Data Modeling and Least Squares Fitting 2

COS 323

Last time

- Data modeling
- Motivation of least-squares error
- Formulation of linear least-squares model:

$$
\begin{aligned}
& y_{i}=a f\left(\vec{x}_{i}\right)+b g\left(\vec{x}_{i}\right)+\operatorname{ch}\left(\vec{x}_{i}\right)+\cdots \\
& \text { Given }\left(\vec{x}_{i}, y_{i}\right), \text { solve for } a, b, c, \ldots
\end{aligned}
$$

- Solving using normal equations, pseudoinverse
- Illustrating least-squares with special cases: constant, line
- Weighted least squares
- Evaluating model quality

Nonlinear Least Squares

- Some problems can be rewritten to linear

$$
\begin{gathered}
y=a e^{b x} \\
\Rightarrow(\log y)=(\log a)+b x
\end{gathered}
$$

- Fit data points $\left(x_{i}, \log y_{i}\right)$ to $a^{*}+b x, a=e^{a^{*}}$
- Big problem: this no longer minimizes squared error!

Nonlinear Least Squares

- Can write error function, minimize directly

$$
\begin{aligned}
& \chi^{2}=\sum_{i}\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right)^{2} \\
& \text { Set } \frac{\partial}{\partial a}=0, \frac{\partial}{\partial b}=0, \text { etc. }
\end{aligned}
$$

- For the exponential, no analytic solution for a, b :

$$
\begin{aligned}
& \chi^{2}=\sum_{i}\left(y_{i}-a e^{b x_{i}}\right)^{2} \\
& \frac{\partial}{\partial a}=\sum_{i}-2 e^{b x_{i}}\left(y_{i}-a e^{b x_{i}}\right)=0 \\
& \frac{\partial}{\partial b}=\sum_{i}-2 a x_{i} e^{b x_{i}}\left(y_{i}-a e^{b x_{i}}\right)=0
\end{aligned}
$$

Newton's Method

- Apply Newton's method for minimization:
- 1-dimensional:

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

- n-dimensional:

$$
\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i+1}=\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i}-H^{-1} G
$$

where H is Hessian (matrix of all $2^{\text {nd }}$ derivatives) and G is gradient (vector of all $1^{\text {st }}$ derivatives)

Newton's Method

Newton's Method

Newton's Method

Newton's Method

Newton's Method

- Apply Newton's method for minimization:
- 1-dimensional:

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

- n-dimensional:

$$
\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i+1}=\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i}-\mathbf{H}^{-1} \mathbf{G}
$$

where H is Hessian (matrix of all $2^{\text {nd }}$ derivatives) and G is gradient (vector of all $1^{\text {st }}$ derivatives)

Newton's Method for Least Squares

$$
\begin{aligned}
& \chi^{2}(a, b, \ldots)=\sum_{i}\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right)^{2} \\
& \mathbf{G}=\left[\begin{array}{c}
\left.\frac{\partial\left(x^{2}\right)}{\partial a}\right) \\
\frac{\partial\left(x^{2}\right)}{\partial b} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\sum_{i}-2 \frac{\partial f}{\partial a}\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right) \\
\sum_{i}-2 \frac{\partial f}{\partial b}\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right) \\
\vdots
\end{array}\right]
\end{aligned}
$$

- Gradient has $1^{\text {tt }}$ derivatives of f, Hessian $2^{\text {nd }}$

Gauss-Newton Iteration

- Consider 1 term of Hessian:

$$
\begin{aligned}
& \frac{\partial^{2}\left(\chi^{2}\right)}{\partial a^{2}}=\frac{\partial}{\partial a}\left(\sum_{i}-2 \frac{\partial f}{\partial a}\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right)\right) \\
& =-2 \sum_{i} \frac{\partial^{2} f}{\partial a^{2}}\left(y_{i}-f(x, \ldots)\right)+2 \sum_{i} \frac{\partial f}{\partial a} \frac{\partial f}{\partial a}
\end{aligned}
$$

- If close to answer, residual is close to 0 , so ignore it \rightarrow eliminates need for $2^{\text {nd }}$ derivatives

Gauss-Newton Iteration

- Consider 1 term of Hessian:

$$
\begin{aligned}
& \frac{\partial^{2}\left(\chi^{2}\right)}{\partial a^{2}}=\frac{\partial}{\partial a}\left(\sum_{i}-2 \frac{\partial f}{\partial a}\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right)\right) \\
& =-2 \sum_{i} \frac{\partial^{2} f}{\partial a^{2}}\left(y_{i}-f(x, \ldots)\right)+2 \sum_{i} \frac{\partial f}{\partial a} \frac{\partial f}{\partial a}
\end{aligned}
$$

- The Gauss-Newton method approximates

$$
\mathbf{H} \approx 2 \mathbf{J}^{\mathrm{T}} \mathbf{J}
$$

(Only for least-squares!)

Gauss-Newton Iteration

$$
\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i+1}=\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i}+s_{i}
$$

To find Gauss - Newton update $s_{i}=-\mathbf{H}^{-1} \mathbf{G}$, solve

$$
\mathrm{J}_{i}^{\mathrm{T}} \mathrm{~J}_{i} s_{i}=\mathrm{J}_{i}{ }^{\mathrm{T}} r_{i}
$$

$$
J=\left(\begin{array}{ccc}
\frac{\partial f}{\partial a}\left(x_{1}\right) & \frac{\partial f}{\partial b}\left(x_{1}\right) & \ldots \\
\frac{\partial f}{\partial a}\left(x_{2}\right) & \frac{\partial f}{\partial b}\left(x_{2}\right) & \\
\vdots & & \ddots
\end{array}\right), r=\left(\begin{array}{c}
y_{1}-f\left(x_{1}, a, b, \cdots\right) \\
y_{2}-f\left(x_{2}, a, b, \cdots\right) \\
\vdots
\end{array}\right)
$$

Example: Logistic Regression

- Model probability of an event based on values of explanatory variables, using generalized linear model, logistic function $g(z)$

$$
\begin{aligned}
& p(\vec{x})=g\left(a x_{1}+b x_{2}+\cdots\right) \\
& g(z)=\frac{1}{1+e^{-z}}
\end{aligned}
$$

Logistic Regression

- Assumes positive and negative examples are normally distributed, with different means but same variance
- Applications: predict odds of election victories, sports events, medical outcomes, etc.
- Estimate parameters a, b, ... using Gauss-Newton on individual positive, negative examples
- Handy hint: $g^{\prime}(z)=g(z)(1-g(z))$

Gauss-Newton++:

The Levenberg-Marquardt Algorithm

Levenberg-Marquardt

- Newton (and Gauss-Newton) work well when close to answer, terribly when far away
- Steepest descent safe when far away
- Levenberg-Marquardt idea: let's do both

$$
\begin{aligned}
& \left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i+1}=\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i}-\alpha \mathbf{G}-\beta\left(\begin{array}{ccc}
\sum \frac{\partial f}{\partial a} \frac{\partial f}{\partial a} & \sum \frac{\partial f}{\partial a} \frac{\partial f}{\partial b} & \cdots \\
\sum \frac{\partial f}{\partial a} \frac{\partial f}{\partial b} & \sum \frac{\partial f}{\partial b} \frac{\partial f}{\partial b} & \cdots \\
\vdots &
\end{array}\right)^{-1} \mathbf{G} \\
& \\
& \\
& \\
& \text { Steepest } \\
& \text { descent }
\end{aligned}
$$

Levenberg-Marquardt

- Trade off between constants depending on how far away you are...
- Clever way of doing this:

$$
\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i+1}=\left(\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right)_{i}-\left(\begin{array}{ccc}
(1+\lambda) \sum \frac{\partial f}{\partial a} \frac{\partial f}{\partial a} & \sum \frac{\partial f}{\partial a} \frac{\partial f}{\partial b} & \cdots \\
\sum \frac{\partial f}{\partial a} \frac{\partial f}{\partial b} & (1+\lambda) \sum \frac{\partial f}{\partial b} \frac{\partial f}{\partial b} & \cdots \\
\vdots & \vdots &
\end{array}\right)^{-1} \mathbf{G}
$$

- If λ is small, mostly like Gauss-Newton
- If λ is big, matrix becomes mostly diagonal, behaves like steepest descent

Levenberg-Marquardt

- Final bit of cleverness: adjust λ depending on how well we're doing
- Start with some λ, e.g. 0.001
- If last iteration decreased error, accept the step and decrease λ to $\lambda / 10$
- If last iteration increased error, reject the step and increase λ to 10λ
- Result: fairly stable algorithm, not too painful (no $2^{\text {nd }}$ derivatives), used a lot

Dealing with Outliers

Outliers

- A lot of derivations assume Gaussian distribution for errors
- Unfortunately, nature (and experimenters) sometimes don't cooperate
- Outliers: points with extremely low probability of occurrence (according to Gaussian statistics)
- Can have strong influence on least squares

Example: without outlier

Example: with outlier

Robust Estimation

- Goal: develop parameter estimation methods insensitive to small numbers of large errors
- General approach: try to give large deviations less weight
- e.g., Median is a robust measure, mean is not
- M-estimators: minimize some function other than square of $y-f(x, a, b, \ldots)$

Least Absolute Value Fitting

- Minimize $\sum\left|y_{i}-f\left(x_{i}, a, b, \ldots\right)\right|$ instead of $\sum_{i}^{i}\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right)^{2}$
- Points far away from trend get comparatively less influence

Example: Constant

- For constant function $y=a$, minimizing $\Sigma(y-a)^{2}$ gave $a=$ mean
- Minimizing $\Sigma|y-a|$ gives $a=$ median

Least Squares vs. Least Absolute Deviations

- LS:
- Not robust
- Stable, unique solution
- Solve with normal equations, Gauss-Newton, etc.
- LAD
- Robust
- Unstable, not necessarily unique
- Nasty function (discontinuous derivative): requires iterative solution method (e.g. simplex)

Iteratively Reweighted Least Squares

- Sometimes-used approximation: convert to iteratively weighted least squares

$$
\begin{gathered}
\sum_{i}\left|y_{i}-f\left(x_{i}, a, b, \ldots\right)\right| \\
=\sum_{i} \frac{1}{\left.\left|y_{i}-f\left(x_{i}, a, b, \ldots\right)\right|^{2}-f\left(x_{i}, a, b, \ldots\right)\right)^{2}} \\
=\sum_{i} w_{i}\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right)^{2}
\end{gathered}
$$

with w_{i} based on previous iteration

Review: Weighted Least Squares

- Define weight matrix W as
$\mathbf{W}=\left(\begin{array}{lllll}w_{1} & & & & 0 \\ & w_{2} & & & \\ & & w_{3} & & \\ & & & w_{4} & \\ 0 & & & & \ddots\end{array}\right)$
- Then solve weighted least squares via

M-Estimators

Different options for weights

- Give even less weight to outliers

$$
\begin{array}{cl}
w_{i}=\frac{1}{\left|y_{i}-f\left(x_{i}, a, b, \ldots\right)\right|} & \mathrm{L}_{1} \\
w_{i}=\frac{1}{\varepsilon+\left|y_{i}-f\left(x_{i}, a, b, \ldots\right)\right|} & \text { "Fair" } \\
w_{i}=\frac{1}{\varepsilon+\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right)^{2}} & \text { Cauchy / Lorentzian } \\
w_{i}=e^{-k\left(y_{i}-f\left(x_{i}, a, b, \ldots\right)\right)^{2}} & \text { Welsch }
\end{array}
$$

Iteratively Reweighted Least Squares

- Danger! This is not guaranteed to converge to the right answer!
- Needs good starting point, which is available if initial least squares estimator is reasonable
- In general, works OK if few outliers, not too far off

Outlier Detection and Rejection

- Special case of IRWLS: set weight $=0$ if outlier, 1 otherwise
- Detecting outliers: $\left(\mathrm{y}_{\mathrm{i}}-\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right)^{2}>$ threshold
- One choice: multiple of mean squared difference
- Better choice: multiple of median squared difference
- Can iterate...
- As before, not guaranteed to do anything reasonable, tends to work OK if only a few outliers

RANSAC

- RANdom SAmple Consensus: desgined for bad data (in best case, up to 50% outliers)
- Take many minimal random subsets of data
- Compute fit for each sample
- See how many points agree: $\left(y_{i}-f\left(x_{i}\right)\right)^{2}<$ threshold
- Threshold user-specified or estimated from more trials
- At end, use fit that agreed with most points
- Can do one final least squares with all inliers

RANSAC

Least Squares in Practice

Least Squares in Practice

- More data is better $\sigma^{2}=\frac{\chi^{2}}{n-m} \mathbf{C}$
- uncertainty in estimated parameters goes down slowly: like 1/sqrt(\# samples)
- Good correlation doesn't mean a model is good
- use visualizations and reasoning, too.

Anscombe's Quartet

Dataset 1		Dataset 2		Dataset 3		Dataset 4		
x	y	x	y	x	y	x	y	
10	8.04	10	9.14	10	7.46	8	6.58	
8	6.95	8	8.14	8	6.77	8	5.76	
13	7.58	13	8.74	13	12.74	8	7.71	
9	8.81	9	8.77	9	7.11	8	8.84	$y=3.0+0.5 x$
11	8.33	11	9.26	11	7.81	8	8.47	$\mathrm{r}=0.82$
14	9.96	14	8.10	14	8.84	8	7.04	
6	7.24	6	6.13	6	6.08	8	5.25	
4	4.26	4	3.10	4	5.39	19	12.50	
12	10.84	12	9.13	12	8.15	8	5.56	
7	4.82	7	7.26	7	6.42	8	7.91	
5	5.68	5	4.74	5	5.73	8	6.89	

Anscombe's Quartet

(a)

(c)

(b)

(d)

Least Squares in Practice

- More data is better
- Good correlation doesn't mean a model is good
- Many circumstances call for (slightly) more sophisticated models than least squares
- Generalized linear models, regularized models (e.g., LASSO), PCA, ...

Residuals depend on x (heteroscedastic):
Assumptions of linear least squares not met

Least Squares in Practice

- More data is better
- Good correlation doesn't mean a model is good
- Many circumstances call for (slightly) more sophisticated models than linear LS
- Sometimes a model's fit can be too good ("overfitting")
- more parameters may make it easier to overfit

Overfitting

Least Squares in Practice

- More data is better
- Good correlation doesn't mean a model is good
- Many circumstances call for (slightly) more sophisticated models than linear LS
- Sometimes a model's fit can be too good
- All of these minimize "vertical" squared distance
- Square, vertical distance not always appropriate

