
Fourier Transforms 
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Life in the Frequency Domain 

Jean Baptiste Joseph 
Fourier (1768-1830)  



Spectrogram, Northern Cardinal 



JPEG Image Compression 

Discrete 
Cosine 

Transform 
(DCT) 

[Steven W. Smith 1997] 



The Convolution Theorem 

• Fourier transform turns convolution 
into multiplication: 
 
  F (f(x) * g(x)) = F (f(x)) F (g(x)) 
 
(and vice versa): 
 
  F (f(x) g(x)) = F (f(x)) * F (g(x)) 



Discrete Fourier Transform (DFT) 

• f is a discrete signal: samples f0, f1, f2, … , fn-1 

• f can be built up out of sinusoids (or complex 
exponentials) of frequencies 0 through n-1: 

 

 

• F is a function of frequency – describes “how much” f 
contains of sinusoids at frequency k 

• Computing F – the Discrete Fourier Transform: 
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DFT and Inverse DFT (IDFT) 
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Computing Discrete Fourier Transform 

 

 

• Straightforward computation: for each of n DFT 
values, loop over n input samples.  Total: O(n2) 

• Fast Fourier Transform (FFT): O(n log2 n) time 
– Revolutionized signal processing, filtering, 

compression, etc. 

– Also turns out to have less roundoff error 
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Discovered by Johann Carl Friedrich Gauss (1777-1855) 

The FFT 



The FFT 

Rediscovered and popularized in 1965 by 
J. W. Cooley and John Tukey (Princeton alum and faculty) 



The FFT 
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The FFT 

 Key idea: divide and conquer 
– Separate computation on even and odd elements 
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Example (n = 4) 

• From the definition: 
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Example (n = 4) 

• Using the fact that 
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Example (n = 4) 

• Group even and odd terms, factor: 
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Example (n = 4) 

• This can be computed from two length-2 DFTs, 
with some “twiddle factors” 
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The FFT 

• Now apply algorithm recursively! 



FFT Butterfly 



The FFT 

• Final detail: how 
to find elements 
involved in initial 
size-2 FFTs? 

• Bit reversal! 

0 → 000 → 000 → 0 
1 → 001 → 100 → 4 
2 → 010 → 010 → 2 
3 → 011 → 110 → 6 
4 → 100 → 001 → 1 
5 → 101 → 101 → 5 
6 → 110 → 011 → 3 
7 → 111 → 111 → 7 



FFT Running Time 

• Time to compute FFT of length n: 
– Solve two subproblems of length n/2 

– Additional processing proportional to n 

 

 

• Recurrence relation with solution 
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FFT Running Time 

• Proof: 
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DFT of Real Signals 

• Standard FFT is complex → complex 
– n real numbers as input yields n complex numbers 

– But: symmetry relation for real inputs Fn-k = (Fk)* 

– Variants of FFT to compute this efficiently 

• Discrete Cosine Transform (DCT) 
– Reflect real input to get signal of length 2n 

– Resulting FFT real and symmetric 

– n real numbers as input, n real numbers as output 



Application: JPEG Image Compression 

• Perceptually-based lossy compression of images 

• Algorithm 
– Transform colors 

– Divide into 8×8 blocks 

– 2-dimensional DCT on each block 

– Perceptually-guided quantization 

– Lossless run-length and Huffman encoding 



Application: JPEG Image Compression 

Discrete 
Cosine 

Transform 
(DCT) 

[Steven W. Smith 1997] 



Application: Polynomial Multiplication 

• Usual algorithm for multiplying two polynomials 
of degree n is O(n2) 

• Observation: can use DFT to efficiently go 
between polynomial coefficients fx 
 
 
and polynomial evaluated at ωn

k 
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Application: Polynomial Multiplication 

• So, we have an O(n log n) algorithm for 
multiplying two degree-n polynomials: 
– DFT on coefficients 

– Multiply 

– Inverse DFT 

• Polynomial multiplication is convolution! 



Application: Diffraction 

• (Far-field) diffraction pattern of 
parallel light passing through an aperture is 
Fourier transform of aperture 

I(x,y)=F (A(x,y)) 



Application: Diffraction 

Square aperture 



Application: Diffraction 

Circular aperture: Airy disk 



Application: Diffraction 

Diffraction + defocus in telescope image 
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