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Last time 

• Data modeling 

• Motivation of least-squares error 

• Formulation of linear least-squares model:  

 

 

• Solving using normal equations, pseudoinverse 

• Illustrating least-squares with special cases: constant, line 

• Weighted least squares 

• Evaluating model quality 
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Nonlinear Least Squares 

• Some problems can be rewritten to linear 

 

 

 

• Fit data points (xi, log yi) to a*+bx, a = ea* 

• Big problem: this no longer minimizes 
squared error! 
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Nonlinear Least Squares 

• Can write error function, minimize directly 

 

 

• For the exponential, no analytic solution for a, b: 
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Newton’s Method 

• Apply Newton’s method for minimization: 
– 1-dimensional:  

 

– n-dimensional: 

 

  

 where H is Hessian (matrix of all 2nd derivatives) 
and G is gradient (vector of all 1st derivatives) 
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Newton’s Method 
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Newton’s Method 

• Apply Newton’s method for minimization: 
– 1-dimensional:  

 

– n-dimensional: 

 

 

 where H is Hessian (matrix of all 2nd derivatives) 
and G is gradient (vector of all 1st derivatives) 
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Newton’s Method for Least Squares 

 

 

 

 

 

 

• Gradient has 1st derivatives of  f, Hessian 2nd 
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Gauss-Newton Iteration 

• Consider 1 term of Hessian: 

 

 

 

 

• If close to answer, residual is close to 0, 
so ignore it → eliminates need for 2nd derivatives 
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Gauss-Newton Iteration 

• Consider 1 term of Hessian: 

 

 

 

 

• The Gauss-Newton method approximates 
 
(Only for least-squares!) 
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Gauss-Newton Iteration 
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Example: Logistic Regression 

• Model probability of an event based on 
values of explanatory variables, using 
generalized linear model, logistic function g(z) 
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Logistic Regression 

• Assumes positive and negative examples are 
normally distributed, with different means but 
same variance 

• Applications: predict odds of election victories, 
sports events, medical outcomes, etc. 

• Estimate parameters a, b, … using Gauss-Newton 
on individual positive, negative examples 

• Handy hint: g’(z) = g(z) (1-g(z)) 



Gauss-Newton++:  
The Levenberg-Marquardt Algorithm 



Levenberg-Marquardt 

• Newton (and Gauss-Newton) work well when 
close to answer, terribly when far away 

• Steepest descent safe when far away 

• Levenberg-Marquardt idea: let’s do both 
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Levenberg-Marquardt 

• Trade off between constants depending on how far 
away you are… 

• Clever way of doing this: 

 

 

 

• If λ is small, mostly like Gauss-Newton 

• If λ is big, matrix becomes mostly diagonal, 
behaves like steepest descent 
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Levenberg-Marquardt 

• Final bit of cleverness: adjust λ depending on 
how well we’re doing 
– Start with some λ, e.g. 0.001 

– If last iteration decreased error, accept the step and 
decrease λ to λ/10 

– If last iteration increased error, reject the step and 
increase λ to 10λ 

• Result: fairly stable algorithm, not too painful 
(no 2nd derivatives), used a lot 



Dealing with Outliers 



Outliers 

• A lot of derivations assume Gaussian distribution 
for errors 

• Unfortunately, nature (and experimenters) 
sometimes don’t cooperate 

 

• Outliers: points with extremely low probability 
of occurrence (according to Gaussian statistics) 

• Can have strong influence on least squares 

probability 

Gaussian 
Non-Gaussian 



Example: without outlier 
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Example: with outlier 
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Robust Estimation 

• Goal: develop parameter estimation methods 
insensitive to small numbers of large errors 

• General approach: try to give large deviations 
less weight 

• e.g., Median is a robust measure, mean is not 

• M-estimators: minimize some function other 
than square of y – f(x,a,b,…) 



Least Absolute Value Fitting 

• Minimize 
instead of 

 

• Points far away from trend get comparatively 
less influence 
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Example: Constant 

• For constant function  y = a, 
minimizing  Σ(y–a)2  gave   a = mean 

• Minimizing  Σ|y–a|  gives  a = median 



Least Squares vs. Least Absolute Deviations 

• LS: 
– Not robust 

– Stable, unique solution 

– Solve with normal equations, Gauss-Newton, etc. 

• LAD 
– Robust 

– Unstable, not necessarily unique 

– Nasty function (discontinuous derivative): 
requires iterative solution method (e.g. simplex) 



Iteratively Reweighted Least Squares 

• Sometimes-used approximation: 
convert to iteratively weighted least squares 
 
 
 
 
 
with wi based on previous iteration 
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Review: Weighted Least Squares 

• Define weight matrix W as 

 

 

 

 

• Then solve weighted least squares via 
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M-Estimators 

Different options for weights 
– Give even less weight to outliers 
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Iteratively Reweighted Least Squares 

• Danger!  This is not guaranteed to converge 
to the right answer! 
– Needs good starting point, which is available if 

initial least squares estimator is reasonable 

– In general, works OK if few outliers, not too far off 



Outlier Detection and Rejection 

• Special case of IRWLS: set weight = 0 if outlier, 
1 otherwise 

• Detecting outliers: (yi–f(xi))2 > threshold 
– One choice: multiple of mean squared difference 

– Better choice: multiple of median squared difference 

– Can iterate… 

– As before, not guaranteed to do anything reasonable, 
tends to work OK if only a few outliers 



RANSAC 

• RANdom SAmple Consensus: desgined for 
bad data (in best case, up to 50% outliers) 

• Take many minimal random subsets of data 
– Compute fit for each sample 

– See how many points agree: (yi–f(xi))2 < threshold 

– Threshold user-specified or estimated from more trials 

• At end, use fit that agreed with most points 
– Can do one final least squares with all inliers 



RANSAC 



Least Squares in Practice 



Least Squares in Practice 

• More data is better 
– uncertainty in estimated parameters goes down slowly: 

like 1/sqrt(# samples) 

• Good correlation doesn’t mean a model is good 
– use visualizations and reasoning, too.  

 

 

C
mn −

=
2

2 χσ



Anscombe’s Quartet 

y = 3.0 + 0.5x 
r = 0.82 



Anscombe’s Quartet 



Least Squares in Practice 

• More data is better 

• Good correlation doesn’t mean a model is good 

• Many circumstances call for (slightly) more 
sophisticated models than least squares 
– Generalized linear models, regularized models 

(e.g., LASSO), PCA, … 

 

 



Residuals depend on x (heteroscedastic): 
Assumptions of linear least squares not met 



Least Squares in Practice 

• More data is better 

• Good correlation doesn’t mean a model is good 

• Many circumstances call for (slightly) more 
sophisticated models than linear LS 

• Sometimes a model’s fit can be too good 
(“overfitting”)  
– more parameters may make it easier to overfit 

 

 



Overfitting 



Least Squares in Practice 

• More data is better 

• Good correlation doesn’t mean a model is good 

• Many circumstances call for (slightly) more 
sophisticated models than linear LS 

• Sometimes a model’s fit can be too good 

• All of these minimize “vertical” squared distance 
– Square, vertical distance not always appropriate 

 

 

 


	Data Modeling and�Least Squares Fitting 2
	Last time
	Nonlinear Least Squares
	Nonlinear Least Squares
	Newton’s Method
	Newton’s Method
	Newton’s Method
	Newton’s Method
	Newton’s Method
	Newton’s Method
	Newton’s Method for Least Squares
	Gauss-Newton Iteration
	Gauss-Newton Iteration
	Gauss-Newton Iteration
	Example: Logistic Regression
	Logistic Regression
	Gauss-Newton++: �The Levenberg-Marquardt Algorithm
	Levenberg-Marquardt
	Levenberg-Marquardt
	Levenberg-Marquardt
	Dealing with Outliers
	Outliers
	Example: without outlier
	Example: with outlier
	Robust Estimation
	Least Absolute Value Fitting
	Example: Constant
	Least Squares vs. Least Absolute Deviations
	Iteratively Reweighted Least Squares
	Review: Weighted Least Squares
	M-Estimators
	Iteratively Reweighted Least Squares
	Outlier Detection and Rejection
	RANSAC
	RANSAC
	Least Squares in Practice
	Least Squares in Practice
	Anscombe’s Quartet
	Anscombe’s Quartet
	Least Squares in Practice
	Slide Number 44
	Least Squares in Practice
	Overfitting
	Least Squares in Practice

