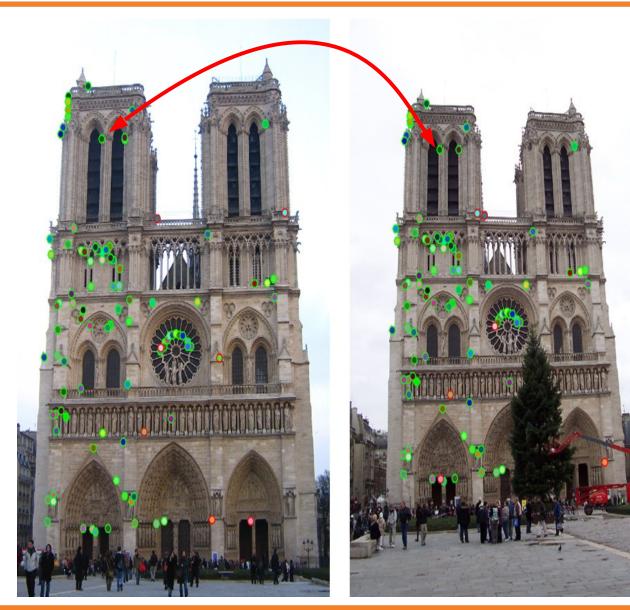
Lecture 5 Model Fitting and Optimization: Least Squares, Hough Transforms, RANSAC

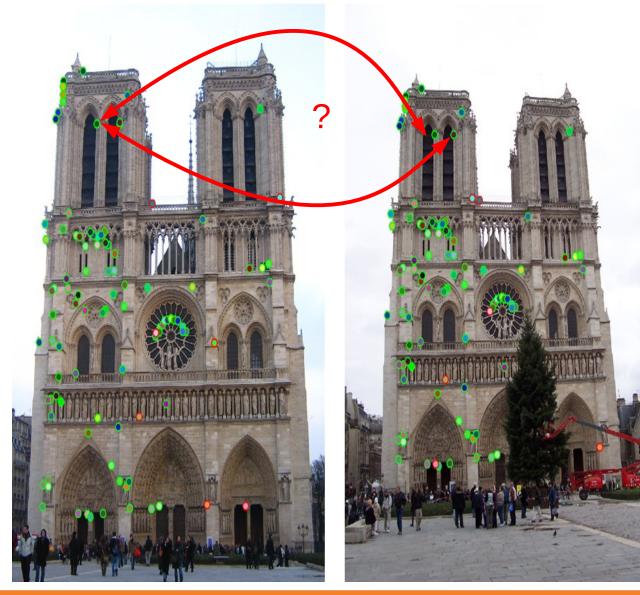
COS 429: Computer Vision

Review: Feature Matching



- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Matching ambiguity



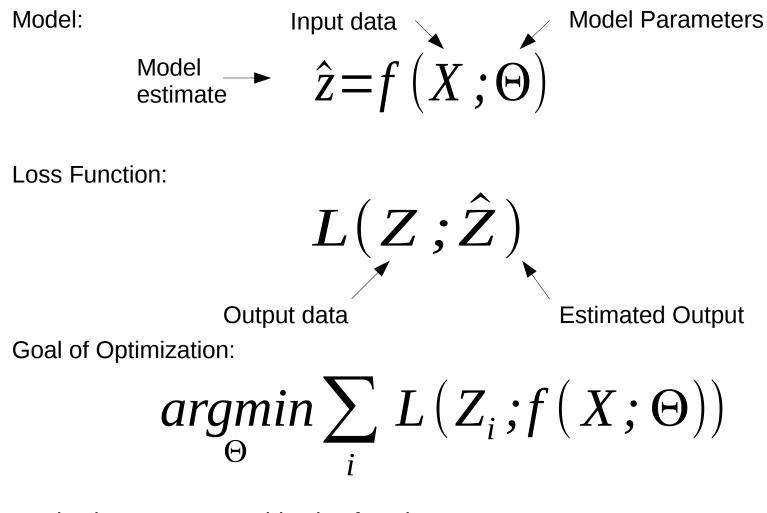
Locally feature matches are ambiguous

=> need to fit a **model** to find globally consistent matches

Model Fitting & Optimization

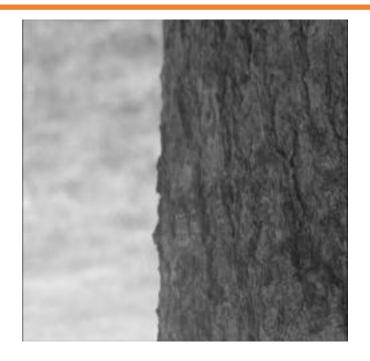
- Design challenges
 - Design an appropriate model [next time]
 - Enough degrees of freedom (DOFs) to allow good mapping
 - As few DOFs as possible to enable good fitting
 - Design a suitable goodness of fit measure between data and model
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an **optimization** method to find parameters of model
 - Avoid local optima
 - Find best parameters quickly

Goodness of Fit: Loss Function

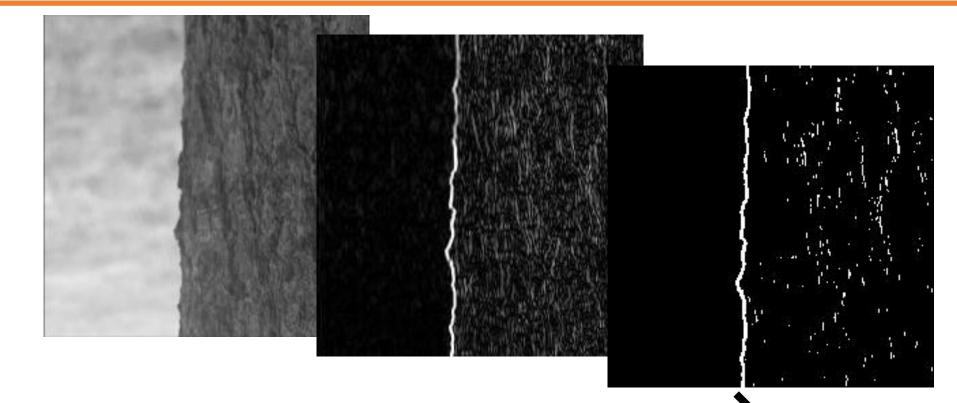


Also know as: cost, objective function Negative of loss: reward, profit, utility, fitness function

1D Starter Example: Find the Vertical Edge



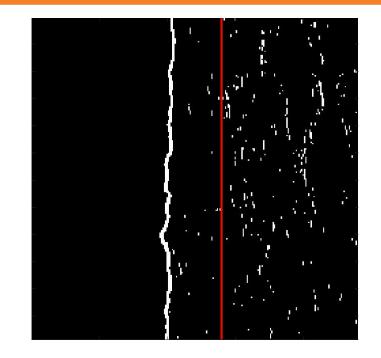
1D Starter Example: Find the Vertical Edge



[List of <x,y> coordinates]

dx = abs(conv2(im, [1 2 1]'*[-1 0 1]/4, 'valid')); %dx filter dxt = dx>=33; %threshold at edge energy=33 [y,x]=find(dxt); % find x,y coordinate of thresholded points

Squared Loss (L2)



Looking for a vertical line, so model is

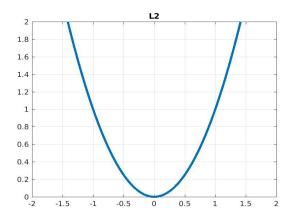
$$\hat{z} = f(\Theta) = \Theta = x\hat{pos}$$

Let's start with L2 (Squared, regression) loss:

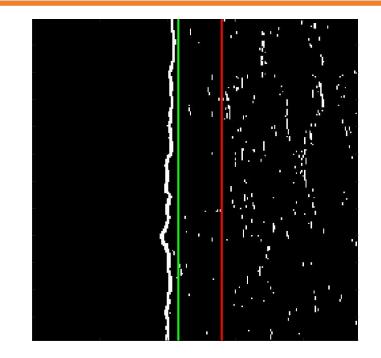
$$L(z_i; \hat{z}) = (z_i - \hat{z})^2$$

And find Θ such that sum(L_i) is minimum.

This is the mean!



Absolute Value Loss (L1)



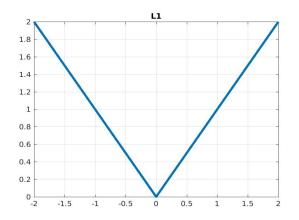
Looking for a vertical line, so model $\hat{z} = f(\Theta) = \Theta = x\hat{pos}$

Now try L1 (Absolute Value) loss:

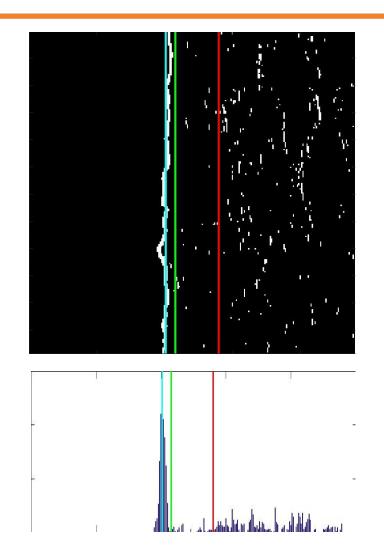
$$L(z_i; \hat{z}) = |z_i - \hat{z}|$$

And find Θ such that sum(L_i) is minimum.

This is the median!



Histogram



Looking for a vertical line, so model

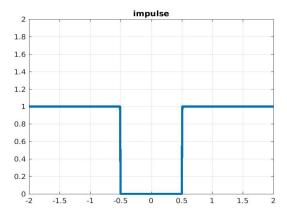
$$\hat{z} = f(\Theta) = \Theta = x\hat{pos}$$

How about just histogram and find maximum most popular bin. You can think of this as an impulse Loss:

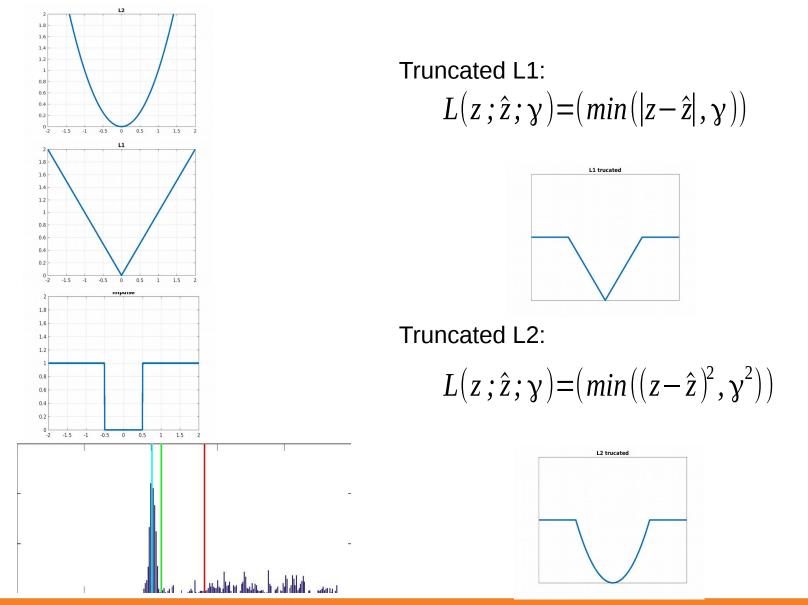
$$L(x; \hat{x}) = (|x_i - \hat{x}| > \gamma)$$

This is the mode!

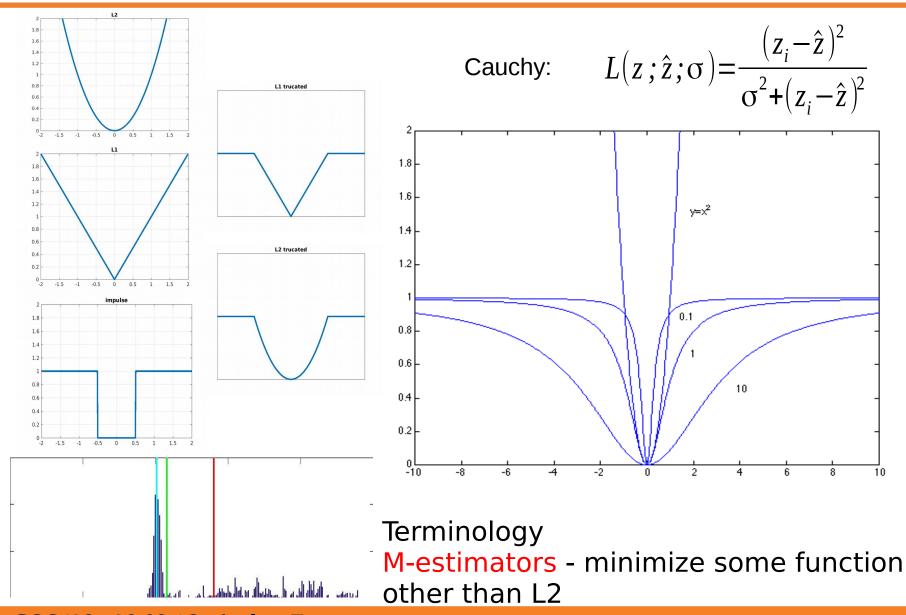
Questions: what happens as you change the bin size? What if you blur the bins of the Histogram?



More Robust Distance Loss Functions



More Robust Distance Loss Functions

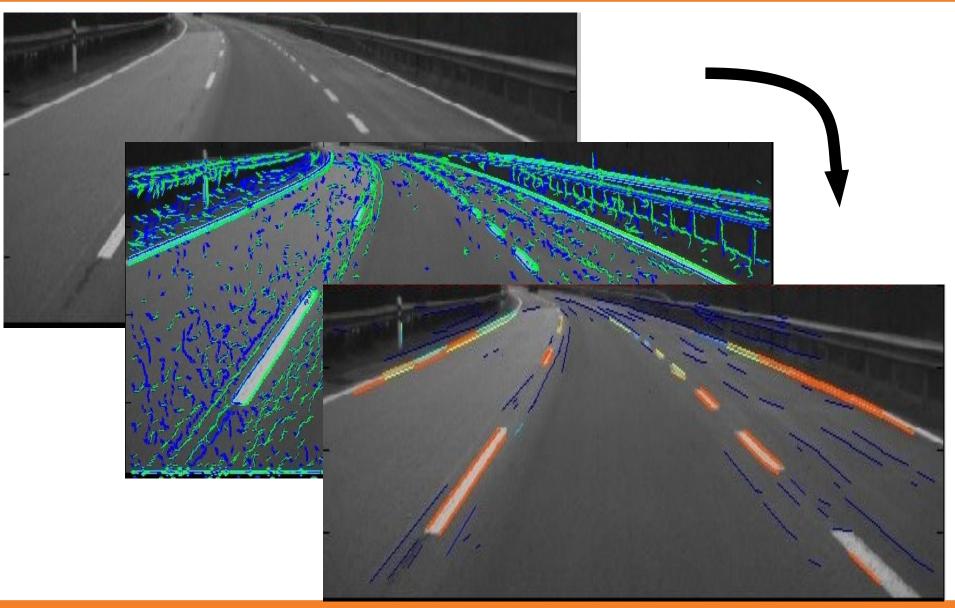


12 : COS429 : 29.09.16 : Andras Ferencz

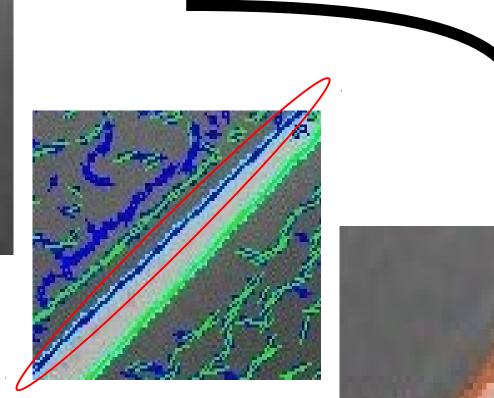
Given a loss function, how do you find a minimum?

- Direct Methods:
 - Least Squares fit (only for L2 norm)
- Iterative Methods:
 - Start at some (random) initial location, and then
 - Gradient descent (1st order) (stochastic variants) [lot more on this later]
 - (Pseudo-) Newton methods (2nd order)
 - Iterated Re-weighted Least Squares
 - Iterated closest point (ICP)
- Search (Hypothesize and test)
 - Dense sampling (histogram, Hough transform)
 - RANSAC
 - Many other problem specific algorithms: Multi-grid, branch&bound, etc.

2D Example: Finding Straight Lines

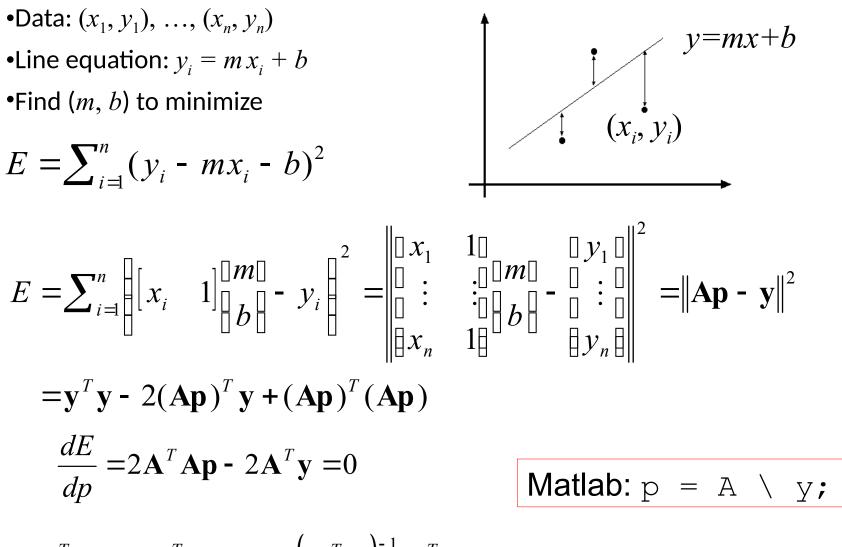


2D Example: Finding Straight Lines



Assume you know these points belong to a line. How do your fit a line to it?

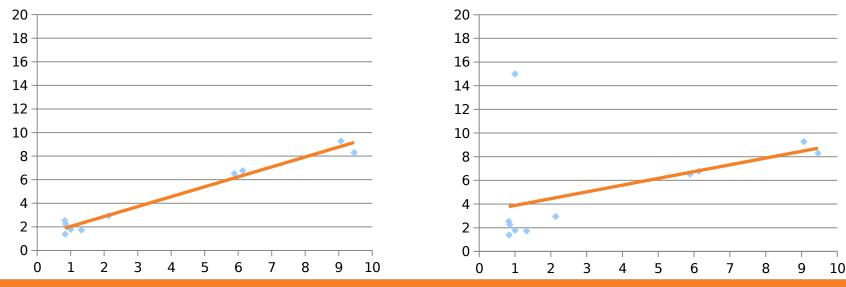
Least squares line fitting



$$\mathbf{A}^T \mathbf{A} \mathbf{p} = \mathbf{A}^T \mathbf{y} \Rightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

Outliers

- Least squares assumes Gaussian errors
- Outliers: points with extremely low probability of occurrence (according to Gaussian statistics)
- Have strong influence on least squares



Reminder: Robust Estimation

- Goal: develop parameter estimation methods insensitive to *small* numbers of *large* errors
- General approach: try to give large deviations less weight
- M-estimators: minimize some loss function other than L2 [square of y - f(x, a, b,...)]

Iteratively Reweighted Least Squares

- We can iteratively approximate L1
- Approximation: convert to weighted least squares

$$\sum_{i} |y_{i} - f(x_{i}, a, b, ...)|$$

$$= \sum_{i} \frac{1}{|y_{i} - f(x_{i}, a, b, ...)|} (y_{i} - f(x_{i}, a, b, ...))^{2}$$

$$= \sum_{i} w_{i} (y_{i} - f(x_{i}, a, b, ...))^{2}$$

with w_i based on previous iteration

Approximating other Losses

- Different options for weights to approximate other Loss functions
 - Avoid problems with infinities
 - Give even less weight to outliers

$$w_{i} = \frac{1}{|y_{i} - f(x_{i}, a, b, ...)|} \qquad L_{1}$$

$$w_{i} = \frac{1}{\varepsilon + |y_{i} - f(x_{i}, a, b, ...)|} \qquad \text{"Fair"}$$

$$w_{i} = \frac{1}{\varepsilon + (y_{i} - f(x_{i}, a, b, ...))^{2}} \qquad \text{Cauchy / Lorentzian}$$

$$w_{i} = e^{-k(y_{i} - f(x_{i}, a, b, ...))^{2}} \qquad \text{Welsch}$$

Summary: Least Squares

Ordinary

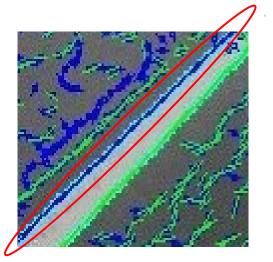
- + Clearly specified objective
- + Optimization is easy
- + Finds global optimum
- Loss is L2: may not be what you want to optimize
- Sensitive to outliers
- Hard to detect multiple objects, lines, etc.

Iterated Reweighted

- + Allows more robust objectives
- + Better sensitive to limited number of outliers
- Iterative, more costly to optimize
- Dependent on starting point: can fall into local minima
- Hard to detect multiple objects, lines, etc.

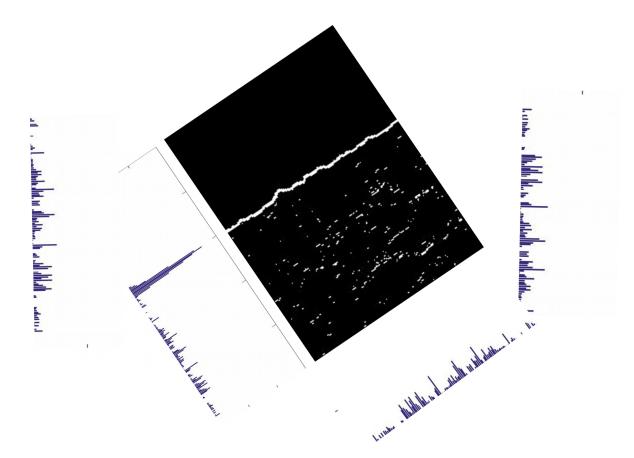
Neither still solves this problem:

how do we figure out that these points belong together?



2D Histogram

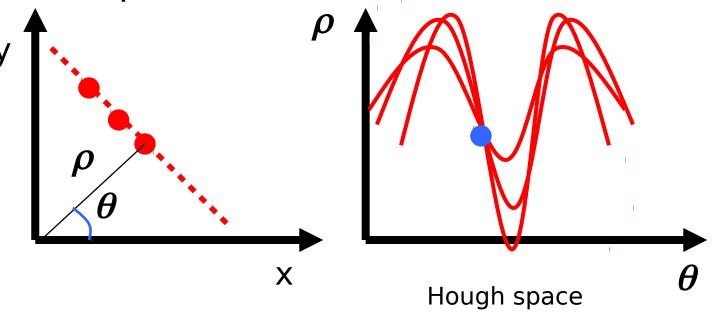
Recall what worked best in 1-D: Histogram! Can we do the same thing, now for 2 DOFs? Rotate it... Note: each edge point votes in each 1D histogram



Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

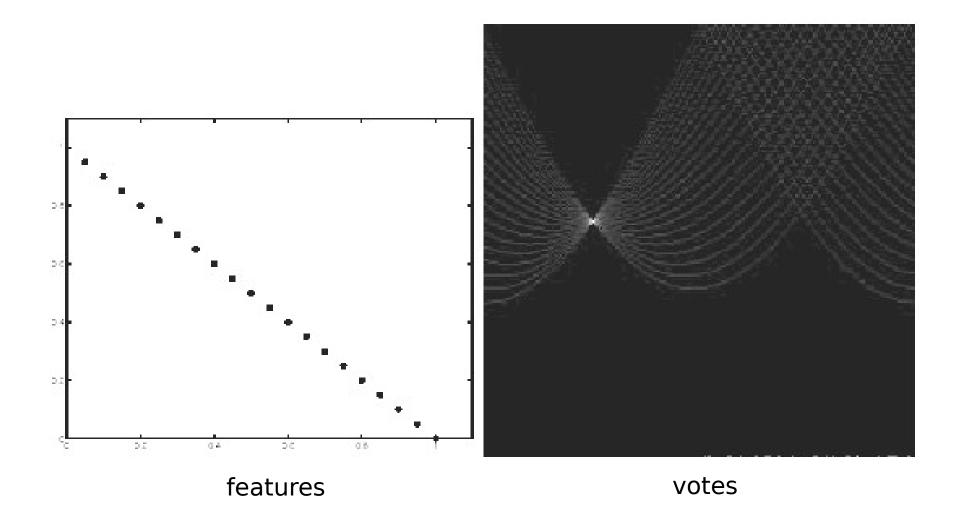
Assemble the 1D histograms into a 2D histogram: use a polar representation for the parameter space



$$x\cos\theta + y\sin\theta = \rho$$

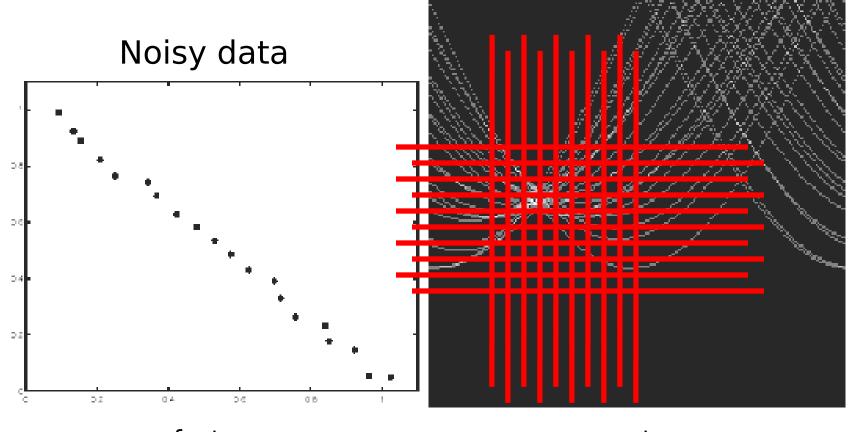
23 : COS429 : 29.09.16 : Andras Ferencz

Hough transform



24 : COS429 : 29.09.16 : Andras Ferencz

Hough transform - experiments



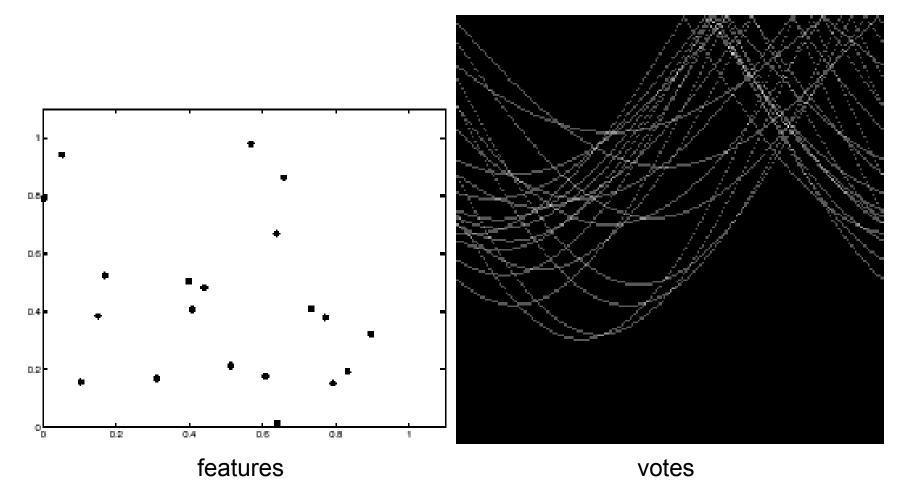
features

votes

Need to adjust grid size or smooth

25 : COS429 : 29.09.16 : Andras Ferencz

Hough transform - experiments



Issue: spurious peaks due to uniform noise

26 : COS429 : 29.09.16 : Andras Ferencz

1. Image -> Canny



27 : COS429 : 29.09.16 : Andras Ferencz

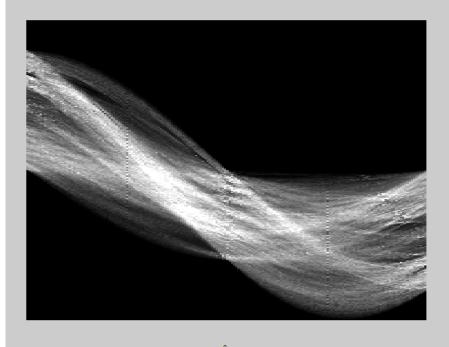
2. Canny -> Hough votes



28 : COS429 : 29.09.16 : Andras Ferencz

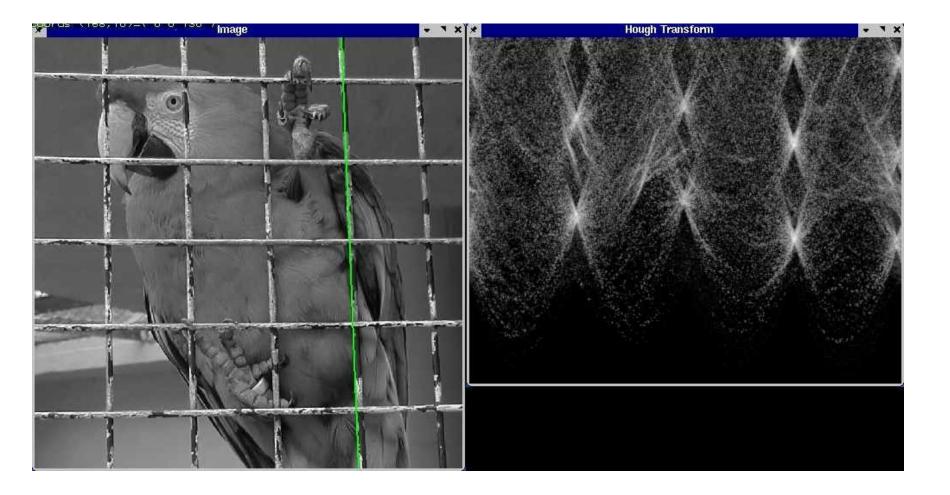
3. Hough votes -> Edges

Find peaks and post-process



29 : COS429 : 29.09.16 : Andras Ferencz

Another Hough transform example

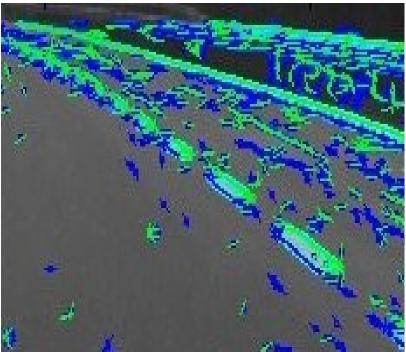


30 : COS429 : 29.09.16 : Andras Ferencz

http://ostatic.com/files/images/ss_hough.jpg

Analyzing the Hough transform

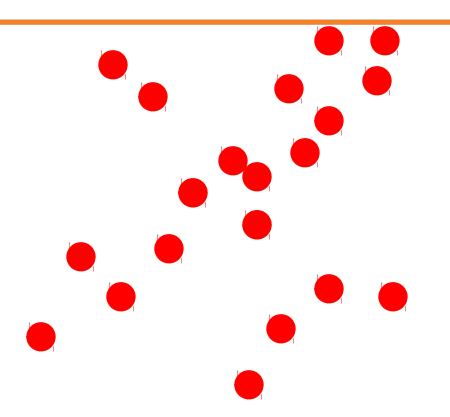
- Think about parameterization & bin size
 - Is the bin size uniform everywhere?
- Make it more robust: smoothing?
- Cost: O(mn + mp)
 - Reduce using edge orientation?
- How to find multiple lines? Segments?
- Can you find a circle with Hough?
- What is the effect as #Dims increases?



• Hypothesize and test: Do we need to sample in such a dense grid, or is there a more efficient strategy?

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.



Algorithm:

- 1. Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

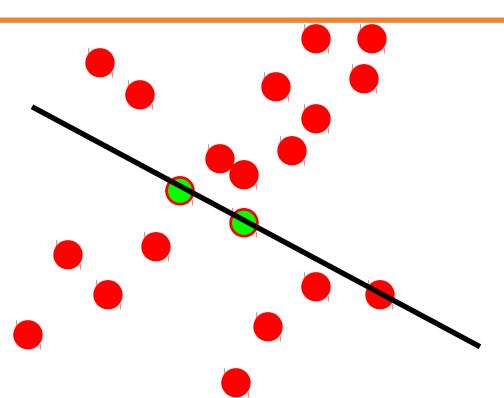
Repeat 1-3 until the best model is found with high confidence

Line fitting example Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

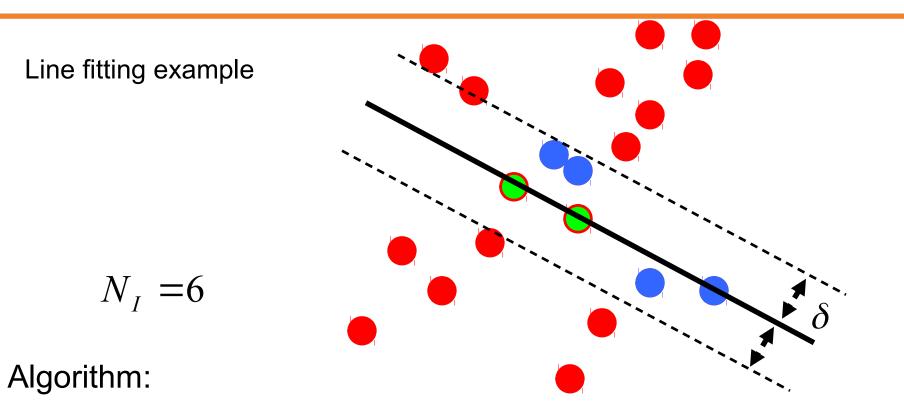
Line fitting example



Algorithm:

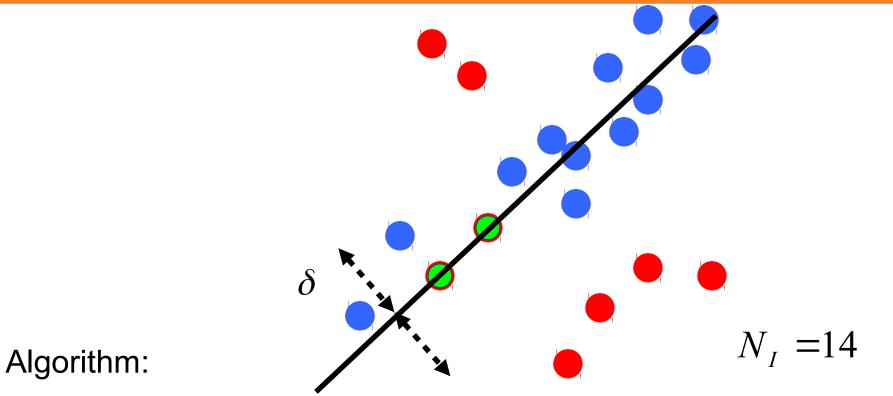
- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²

$$N = \log(1 - p) / \log(1 - (1 - e)^{s})$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	117
							7

RANSAC conclusions

Good

- Robust to outliers
- Applicable for more degrees of freedom (DOFs: number of objective function parameters) than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not great multiple fits

Common applications [next time]

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)