QR Factorization and

Singular Value Decomposition

COS 323

Why Yet Another Method?

- How do we solve least-squares...
- without incurring condition-squaring effect of normal equations ($\mathrm{A}^{\mathrm{T}} \mathrm{Ax}=\mathrm{A}^{\mathrm{T}} \mathrm{b}$)
- when A is singular, "fat", or otherwise poorly-specified?
- QR Factorization
- Householder method
- Singular Value Decomposition
- Total least squares
- Practical notes

Review: Condition Number

- Cond(A) is function of A
- $\operatorname{Cond}(A)>=1$, bigger is bad
- Measures how change in input propagates to output:

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}
$$

- E.g., if $\operatorname{cond}(A)=451$ then can lose $\log (451)=2.65$ digits of accuracy in x, compared to precision of A

Normal Equations are Bad

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}
$$

- Normal equations involves solving $\mathrm{A}^{\top} \mathrm{Ax}=\mathrm{A}^{\top} \mathrm{b}$
- $\operatorname{cond}\left(\mathrm{A}^{\top} \mathrm{A}\right)=[\operatorname{cond}(\mathrm{A})]^{2}$
- E.g., if $\operatorname{cond}(\mathrm{A})=451$ then can $\operatorname{lose} \log \left(451^{2}\right)=5.3$ digits of accuracy, compared to precision of A

QR Decomposition

\qquad

What if we didn't have to use $A^{T} A$?

- Suppose we are "lucky":

$$
\left[\begin{array}{cccc}
\# & \# & \cdots & \# \\
0 & \# & & \# \\
0 & 0 & \ddots & \vdots \\
0 & \cdots & 0 & \# \\
0 & \cdots & \cdots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] x \cong\left[\begin{array}{c}
\# \\
\# \\
\# \\
\# \\
\# \\
\# \\
\#
\end{array}\right] \quad\left[\begin{array}{c}
R \\
0
\end{array}\right] x=b
$$

- Upper triangular matrices are nice!

How to make A upper-triangular?

- Gaussian elimination?
- Applying elimination yields MAx $=\mathrm{Mb}$
- Want to find x s.t. minimizes $||M b-M A x||_{2}$
- Problem: $\left||M v|_{2}!=\| v\right|_{2}$ (i.e., M might "stretch" a vector v)
- Another problem: M may stretch different vectors differently
- i.e., M does not preserve Euclidean norm
- i.e., x that minimizes ||Mb-MAx|| may not be same x that minimizes $A x=b$

QR Factorization

- Find upper-triangular R and orthogonal Q s.t.

$$
A=Q\left[\begin{array}{c}
R \\
0
\end{array}\right], \text { so }\left[\begin{array}{c}
R \\
0
\end{array}\right] x=Q^{T} b
$$

- Doesn't change least-squares solution
- $Q^{\top} \mathrm{Q}=\mathrm{I}$, columns of Q are orthonormal
- i.e., Q preserves Euclidean norm: $\|\mathrm{Qv}\|_{2}=\|\mathrm{v}\|_{2}$

Goal of QR

Reformulating Least Squares using QR

$$
\begin{array}{rlrl}
\|r\|_{2}^{2} & =\|b-A x\|_{2}^{2} \\
& =\left\|b-Q\left[\begin{array}{l}
R \\
O
\end{array}\right] x\right\|_{2}^{2} & \text { because } A=Q\left[\begin{array}{l}
R \\
O
\end{array}\right] \\
& =\left\|Q^{T} b-Q^{T} Q\left[\begin{array}{l}
R \\
O
\end{array}\right] x\right\|_{2}^{2} & & \text { because } \mathrm{Q} \text { preserves lengths } \\
& =\left\|Q^{T} b-\left[\begin{array}{l}
R \\
O
\end{array}\right] x\right\|_{2}^{2} & & \text { because } \mathrm{Q} \text { is orthogonal }\left(\mathrm{Q}^{\top} \mathrm{Q}=\mathrm{I}\right) \\
& =\left\|c_{1}-R x\right\|_{2}^{2}+\left\|c_{2}\right\|_{2}^{2} & & \text { if we call } Q^{T} b=\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left\|c_{2}\right\|_{2}^{2} & \text { if we choose } \mathbf{x} \text { such that } \mathrm{Rx}=\mathbf{c}_{1}
\end{array}
$$

Householder Method for Computing QR Decomposition

Orthogonalization for Factorization

- Rough idea:

$$
A=Q\left[\begin{array}{l}
R \\
O
\end{array}\right]
$$

- For each i-th column of A, "zero out" rows i+1 and lower
- Accomplish this by multiplying A with an orthogonal matrix H_{i}
- Equivalently, apply an orthogonal transformation to the i-th column (e.g., rotation, reflection)
- Q becomes product $\mathrm{H}_{1}{ }^{*} \ldots{ }^{*} \mathrm{H}_{\mathrm{n}}$, R contains zero-ed out columns

Householder Transformation

- Accomplishes the critical sub-step of factorization:
- Given any vector (e.g., a column of A), reflect it so that its last p elements become 0 .
- Reflection preserves length (Euclidean norm)

Outcome of Householder

$$
\begin{aligned}
& H_{n} \ldots H_{1} A=\left[\begin{array}{l}
R \\
O
\end{array}\right] \\
& \text { where } Q^{T}=H_{n} \ldots H_{1} \\
& \text { so } Q=H_{1} \ldots H_{n} \\
& \text { so } \mathrm{A}=\mathrm{Q}\left[\begin{array}{l}
R \\
O
\end{array}\right]
\end{aligned}
$$

Review: Least Squares using QR

$$
\begin{array}{rlrl}
\|r\|_{2}^{2} & =\|b-A x\|_{2}^{2} & \\
& =\left\|b-Q\left[\begin{array}{l}
R \\
O
\end{array}\right] x\right\|_{2}^{2} & & \text { because } A=Q\left[\begin{array}{l}
R \\
O
\end{array}\right] \\
& =\left\|Q^{T} b-Q^{T} Q\left[\begin{array}{l}
R \\
O
\end{array}\right] x\right\|_{2}^{2} & & \text { because } \mathrm{Q} \text { preserves lengths } \\
& =\left\|Q^{T} b-\left[\begin{array}{l}
R \\
O
\end{array}\right] x\right\|_{2}^{2} & & \text { because } \mathrm{Q} \text { is orthogonal }\left(\mathrm{Q}^{\top} \mathrm{Q}=\mathrm{I}\right) \\
& =\left\|c_{1}-R x\right\|_{2}^{2}+\left\|c_{2}\right\|_{2}^{2} & & \text { if we call } Q^{T} b=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left\|c_{2}\right\|_{2}^{2} & & \text { if we choose } \mathrm{x} \text { such that } \mathrm{Rx}=\mathrm{c}_{1}
\end{array}
$$

Using Householder

- Iteratively compute $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots \mathrm{H}_{\mathrm{n}}$ and apply to A to get R
- also apply to b to get

$$
Q^{T} b=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

- Solve for $\mathrm{Rx}=\mathrm{C}_{1}$ using back-substitution

Alternative Orthogonalization Methods

- Givens:
- Don't reflect; rotate instead
- Introduces zeroes into A one at a time
- More complicated implementation than Householder
- Useful when matrix is sparse
- Gram-Schmidt
- Iteratively express each new column vector as a linear combination of previous columns, plus some (normalized) orthogonal component
- Conceptually nice, but suffers from subtractive cancellation

Singular Value Decomposition
\qquad

Motivation \#1

- Diagonal matrices are even nicer than triangular ones:

$$
\left[\begin{array}{cccc}
\# & 0 & 0 & 0 \\
0 & \# & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & \cdots & 0 & \# \\
0 & \cdots & \cdots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] x \cong\left[\begin{array}{c}
\# \\
\# \\
\# \\
\# \\
\# \\
\# \\
\#
\end{array}\right]
$$

Motivation \#2

- What if you have fewer data points than parameters in your function?
- i.e., A is "fat"
- Intuitively, can't do standard least squares
- Recall that solution takes the form $\mathrm{A}^{\top} \mathrm{Ax}=\mathrm{A}^{\top} \mathrm{b}$
- When A has more columns than rows, $A^{\top} \mathrm{A}$ is singular: can't take its inverse, etc.

Motivation \#3

- What if your data poorly constrains the function?
- Example: fitting to $y=a x^{2}+b x+c$

Underconstrained Least Squares

- Problem: if problem very close to singular, roundoff error can have a huge effect
- Even on "well-determined" values!
- Can detect this:
- Uncertainty proportional to covariance $\mathrm{C}=\left(\mathrm{A}^{\top} \mathrm{A}\right)^{-1}$
- In other words, unstable if $A^{\top} A$ has small values
- More precisely, care if $x^{\top}\left(A^{\top} A\right) x$ is small for any x
- Idea: if part of solution unstable, set answer to 0
- Avoid corrupting good parts of answer

Singular Value Decomposition (SVD)

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix \mathbf{A}, algorithm to find matrices \mathbf{U}, \mathbf{V}, and \mathbf{W} such that
$\mathbf{A}=\mathbf{U} \mathbf{W} \mathbf{V}^{\top}$
\mathbf{U} is $m \times n$ and orthonormal
\mathbf{W} is $n \times n$ and diagonal
\mathbf{V} is $n \times n$ and orthonormal

SVD

$$
(\mathbf{A})=\left(\begin{array}{ccc}
\mathbf{U} \\
w_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & w_{n}
\end{array}\right)(\mathbf{V})^{\mathrm{T}}
$$

- Based on Householder reduction, QR decomposition, but treat as black box: code widely available e.g., in Matlab: $[\mathbf{U}, \mathbf{w}, \mathrm{V}]=\mathbf{s v d}(\mathbf{A}, \mathbf{0})$

SVD

- The w_{i} are called the singular values of \mathbf{A}
- If \mathbf{A} is singular, some of the w_{i} will be 0
- In general $\operatorname{rank}(\mathbf{A})=$ number of nonzero w_{i}
- SVD is mostly unique (up to permutation of singular values, or if some w_{i} are equal)

SVD and Inverses

- Why is SVD so useful?
- Application \#1: inverses
- $\mathbf{A}^{-1}=\left(\mathbf{V}^{\top}\right)^{-1} \mathbf{W}^{-1} \mathbf{U}^{-1}=\mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\top}$
- Using fact that inverse $=$ transpose for orthogonal matrices
- Since \mathbf{W} is diagonal, \mathbf{W}^{-1} also diagonal with reciprocals of entries of \mathbf{W}

SVD and the Pseudoinverse

- $\mathbf{A}^{-1}=\left(\mathbf{V}^{\top}\right)^{-1} \mathbf{W}^{-1} \mathbf{U}^{-1}=\mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\top}$
- This fails when some w_{i} are 0
- It's supposed to fail - singular matrix
- Happens when rectangular A is rank deficient
- Pseudoinverse: if $w_{i}=0$, set $1 / w_{i}$ to 0 (!)
- "Closest" matrix to inverse
- Defined for all (even non-square, singular, etc.) matrices
- Equal to $\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top}$ if $\mathbf{A}^{\top} \mathbf{A}$ invertible

SVD and Condition Number

- Singular values used to compute Euclidean (spectral) norm for a matrix:

$$
\operatorname{cond}(A)=\frac{\sigma_{\max }(A)}{\sigma_{\min }(A)}
$$

SVD and Least Squares

- Solving $\mathbf{A x}=\mathbf{b}$ by least squares:
- $A^{\top} A x=A^{\top} b \rightarrow x=\left(A^{\top} A\right)^{-1} A^{\top} b$
- Replace with $A^{+}: x=A^{+} b$
- Compute pseudoinverse using SVD
- Lets you see if data is singular ($<\mathrm{n}$ nonzero singular values)
- Even if not singular, condition number tells you how stable the solution will be
- Set $1 / w_{i}$ to 0 if w_{i} is small (even if not exactly 0)

Total Least Squares

- One final least squares application
- Fitting a line: vertical vs. perpendicular error

Total Least Squares

- Distance from point to line:

$$
d_{i}=\binom{x_{i}}{y_{i}} \cdot \vec{n}-a
$$

where n is normal vector to line, a is a constant

- Minimize:

$$
\chi^{2}=\sum_{i} d_{i}^{2}=\sum_{i}\left[\binom{x_{i}}{y_{i}} \cdot \vec{n}-a\right]^{2}
$$

Total Least Squares

- First, let's pretend we know n, solve for a

$$
\begin{aligned}
& \chi^{2}=\sum_{i}\left[\binom{x_{i}}{y_{i}} \cdot \vec{n}-a\right]^{2} \\
& a=\frac{1}{m} \sum_{i}\binom{x_{i}}{y_{i}} \cdot \vec{n}
\end{aligned}
$$

- Then

$$
d_{i}=\binom{x_{i}}{y_{i}} \cdot \vec{n}-a=\binom{x_{i}-\frac{\Sigma x_{i}}{m}}{y_{i}-\frac{\Sigma y_{i}}{m}} \cdot \vec{n}
$$

Total Least Squares

- So, let's define

$$
\binom{\widetilde{x}_{i}}{\tilde{y}_{i}}=\binom{x_{i}-\frac{\Sigma x_{i}}{m}}{y_{i}-\frac{\Sigma y_{i}}{m}}
$$

and minimize

$$
\sum_{i}\left[\binom{\widetilde{x}_{i}}{\tilde{y}_{i}} \cdot \vec{n}\right]^{2}
$$

Total Least Squares

- Write as linear system

$$
\left(\begin{array}{cc}
\widetilde{x}_{1} & \widetilde{y}_{1} \\
\widetilde{x}_{2} & \widetilde{y}_{2} \\
\widetilde{x}_{3} & \widetilde{y}_{3} \\
& \vdots
\end{array}\right)\binom{n_{x}}{n_{y}}=\overrightarrow{0}
$$

- Have An=0
- Problem: lots of n are solutions, including $n=0$
- Standard least squares will, in fact, return $n=0$

Constrained Optimization

- Solution: constrain n to be unit length
- So, try to minimize $|A n|^{2}$ subject to $|n|^{2}=1$

$$
\|\mathbf{A} \vec{n}\|^{2}=(\mathbf{A} \vec{n})^{\mathrm{T}}(\mathbf{A} \vec{n})=\vec{n}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \vec{n}
$$

- Expand in eigenvectors e_{i} of $\mathrm{A}^{\top} \mathrm{A}$:

$$
\begin{gathered}
\vec{n}=\mu_{1} \mathbf{e}_{1}+\mu_{2} \mathbf{e}_{2} \\
\vec{n}^{\mathrm{T}}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right) \vec{n}=\lambda_{1} \mu_{1}^{2}+\lambda_{2} \mu_{2}^{2} \\
\|\vec{n}\|^{2}=\mu_{1}^{2}+\mu_{2}^{2}
\end{gathered}
$$

where the λ_{i} are eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$

Constrained Optimization

- To minimize $\lambda_{1} \mu_{1}^{2}+\lambda_{2} \mu_{2}^{2}$ subject to $\mu_{1}^{2}+\mu_{2}^{2}=1$ set $\mu_{\text {min }}=1$, all other $\mu_{\mathrm{i}}=0$
- That is, n is eigenvector of $\mathrm{A}^{\top} \mathrm{A}$ with the smallest corresponding eigenvalue

SVD and Eigenvectors

- Let $\mathbf{A}=\mathbf{U W} \mathbf{V}^{\top}$, and let x_{i} be $i^{\text {th }}$ column of \mathbf{V}
- Consider $\mathbf{A}^{\top} \mathbf{A} x_{i}$:
$\mathbf{A}^{\mathrm{T}} \mathbf{A} x_{i}=\mathbf{V} \mathbf{W}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{U W} \mathbf{V}^{\mathrm{T}} x_{i}=\mathbf{V} \mathbf{W}^{2} \mathbf{V}^{\mathrm{T}} x_{i}=\mathbf{V} \mathbf{W}^{2}\left(\begin{array}{c}0 \\ \vdots \\ \vdots \\ 0\end{array}\right)=\mathbf{V}\left(\begin{array}{c}0 \\ \vdots \\ w_{i}^{2} \\ \vdots \\ 0\end{array}\right)=w_{i}{ }^{2} x_{i}$
- So elements of \mathbf{W} are sqrt(eigenvalues) and columns of \mathbf{V} are eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$

Constrained Optimization

- To minimize $\lambda_{1} \mu_{1}^{2}+\lambda_{2} \mu_{2}^{2}$ subject to $\mu_{1}^{2}+\mu_{2}^{2}=1$ set $\mu_{\text {min }}=1$, all other $\mu_{\mathrm{i}}=0$
- That is, n is eigenvector of $\mathrm{A}^{\top} \mathrm{A}$ with the smallest corresponding eigenvalue
- That is, n is column of V corresponding to smallest singular value

Comparison of Least Squares Methods

- Normal equations $\left(A^{\top} A x=A^{\top} b\right)$
- $\mathrm{O}\left(\mathrm{mn}^{2}\right)$ (using Cholesky)
$-\operatorname{cond}\left(\mathrm{A}^{\top} \mathrm{A}\right)=[\operatorname{cond}(\mathrm{A})]^{2}$
- Cholesky fails if cond(A) $\sim 1 /$ sqrt(machine epsilon)
- Householder
- Usually best orthogonalization method
- $\mathrm{O}\left(\mathrm{mn}^{2}-\mathrm{n}^{3} / 3\right)$ operations
- Relative error is best possible for least squares
- Breaks if cond(A) ~ 1/(machine eps)
- SVD
- Expensive: $\mathrm{mn}^{2}+\mathrm{n}^{3}$ with bad constant factor
- Can handle rank-deficiency, near-singularity
- Handy for many different things

