Simulation Wrap-up, Statistics

COS 323

Last time

- Time-driven, event-driven
- "Simulation" from differential equations
- Cellular automata, microsimulation, agent-based simulation
- Example applications: SIR disease model, population genetics

Simulation: Pros and Cons

- Pros:
- Building model can be easy (easier) than other approaches
- Outcomes can be easy to understand
- Cheap, safe
- Good for comparisons
- Cons:
- Hard to debug
- No guarantee of optimality
- Hard to establish validity
- Can't produce absolute numbers

Simulation: Important Considerations

- Are outcomes statistically significant? (Need many simulation runs to assess this)
- What should initial state be?
- How long should the simulation run?
- Is the model realistic?
- How sensitive is the model to parameters, initial conditions?

Statistics Overview

Descriptive statistics

Random Variables

- A random variable is any "probabilistic outcome"
- e.g., a coin flip, height of someone randomly chosen from a population
- A R.V. takes on a value in a sample space
- space can be discrete, e.g., $\{\mathrm{H}, \mathrm{T}\}$
- or continuous, e.g. height in (0 , infinity)
- R.V. denoted with capital letter (X), a realization with lowercase letter (x)
- e.g., X is a coin flip, x is the value (H or T) of that coin flip

Probability Mass Function

- Describes probability for a discrete R.V.
- e.g.,

$$
f_{X}(x)= \begin{cases}\frac{1}{2}, & x \in\{0,1\} \\ 0, & x \notin\{0,1\}\end{cases}
$$

Probability Density Function

- Describes probability for a continuous R.V.
- e.g.,

[Population] Mean of a Random Variable

- aka expected value, first moment
- for discrete RV: $\mathrm{E}[X]=\mu=\sum_{i} x_{i} p_{i}$
(requires that $\sum_{i} p_{i}=1$)
- for continuous RV: $\mathrm{E}[X]=\mu=\int_{-\infty}^{\infty} x p(x) d x$
(requires that $\int_{-\infty}^{\infty} p(x) d x=1$)

[Population] Variance

$$
\begin{aligned}
\sigma^{2} & =\mathrm{E}\left[(X-\mu)^{2}\right] \\
& =\mathrm{E}\left[X^{2}-2 X \mu+\mu^{2}\right] \\
& =\mathrm{E}\left[X^{2}\right]-\mu^{2} \\
& =\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
\end{aligned}
$$

- for discrete RV: $\sigma^{2}=\sum_{\mathrm{i}} p_{i}\left(x_{i}-\mu\right)^{2}$
- for continuous RV:

$$
\sigma^{2}=\int(x-\mu)^{2} p(x) d x
$$

Sample mean and sample variance

- Suppose we have N independent observations of X : $x_{1}, x_{2}, \ldots x_{N}$
- Sample mean:

$$
\frac{1}{N} \sum_{i=1}^{N} x_{i}=\bar{x}
$$

Unbiased:

$$
\mathrm{E}[\bar{x}]=\mu
$$

- Sample variance:

$$
\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}=s^{2}
$$

$\mathrm{E}\left[s^{2}\right]=\sigma^{2}$

$1 /(\mathrm{N}-1)$ and the sample variance

- The N differences $x_{i}-\bar{x}$ are not independent:

$$
\sum\left(x_{i}-\bar{x}\right)=0
$$

- If you know $\mathrm{N}-1$ of these values, you can deduce the last one
- i.e., only N-1 degrees of freedom
- Could treat sample as population and compute population variance:

$$
\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

- BUT this underestimates true population variance (especially bad if sample is small)

Computing Sample Variance

- Can compute as

$$
s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

- Prefer:

$$
s^{2}=\frac{\left(\sum_{i=1}^{N} x_{i}^{2}\right)-N(\bar{x})^{2}}{N-1}=\frac{\left(\sum_{i=1}^{N} x_{i}^{2}\right)-\frac{1}{N}\left(\sum_{i=1}^{N} x_{i}\right)^{2}}{N-1}
$$

(one pass, fewer operations, more accurate)

The Gaussian Distribution

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

$$
E[X]=\mu
$$

$$
\operatorname{Var}[X]=\sigma^{2}
$$

Why so important?

- sum of independent observations of random variables converges to Gaussian *(with some assumptions)
- in nature, events having variations resulting from many small, independent effects tend to have Gaussian distributions
- demo: http://www.mongrav.org/math/falling-ballsprobability.htm
- e.g., measurement error
- if effects are multiplicative, logarithm is often normally distributed

Central Limit Theorem

- Suppose we sample $x_{1}, x_{2}, \ldots x_{N}$ from a distribution with mean μ and variance σ^{2}
- Let

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

holds for *(almost) any parent distribution!

- then

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{N}} \rightarrow N(0,1)
$$

- i.e., \bar{x} distributed normally with mean μ, variance σ^{2} / N

Important Properties of Normal Distribution

1. Family of normal distributions closed under linear transformations:
if $X \sim N\left(\mu, \sigma^{2}\right)$ then
$(a X+b) \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$
2. Linear combination of normals is also normal:
if $X_{1} \sim N\left(\mu_{1}, \sigma_{1}{ }^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$ then
$a X_{1}+b X_{2} \sim N\left(a \mu_{1}+b \mu_{2}, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right)$

Important Properties of Normal Distribution

3. Of all distributions with mean and variance, normal has maximum entropy
Information theory: Entropy like "uninformativeness"
Principle of maximum entropy: choose to represent the world with as uninformative a distribution as possible, subject to "testable information"
If we know x is in $[a, b]$, then uniform distribution on $[a, b]$ has least entropy
If we know distribution has mean μ, variance σ^{2}, normal distribution $N\left(\mu, \sigma^{2}\right)$ has least entropy

Important Properties of Normal Distribution

4. If errors are normally distributed, a least-squares fit yields the maximum likelihood estimator
Finding least-squares x st $A x \approx b$ finds the value of x that maximizes the likelihood of data A under some model

$$
P(\text { data } \mid \text { model }) \propto \prod_{i=1}^{n} \exp \left[-\frac{1}{2}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right] \Delta y
$$

$P($ model \mid data $) \propto P($ data \mid model $) P($ model $)$

Important Properties of Normal Distribution

5. Many derived random variables have analytically-known densities
e.g., sample mean, sample variance
6. Sample mean and variance of n identical independent samples are independent; sample mean is a normally-distributed random variable

$$
\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)
$$

What if we don't know true variance?

- Sample mean is normally distributed R.V.

$$
\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right)
$$

- Taking advantage of this presumes we know σ^{2}
- $\frac{\bar{x}-\mu}{s_{n} / \sqrt{n}}$ has a t distribution with (n-1) d.o.f.

[Student's] t-distribution

$f(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}$,

Forming a confidence interval

- e.g., given that I observed a sample mean of \qquad , I'm 99% confident that the true mean lies between \qquad and \qquad .
- Know that $\frac{\bar{x}-\mu}{s_{n} / \sqrt{n}}$ has t distribution
- Choose q_{1}, q_{2} such that student t with ($n-1$) dof has 99% probability of lying between q_{1}, q_{2}

Interpreting Simulation Outcomes

- How long will customers have to wait, on average?
- e.g., for given \# tellers, arrival rate, service time distribution, etc.

Interpreting Simulation Outcomes

- Simulate bank for N customers
- Let x_{i} be the wait time of customer i
- Is mean (x) a good estimate for μ ?
- How to compute a 95% confidence interval for μ ?
- Problem: x_{i} are not independent!

Replications

- Run simulation to get M observations
- Repeat simulation N times (different random numbers each time)
- Treat the sample mean of different runs as approximately uncorrelated

$$
\begin{gathered}
\overline{\mathrm{X}}_{\mathrm{i}}=\frac{1}{\mathrm{~m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}} \quad \quad \overline{\overline{\mathrm{X}}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \overline{\mathrm{X}}_{\mathrm{i}} \\
s^{2}=\frac{1}{n-1} \sum_{i}\left(\bar{X}_{i}-\overline{\bar{X}}\right)^{2}
\end{gathered}
$$

