
Simulation Wrap-up, 
Statistics 

COS 323 



Last time 

• Time-driven, event-driven 

• “Simulation” from differential equations 

• Cellular automata, microsimulation, agent-based 
simulation 

• Example applications: SIR disease model, 
population genetics 



Simulation: Pros and Cons 

• Pros: 
– Building model can be easy (easier) than other approaches 

– Outcomes can be easy to understand 

– Cheap, safe 

– Good for comparisons 

• Cons: 
– Hard to debug 

– No guarantee of optimality 

– Hard to establish validity 

– Can’t produce absolute numbers 



Simulation: Important Considerations 

• Are outcomes statistically significant? (Need 
many simulation runs to assess this) 

• What should initial state be? 

• How long should the simulation run? 

• Is the model realistic? 

• How sensitive is the model to parameters, initial 
conditions? 

 



Statistics Overview 



Descriptive statistics 

experiment 

data 

sample statistics: 
μ, σ2, … 

Model for probabilistic  
mechanism… 

estimates with  
confidence intervals inferences 

predictions 

Inferential statistics 



Random Variables 

• A random variable is any “probabilistic outcome” 
– e.g., a coin flip, height of someone randomly chosen from a 

population 

• A R.V. takes on a value in a sample space 
– space can be discrete, e.g., {H, T} 

– or continuous, e.g. height in (0, infinity) 

• R.V. denoted with capital letter (X), a realization with 
lowercase letter (x) 
– e.g., X is a coin flip, x is the value (H or T) of that coin flip 



Probability Mass Function 

• Describes probability for a discrete R.V. 

• e.g.,  



Probability Density Function 

• Describes probability for a continuous R.V. 

• e.g.,  



[Population] Mean of a Random Variable 

• aka expected value, first moment 

• for discrete RV: 

 

 

• for continuous RV: 
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• for discrete RV: 

 

• for continuous RV: 

 

[Population] Variance 

 

σ2 = E (X − µ)2[ ]
= E X 2 − 2Xµ + µ2[ ]
= E X 2[ ]− µ2

= E X 2[ ]− E X[ ]( )2
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Sample mean and sample variance 

• Suppose we have N independent observations 
of X: x1, x2, …xN 

• Sample mean: 

 

 

• Sample variance: 
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i=1
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Unbiased: 

 

E[x ] = µ

 

E[s2] = σ 2



1/(N-1) and the sample variance 

• The N differences             are not independent: 

 

• If you know N-1 of these values, you can deduce the 
last one 
– i.e., only N-1 degrees of freedom 

• Could treat sample as population and compute 
population variance: 

 
– BUT this underestimates true population variance (especially 

bad if sample is small) 

 
 

 

 

xi − x 

 

(xi − x ) = 0∑
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Computing Sample Variance 

• Can compute as 

 

 

• Prefer: 
 
 
 
(one pass, fewer operations, more accurate) 
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The Gaussian Distribution 

 

p(x) =
1

σ 2π
e

1
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x −µ
σ
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E[X] = µ

Var[X] = σ 2



Why so important? 

• sum of independent observations of random 
variables converges to Gaussian *(with some assumptions) 

• in nature, events having variations resulting 
from many small, independent effects tend to 
have Gaussian distributions 
– demo: http://www.mongrav.org/math/falling-balls-

probability.htm 

– e.g., measurement error 

– if effects are multiplicative, logarithm is often 
normally distributed 

 

http://www.mongrav.org/math/falling-balls-probability.htm
http://www.mongrav.org/math/falling-balls-probability.htm


Central Limit Theorem 

• Suppose we sample x1, x2, … xN from a 
distribution with mean μ and variance σ2 

• Let 

 

• then 

 

• i.e.,    distributed normally with mean μ, 
variance σ2/N    

 

x =
1
N

xi
i=1

N

∑

 

z =
x − µ

σ / N
→N(0,1)

 

x 

holds for *(almost) any parent 
distribution! 



Important Properties of Normal Distribution 

1. Family of normal distributions closed under linear 
transformations: 

 if X ~ N(μ, σ2) then  

 (aX + b) ~ N(aμ+b, a2σ2) 

2. Linear combination of normals is also normal: 

 if X1 ~ N(μ1, σ1
2) and X2 ~ N(μ2, σ2

2) then 

 aX1+bX2 ~ N(aμ1 + bμ2, a2σ1
2 + b2σ2

2) 



Important Properties of Normal Distribution 

3. Of all distributions with mean and variance, normal has 
maximum entropy 

 Information theory: Entropy like “uninformativeness” 

 Principle of maximum entropy: choose to represent 
the world with as uninformative a distribution as 
possible, subject to “testable information” 

If we know x is in [a, b], then uniform distribution on [a, b] 
has least entropy 

If we know distribution has mean μ, variance σ2, normal 
distribution N(μ, σ2) has least entropy 



Important Properties of Normal Distribution 

4. If errors are normally distributed, a least-squares fit 
yields the maximum likelihood estimator 

Finding least-squares x st Ax ≈ b finds the value of x that 
maximizes the likelihood of data A under some model 

 

 



Important Properties of Normal Distribution 

5. Many derived random variables have 
analytically-known densities  

 e.g., sample mean, sample variance 

6. Sample mean and variance of n identical 
independent samples are independent; sample 
mean is a normally-distributed random variable  

   

 

X n ~ N(µ,σ 2 /n)



What if we don’t know true variance? 

• Sample mean is normally distributed R.V. 

 

• Taking advantage of this presumes we know σ2 
 

•             has a t distribution with (n-1) d.o.f. 
 

X n ~ N(µ,σ 2 /n)

 

x − µ
sn / n



[Student’s] t-distribution 



Forming a confidence interval 

• e.g., given that I observed a sample mean of ____, I’m 
99% confident that the true mean lies between ____ 
and ____. 

• Know that               has t distribution 
 

• Choose q1, q2 such that student t with (n-1) dof has 99% 
probability of lying between q1, q2  

 

x − µ
sn / n

q1 q2 



Interpreting Simulation Outcomes 

• How long will customers have to wait, on 
average? 
– e.g., for given # tellers, arrival rate, service time 

distribution, etc. 



Interpreting Simulation Outcomes 

• Simulate bank for N customers 

• Let xi be the wait time of customer i 

• Is mean(x) a good estimate for μ? 

• How to compute a 95% confidence interval for μ? 
– Problem: xi are not independent! 



Replications 

• Run simulation to get M observations 

• Repeat simulation N times (different random 
numbers each time) 

• Treat the sample mean of different runs as 
approximately uncorrelated 
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