
Fourier Transforms

 COS 323

Life in the Frequency Domain

Jean Baptiste Joseph
Fourier (1768-1830)

Spectrogram, Northern Cardinal

JPEG Image Compression

Discrete
Cosine

Transform
(DCT)

[Steven W. Smith 1997]

The Convolution Theorem

• Fourier transform turns convolution
into multiplication:

 F (f(x) * g(x)) = F (f(x)) F (g(x))

(and vice versa):

 F (f(x) g(x)) = F (f(x)) * F (g(x))

Discrete Fourier Transform (DFT)

• f is a discrete signal: samples f0, f1, f2, … , fn-1

• f can be built up out of sinusoids (or complex
exponentials) of frequencies 0 through n-1:

• F is a function of frequency – describes “how much” f
contains of sinusoids at frequency k

• Computing F – the Discrete Fourier Transform:

∑
−

=

=
1

0

21 n

k

xi
kx

n
k

eF
n

f π

∑
−

=

−=
1

0

2
n

x

xi
xk

n
k

efF π

DFT and Inverse DFT (IDFT)

∑
−

=

−=
1

0

2
n

x

xi
xk

n
k

efF π

∑
−

=

=
1

0

21 n

k

xi
kx

n
k

eF
n

f π

↔

Computing Discrete Fourier Transform

• Straightforward computation: for each of n DFT
values, loop over n input samples. Total: O(n2)

• Fast Fourier Transform (FFT): O(n log2 n) time
– Revolutionized signal processing, filtering,

compression, etc.

– Also turns out to have less roundoff error

∑
−

=

−=
1

0

2
n

x

xi
xk

n
k

efF π

Discovered by Johann Carl Friedrich Gauss (1777-1855)

The FFT

The FFT

Rediscovered and popularized in 1965 by
J. W. Cooley and John Tukey (Princeton alum and faculty)

The FFT

∑∑

∑

∑

−

=

+
+

−

=

−

=

−

−

=

−

+=

=

−==

=

12/

0

)12(
12

12/

0

2
2

1

0

/2

1

0

2

Then

)/2sin()/2cos(Let

n

x

kx
nx

n

x

xk
nx

n

x

xk
nxk

ni
n

n

x

xi
xk

ff

fF

nine

efF n
k

ωω

ω

ππω π

π

The FFT

 Key idea: divide and conquer
– Separate computation on even and odd elements

∑∑

∑∑
−

=
+

−

=

−

=

+
+

−

=

+=

+=

12/

0
2/12

12/

0
2/2

12/

0

)12(
12

12/

0

2
2

n

x

xk
nx

k
n

n

x

xk
nx

n

x

kx
nx

n

x

xk
nxk

ff

ffF

ωωω

ωω

Half-size FFT on
even elements

Half-size FFT on
odd elements

Example (n = 4)

• From the definition:

33
3

32
2

31
1

30
03

23
3

22
2

21
1

20
02

13
3

12
2

11
1

10
01

03
3

02
2

01
1

00
00

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

+++=
+++=
+++=
+++=

nnnn

nnnn

nnnn

nnnn

ffffF
ffffF

ffffF
ffffF

ωωωω
ωωωω
ωωωω
ωωωω

Example (n = 4)

• Using the fact that

5
3

2
2

3
1

0
03

2
3

0
2

2
1

0
02

3
3

2
2

1
1

0
01

0
3

0
2

0
1

0
00

nnnn

nnnn

nnnn

nnnn

ffffF
ffffF
ffffF
ffffF

ωωωω
ωωωω
ωωωω
ωωωω

+++=
+++=
+++=
+++=

14 =nω

Example (n = 4)

• Group even and odd terms, factor:

() ()
() ()
() ()
() ()2

3
0

1
32

2
0

03

0
3

0
1

20
2

0
02

2
3

0
1

12
2

0
01

0
3

0
1

00
2

0
00

nnnnn

nnnnn

nnnnn

nnnnn

ffffF
ffffF
ffffF
ffffF

ωωωωω
ωωωωω
ωωωωω
ωωωωω

+++=
+++=
+++=
+++=

Example (n = 4)

• This can be computed from two length-2 DFTs,
with some “twiddle factors”

() ()
() ()
() ()
() ()2

3
0

1
32

2
0

03

0
3

0
1

20
2

0
02

2
3

0
1

12
2

0
01

0
3

0
1

00
2

0
00

nnnnn

nnnnn

nnnnn

nnnnn

ffffF
ffffF
ffffF
ffffF

ωωωωω
ωωωωω
ωωωωω
ωωωωω

+++=
+++=
+++=
+++=

1
2/3

0
2/1

0
2/3

0
2/1

3

1
1

2/2
0

2/0

0
2/2

0
2/0

2

0

nn

nnDFT

nn

nnDFT

ff
ff

f
f

ff
ff

f
f

ωω
ωω

ωω
ωω

+
+

→
+
+

→

The FFT

• Now apply algorithm recursively!

FFT Butterfly

The FFT

• Final detail: how
to find elements
involved in initial
size-2 FFTs?

• Bit reversal!

0 → 000 → 000 → 0
1 → 001 → 100 → 4
2 → 010 → 010 → 2
3 → 011 → 110 → 6
4 → 100 → 001 → 1
5 → 101 → 101 → 5
6 → 110 → 011 → 3
7 → 111 → 111 → 7

FFT Running Time

• Time to compute FFT of length n:
– Solve two subproblems of length n/2

– Additional processing proportional to n

• Recurrence relation with solution

cnnTnT +=)2/(2)(

nncnT 2log)(=

FFT Running Time

• Proof:

()
()

cncnnncnnc

cnnncnnc

cncnnc

cnnTnT
nn

+−=

+−=

+=

+=

22

22

2222

loglog

1)(loglog

log2log

)2/(2)(
?

?



DFT of Real Signals

• Standard FFT is complex → complex
– n real numbers as input yields n complex numbers

– But: symmetry relation for real inputs Fn-k = (Fk)*

– Variants of FFT to compute this efficiently

• Discrete Cosine Transform (DCT)
– Reflect real input to get signal of length 2n

– Resulting FFT real and symmetric

– n real numbers as input, n real numbers as output

Application: JPEG Image Compression

• Perceptually-based lossy compression of images

• Algorithm
– Transform colors

– Divide into 8×8 blocks

– 2-dimensional DCT on each block

– Perceptually-guided quantization

– Lossless run-length and Huffman encoding

Application: JPEG Image Compression

Discrete
Cosine

Transform
(DCT)

[Steven W. Smith 1997]

Application: Polynomial Multiplication

• Usual algorithm for multiplying two polynomials
of degree n is O(n2)

• Observation: can use DFT to efficiently go
between polynomial coefficients fx

and polynomial evaluated at ωn

k

∑
−

=

=
1

0
)(

n

x

x
x tftf

∑
−

=

==
1

0
)(

n

x

kx
nxk

k
n fFf ωω

Application: Polynomial Multiplication

• So, we have an O(n log n) algorithm for
multiplying two degree-n polynomials:
– DFT on coefficients

– Multiply

– Inverse DFT

• Polynomial multiplication is convolution!

Application: Diffraction

• (Far-field) diffraction pattern of
parallel light passing through an aperture is
Fourier transform of aperture

I(x,y)=F (A(x,y))

Application: Diffraction

Square aperture

Application: Diffraction

Circular aperture: Airy disk

Application: Diffraction

Diffraction + defocus in telescope image

	Fourier Transforms
	Life in the Frequency Domain
	Slide Number 3
	JPEG Image Compression
	The Convolution Theorem
	Discrete Fourier Transform (DFT)
	DFT and Inverse DFT (IDFT)
	Computing Discrete Fourier Transform
	The FFT
	The FFT
	The FFT
	The FFT
	Example (n = 4)
	Example (n = 4)
	Example (n = 4)
	Example (n = 4)
	The FFT
	FFT Butterfly
	The FFT
	FFT Running Time
	FFT Running Time
	DFT of Real Signals
	Application: JPEG Image Compression
	Application: JPEG Image Compression
	Application: Polynomial Multiplication
	Application: Polynomial Multiplication
	Application: Diffraction
	Application: Diffraction
	Application: Diffraction
	Application: Diffraction

