictorial structures

• MAP formulation: maximize posterior

$$P(l_1, \dots, l_n \mid \text{Im}) \propto P(\text{Im} \mid l_1, \dots, l_n) P(l_1, \dots, l_n) = \prod_i P(\text{Im}(l_i)) \prod_{i,j \in E} P(l_i \mid l_j)$$

Appearance Geometry

Energy-based formulation: minimize minus the log of probability:

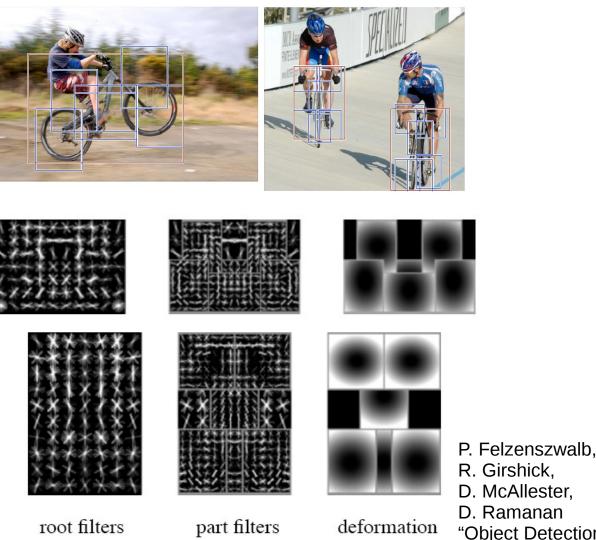
$$E(l_1,...,l_n) = \sum_i m_i(l_i) + \sum_{i,j} d_{ij}(l_i,l_j)$$
Matching Deformation
$$15: \text{COS429}: \text{L9}: 13.10.16: \text{Andras Ferenc} \text{COSt}$$
Slide Credit: Felzenszwalb

Deformable Parts Model

Detections

Template

Visualization



coarse resolution

finer resolution

models

D. McAllester, D. Ramanan "Object Detection with Discriminatively Trained Part Based Models"

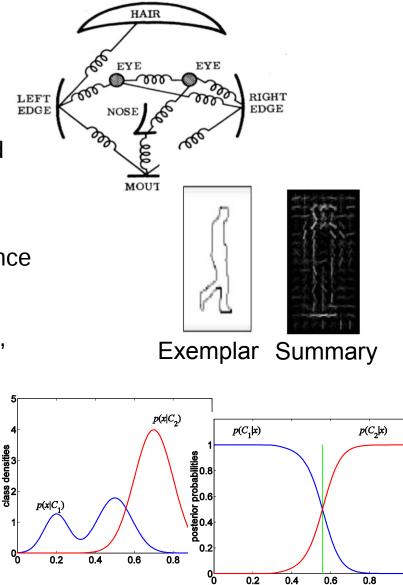
46 : COS429 : L9 : 13.10.16 : Andras Ferencz

Slide Credit:

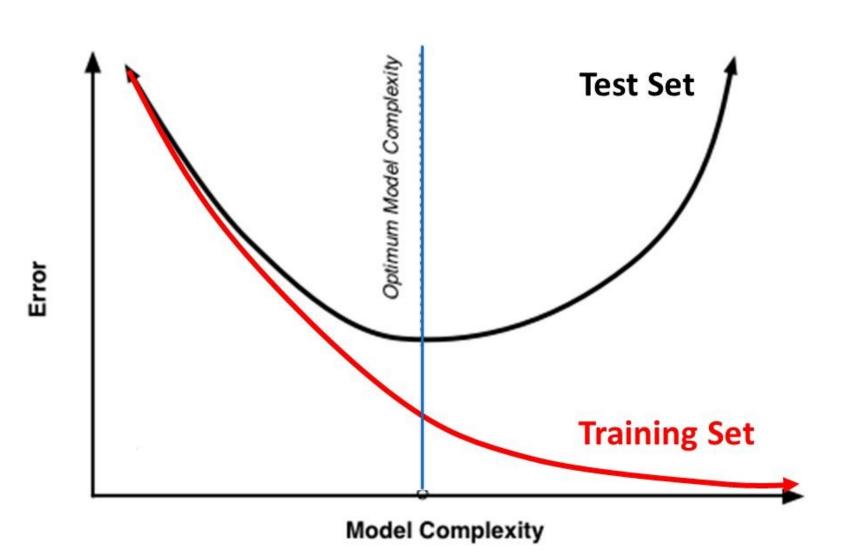
Felzenszwalb

So many options... How to choose?

- Hypothesis generation
 - Sliding window, Segmentation, feature point detection, random, search
- Encoding of (local) image data
 - Colors, Edges, Corners, Histogram of Oriented Gradients, Wavelets, Convolution Filters
- Relationship of different parts to each other
 - Blur or histogram, Tree/Star, Pairwise/Covariance
- Learning from labeled examples
 - Selecting representative examples (templates), Clustering, Building a cascade
 - Classifiers: Bayes, Logistic regression, SVM, Decision Trees, AdaBoost, ...
 - Generative vs. Discriminative
- **Verification** removing redundant, overlaping, incompatible examples
 - Non-Max Suppression, context priors, geometry
- 47 : COS429 : L9 : 13.10.16 : Andras Ferencz



Train vs. Test Accuracy

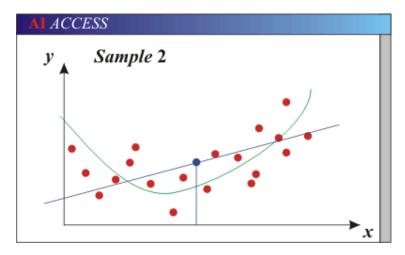


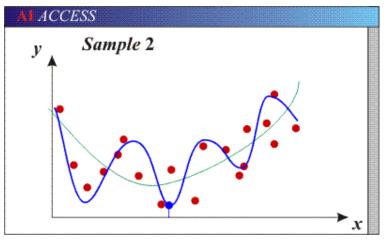
48 : COS429 : L9 : 13.10.16 : Andras Ferencz

Generalization

- Components of generalization error
 - **Bias:** how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

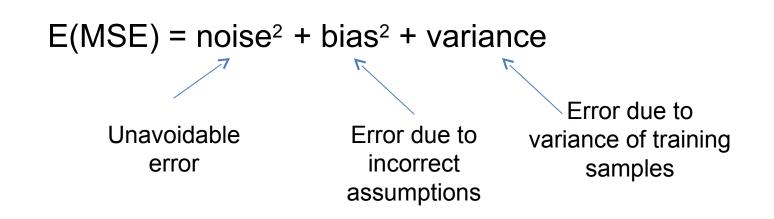
Bias-Variance Trade-off





- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

Bias-Variance Trade-off



See the following for explanations of bias-variance (also Bishop's "Neural Networks" book): •http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

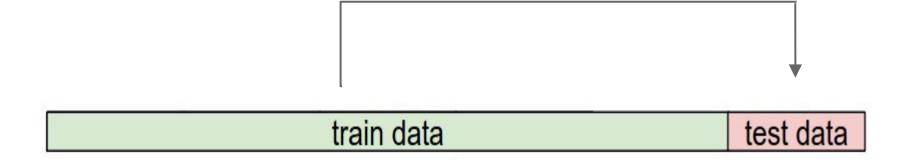
Slide credit: D. Hoiem

Try out what hyperparameters work best on test set.

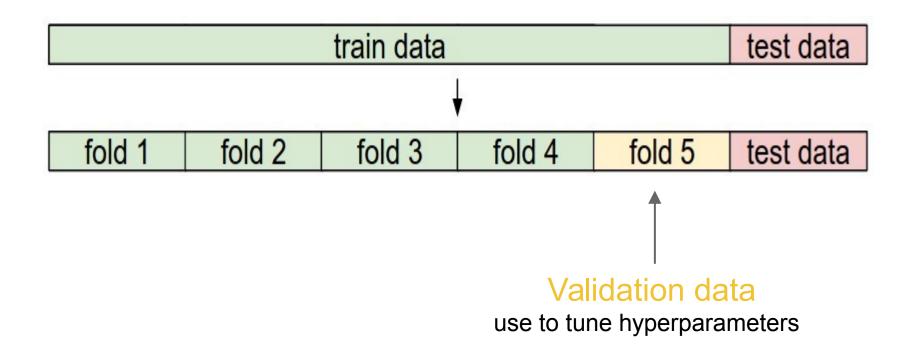
52 : COS429 : L9 : 13.10.16 : Andras Ferencz

Trying out what hyperparameters work best on test set:

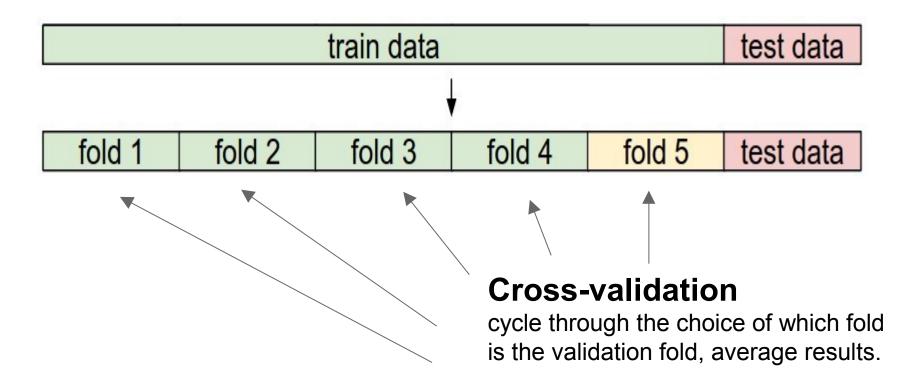
Very bad idea. The test set is a proxy for the generalization performance! Use only **VERY SPARINGLY**, at the end.



53 : COS429 : L9 : 13.10.16 : Andras Ferencz



54 : COS429 : L9 : 13.10.16 : Andras Ferencz



55 : COS429 : L9 : 13.10.16 : Andras Ferencz

So...

- No classifier is inherently better than any other: you need to make assumptions to generalize
- Three kinds of error
 - Inherent: unavoidable
 - Bias: due to oversimplifications
 - Variance: due to inability to perfectly estimate parameters from limited data

What to remember about classifiers

- Machine learning algorithms are tools, not dogmas
- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data (bias-variance tradeoff)

How to reduce variance?

• Choose a simpler classifier

Regularize the parameters

Get more training data

58 : COS429 : L9 : 13.10.16 : Andras Ferencz

Slide Credit:

Slide credit: D. Hoiem