Fourier Transtforms

COS 323

Life in the Frequency Domain

Jean Baptiste Joseph
Fourier (1768-1830)

Spectrogram, Northern Cardinal

4500 :

I: i ' ek i 1
S .l||‘1 I.F Ililll I
] I- ' 'II : J'..F'I x
4000 (i by ;
‘ .*.' '1I 1 I

- e = -
il R e il
g

|l|,'l|

o T

5000
=
1.1

)
1
I._l

TEMM -
) -
e e L

Frequency

1500 -
I]

Huu|'"

time

JPEG Image Compression

FIGUEE 27-13

Example of JPEG distortion. Figure (a)
shows the original image, while (b)) and (c}
shows restored images using compression
ratios of 10:1 and 43:1, respectively. The
high compression ratio nsed in (c) results in

each 8=8 pixel group being reprezented by
less than l%.lbits.

b. With 10:1 compressicn

c. With 45:1 compression

Discrete

Cosine

Transform

(DCT)

(i .) ‘o _ca - —
|ISteven W. Smith 1997

The Convolution Theorem

* Fourier transform turns convolution
into multiplication:

F(f(x) = glx) = F(fx) Flgx))

(and vice versa):

Discrete Fourter Transtform (DFT)

fis a discrete signal: samples f,, f,, f,, ..., f

/ "n-1
f can be built up out of sinusoids (or complex
exponentials) of frequencies O through n-1:

1 e 2721'%)6
fx - Z er
N k=0
F is a function of frequency — describes “how much” f
contains of sinusoids at frequency k

Computing F — the Discrete Fourier Transform:

n—1 ok
—2m*x
Fk R fo €
x=0

DFT and Inverse DFT (IDFT)

Fk _ fo e—Zﬂka
x=0
7
1 n—l1 L

Computing Discrete Fourier Transtorm

n—1 5 ik
—2mtx
Fk = fo €
x=0

* Straightforward computation: for each of n DFT
values, loop over n input samples. Total: O(n?)

* Fast Fourier Transform (FFT): O(n log, n) time

— Revolutionized signal processing, filtering,
compression, etc.

— Also turns out to have less roundoff error

The FFT

1
Ty
IIII

! e H
e e = e B 2l
s L e

S s R
Lo

Discovered by Johann Carl Friedrich Gauss (1777-1855)

The FFT

Rediscovered and popularized in 1965 by
J. W. Cooley and John Tukey (Princeton alum and faculty)

The FFT

27/ n

Letw, =e =cos(2z/n)—ism(2x/n)

n—l
Then F, =Y f.o,"
x=0

n/2-1 n/2-1

. 2xk (2x+1)k
o Z foa)n + Z f2x+1a)n
x=0 x=0

The FFT

Key idea: divide and conquer

— Separate computation on even and odd elements

n/2-1 -~ n/2-1 (2x+D)k
X X+
Fk R Zfoa)n + Zf2x+la)n
n/2-1 n/2-1

xk k xk
Z foa)n/2 T a)n Z f2x+la)n/2
x=0 x=0

\ J \ J
| |

Half-size FFT on Half-size FFT on
even elements odd elements

Example (n = 4)

* From the definition:

Fy=fyo,” +fo,” + 0, + fo,”
F=fo, +fo, + 0+ fo,”

F,=fo," +fio,” + 0, + fio,”
F =0, + fio,” + [0, + fo,”

Example (n = 4)

* Using the fact that o =1

Fy=fyo," + fio, + f,0,"+ [0,
F = f0,"+fo, + o, + fo,
F, = fo,"+ fo, + [0, + fio,
F, = fyo," + fio, + fyo,” + fio,

Example (n = 4)

* Group even and odd terms, factor:

—foa)0+f2a)0 +a)o(f1a)0+f3 O)
=\f,0, +f2w +o, fla) +f3
>f0a) +f2 <+a) (\fla) +f3
kfoa)n + f,,)'I'wn \flwn + 150,

o0 T
I

LT
]

Example (n = 4)

Jo
/2

* This can be computed from two length-2 DFTs,
with some “twiddle factors”

DFT

N
/7

= f0w0+f2wo +a)0(f1a)0+f3 O)

=\f,0, +f2w +o, fla) +f3

}foa) +f2 n
kfoa)n + 1,0,

4

0 0
fo®,,, + 1,0,,
0 1
f(‘)a)n/2 +f20)n/2

2<
J

t+ @,
-I-&')n

i
/5

DFT

N
I

(\]Fla) + /,0,
\fla)n T f3a)

n
R 0 0
.]qa)n/2 +f30)n/2

0 1
fia)n/Z +f3a)n/2

The FFT

* Now apply algorithm recursively!

Combine
2-point
DFT's

|___: _

x(0} 2-point
x(4) DFT
%(2) —— _point
x(6) PFET
x(1) 2-point
x(5) DFT
x(3} 2-point
x(7 DFT

Combine
2-point
DFT's

e

Combine
4-point
DFT’s

FE'T Buttertly

G()

H(1)

length-2 DFT

“twiddle factor”

Stage 3

. Stape 1 Stage 2 .
1]
x(4) ids - X)
=] - S
x(2) » X2
we :::::>H<::::: s
x(6) . 3
x(1) X(4)
’ >< _
x(5} o——rrp—v ; X5
x(3) » >< * X(6)
4 _
NV . . — (D)

-1

The FFT

* Final detail: how * Bit reversal!
to find elements

involved in initial 0 — 000 — 000 — 0

size-2 FFTs? 1 —- 001 > 100 — 4
2—>010—-> 010 > 2
(0} 2-point | 35011T—=>110—>606
o —]_oFT St — 4 — 100 — 001 — 1
0 —{ g T e [5101 =101 5
o 6—>110—> 011 - 3
x(5) DFT E}%?e :ﬁi; 75111 > 111 > 7
x(3) 2-point
x(7) DFT

FEF'T Running Time

* Time to compute FFT of length n:
— Solve two subproblems of length n/2

— Additional processing proportional to n

T'(n)y=2T(n/2)+cn

 Recurrence relation with solution

T'(n)y=cnlog, n

FEF'T Running Time

* Proof:

T'(n)y=2T(n/2)+cn

2
cnlog, n=2(c%log,)+ cn

cnlog, n Lo n((log, n) —1)+cn

v
cnlog, n=cnlog,n—cn+cn

DFT ot Real Signals

* Standard FFT is complex — complex
— n real numbers as input yields n complex numbers
— But: symmetry relation for real inputs F, , = (F\)"

— Variants of FFT to compute this efficiently

* Discrete Cosine Transform (DCT)
— Reflect real input to get signal of length 2n
— Resulting FFT real and symmetric

— n real numbers as input, n real numbers as output

Application: JPEG Image Compression

* Perceptually-based lossy compression of images

* Algorithm
— Transform colors
— Divide into 8x8 blocks
— 2-dimensional DCT on each block
— Perceptually-guided quantization

— Lossless run-length and Huffman encoding

Application: JP

5 Image Compression

FIGUEE 27-13

Example of JPEG distortion. Figure (a)
shows the original image, while (b)) and (c}
shows restored images using compression
ratios of 10:1 and 43:1, respectively. The
high compression ratio nsed in (c) results in

each 8=8 pixel group being reprezented by
less than l%.lbits.

b. With 10:1 compressicn

c. With 45:1 compression

Discrete
Cosine
Transform

(DCT)

(i .) ‘o _ca - —
|ISteven W. Smith 1997

Application: Polynomial Multiplication

* Usual algorithm for multiplying two polynomials
of degree n is O(n?)

* Observation: can use DFT to efficiently go
between polynomial coefficients f,

J(t)= th

and polynomial evaluated at .

f(wnk) =F;, = fo a)nkx

Application: Polynomial Multiplication

* So, we have an O(n log n) algorithm for
multiplying two degree-n polynomials:
— DFT on coefficients
— Multiply

— Inverse DFT

* Polynomial multiplication is convolution!

Application: Ditfraction

* (Far-field) diffraction pattern of
parallel light passing through an aperture is
Fourier transform of aperture

r1xy)=F(AKX,Y))

/
M/

vV V.V

N

Application: Ditfraction

Square aperture

Application: Ditfraction

Circular aperture: Airy disk

Application: Ditfraction

Diffraction + defocus in telescope image

	Fourier Transforms
	Life in the Frequency Domain
	Slide Number 3
	JPEG Image Compression
	The Convolution Theorem
	Discrete Fourier Transform (DFT)
	DFT and Inverse DFT (IDFT)
	Computing Discrete Fourier Transform
	The FFT
	The FFT
	The FFT
	The FFT
	Example (n = 4)
	Example (n = 4)
	Example (n = 4)
	Example (n = 4)
	The FFT
	FFT Butterfly
	The FFT
	FFT Running Time
	FFT Running Time
	DFT of Real Signals
	Application: JPEG Image Compression
	Application: JPEG Image Compression
	Application: Polynomial Multiplication
	Application: Polynomial Multiplication
	Application: Diffraction
	Application: Diffraction
	Application: Diffraction
	Application: Diffraction

